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Data parallel algorithms1 

 (Guy Steele):  The data-parallel programming style is an approach to organizing 
programs suitable for execution on massively parallel computers. 

In this lecture, we will— 

• characterize the    programming style, 

• examine the building blocks used to construct data-parallel programs, 
and 

• see how to fit these building blocks together to make useful 
algorithms. 

All programs consist of code and data put together.  If you have more than one 
processor, there are various ways to organize parallelism. 

• Control parallelism: Emphasis is on extracting parallelism by orienting 
the program’s organization around the parallelism in the code. 

•    parallelism: Emphasis is on organizing programs to extract 
parallelism from the organization of the data. 

With data parallelism, typically all the processors are at roughly the same point in 
the program. 

Control and data parallelism vs. SIMD and MIMD. 

• You may write a data-parallel program for a MIMD computer, or 

• a control-parallel program which is executed on a SIMD computer. 

 Emphasis in this talk will be on styles of organizing programs.  It becomes an 
engineering issue whether it is appropriate to organize the hardware to match the 
program. 

The sequential programming style, typified by C and Pascal, has building blocks 
like— 

• scalar arithmetic operators, 
• control structures like if … then … else, and 
• subscripted array references. 

 
1Video © 1991, Thinking Machines Corporation.  This video is available from University Video 
Communications, http://www.uvc.com. 
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The programmer knows essentially how much these operations cost.  E.g., 
addition and subtraction have similar costs; multiplication may be more 
expensive. 

To write data-parallel programs effectively, we need to understand the cost of 
data-parallel operations. 

• Elementwise operations (carried on independently by processors; 
typically    operations and tests). 

• Conditional operations (also elementwise, but some processors may 
not participate, or act in various ways). 

• Replication 

•     

• Permutation 

• Parallel prefix (scan)  
 

An example of an elementwise operation: 

Elementwise addition 

C = A + B 
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Elementwise test 

if (A > B) 
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The results can be used to “conditionalize” future operations: 

if (A > B) C = A + B 
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The set of bits that is used to conditionalize the operations is frequently called a 
condition mask or a context.  Each processor can perform different computations 
based on the data it contains. 

Building blocks 

Communications operations:  

•    : Get a single value out to all processors.  This 
operation happens so frequently that is worthwhile to support in 
hardware.  It is not unusual to see a hardware bus of some kind. 

• Spreading (nearest-neighbor grid).  One way is to have each row 
copied to its nearest neighbor. 

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2  

A better way is to use a copy-scan: 

• On the first step, the data is copied to the row that is directly 
below. 

• On the second step, data is copied from each row that has the 
data to the row that is two rows below. 

• On the third step, data is copied from each row to the row that is 
four rows below. 

 
 In this way, the row can be copied in logarithmic time, if we have the 

necessary interconnections. 
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•    —essentially the inverse of broadcasting.  Each 
processor has an element, and you are trying to combine them in 
some way to produce a single result. 

6 1 4 7 3 1 3 2

+

27

 

 Summing a vector in logarithmic time: 

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 2 

3 Σ 4 
5 Σ 6 

7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 0 

3 Σ 4 
5 Σ 4 

7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 0 

3 Σ 4 
5 Σ 0 

7 

 

 Most of the time during the course of this algorithm, most processors 
have not been busy. 

 So while it is fast, we haven’t made use of all the processors. 

 Suppose you don’t turn off processors; what do you get?  Vector 
sum-prefix (sum-scan). 

  

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 

Σ 0 
1 Σ 2 

3 Σ 4 
5 Σ 6 

7 

Σ 0 
1 Σ 0 

3 Σ 2 
5 Σ 4 

7 

Σ 0 
1 Σ 0 

3 Σ 0 
5 Σ 0 

7 

Σ 0 
2 Σ 3 

4 Σ 5 
6 Σ 0 

0 

Σ 0 
0 

Σ 0 
0 

Σ 0 
2 Σ 1 

4 Σ 3 
6 

Σ 0 
2 Σ 0 

4 Σ 0 
6 

 

 Each processor has received the sum of what it contained, plus all 
the processors preceding it. 

 We have computed the sums of all prefixes—initial segments—of the 
array. 
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 This can be called the checkbook operation; if the numbers are a set 
of credits and debits, then the prefixes are the set of running 
balances that should appear in your checkbook. 

•    .  We wish to assign a different number to each 
processor. 

1 1 1 1 1 1 1 1

+

1

1 2 3 4 5 6 7 8

Broadcast

Sum-prefix

 

• Regular permutation. 

Shift 

A B C D E F G H

A B C D E F GH
 

 Of course, one can do shifting on two-dimensional arrays too; you 
might shift it one position to the north. 

 Another kind of permutation is an odd-even swap: 

 

A B C D E F G H

B D F HA C E G
 

 Distance 2k swap: 

  

A B C D E F G H

C A G ED B H F
 

 Some algorithms call for performing irregular permutations on the 
data. 
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 A B C D E F G H

C E H FB A D G

 

 The permutation depends on the data.  Here we have performed a 
sort.  (Real sorting algorithms have a number of intermediate steps.) 

Example: image processing 

Suppose we have a rocket ship and need to figure out where it is. 

Some of the operations are strictly local.  We might focus in on a particular 
region, and have each processor look at its values and those of its neighbor. 

This is a local operation; we shift the data back and forth and have each 
processor determine whether it is on a boundary. 

When we assemble this data and put it into a global object, the communication 
patterns are dependent on the data; it depends on where the object happened to 
be in the image. 

Irregularly organized data 

Most of our operations so far were on arrays, regularly organized data. 

We may also have operations where the data are connected by pointers. 

In this diagram, imagine the processors as being in completely different parts of 
the machine, known to each other only by an address. 

       doubling: 

 

I originally thought that nothing could be more essentially sequential than 
processing a linked list.  You just can’t find the third one without going through 
the second one.  But I forgot that there is processing power at each node. 

The most important technique is pointer doubling.  This is the pointer analogue of 
the spreading operation we looked at earlier to make a copy of a vector into a 
matrix in a logarithmic number of steps. 

In the first step, each processor makes a copy of the pointer it has to its 
neighbor. 



 

Lecture 13 Architecture of Parallel Computers 7 

 

In the rest of the steps, each processor looks at the processor it is pointing to 
with its extra pointer, and gets a copy of its pointer. 

In the first step, each processor has a pointer to the next processor.  But in the 
next step, each processor has a pointer to the processor two steps away in the 
linked list. 

 

In the next step, each processor has a pointer to the pointer four processors 
away (except that if you fall off the end of the chain, you don’t update the 
pointer). 

Eventually, in a logarithmic number of steps, each processor has a pointer to the 
end of the chain. 

 

How can this be used?  In partial sums of a linked list. 

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
 

At the first step, each processor takes the pointer to its neighbor. 

At the next step, each processor takes the value that it holds, and adds it into the 
value in the place pointed to: 

 

Σ 
0 
1 Σ 

2 
3 Σ 

4 
5 Σ 

6 
7 Σ 

0 
2 Σ 

3 
4 Σ 

5 
6 Σ 

0 
0 

 

Now we do this again: 

Σ 
0 
1 Σ 

0 
3 Σ 

2 
5 Σ 

4 
7 Σ 

0 
0 Σ 

0 
2 Σ 

1 
4 Σ 

3 
6 

 

And after the third step, you will find that each processor has gotten the sum of 
its own number plus all the preceding ones in the list. 



© 2025 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2025 8 

Σ 
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Speed vs. efficiency:  In sequential programming, these terms are considered to 
be synonymous.  But this coincidence of terms comes about only because you 
have a single processor. 

In the parallel case, you may be able to get it to go fast by doing extra work. 

Let’s take a look at the serial vs. parallel algorithm for summing an array. 

 -Reduction 

 Serial Parallel 

Processors 1 N 

Time steps N–1 log N 

Additions N–1 N–1 

Cost N–1 N log N 

Efficiency 1      
1

log N
  

 
 Sum – Prefix 

 Serial Parallel 

Processors 1 n 

Time steps n–1 log n 

Additions n–1 n  (log n–1) 

Cost n–1 n log n 

Efficiency 1  
log n–1

log n
  

The serial version of sum–prefix is similar to the serial version of sum–reduction, 
but you save the partial sums.  You don’t need to do any more additions, though. 

In the parallel version, the number of additions is much greater.  You use n 
processors, and commit log n time steps, and nearly all of them were busy. 

As n gets large, the efficiency is very close to 1.  So this is a very efficient 
algorithm.  But in some sense, the efficiency is bogus; we’ve kept the processors 
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busy doing more work than they had to do.  Only n–1 additions are really 
required to compute sum–prefix.  But n(log n–1) additions are required to do it 
fast. 

Thus, the business of measuring the speed and efficiency of a parallel algorithm 
is tricky.  The measures I used are a bit naïve.  We need to develop better 
measures. 

Exercise:  Submit your answers here. 

Calculate the speedup of summing a vector using copy-scan (turning off the 
processors that are not in use). 

• How long does it take to sum the vector serially?   

• How long does it take to sum it using copy-scan?  

• What is the speedup?  

What is the efficiency (speedup ÷ # of processors) of summing a vector with 
copy-scan?  

In the parallel version of summing an array via sum-prefix, a “bogus” efficiency is 
mentioned.  What would be the “non-bogus” efficiency of the same algorithm?   
 

Putting the building blocks together 

Let’s consider matrix multiply. 

 

One way of doing this with a brute-force approach is to use n 3 processors. 

source2

source1
result

n

n

n

 

https://docs.google.com/a/ncsu.edu/spreadsheet/viewform?formkey=dDN0S3M1WHk1MDN6RHRWYWZjUUVGa0E6MA#gid=0
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1.  Replicate.  The first step is to make 
copies of the first source array, using a 
spread operation. 

 

2.  Replicate.  Then we will do the same 
thing with the second source, spreading 
those down the cube. 

So far, we have used O(log n) time. 
  

3.  Elementwise multiply.  n3 operations 
are performed, one by each processor. 

 
4.  Perform a parallel sum operation, using 
the doubling-reduction method. 

sum  
We have multiplied two matrices in  

O(log n) time, but at the cost of using n3 processors. 

Brute force: n3 processors O(log n) time 

Also, if we wanted to add the sum to one of the matrices, it’s in the wrong place, 
and we would incur an additional cost to move it. 

Cannon’s method 

There’s another method that only requires n2 processors.  We take the two 

source arrays and put them in the same n2 processors.  The result will also show 

up in the same n2 processors. 

We will pre-   the two source arrays. 

• The first array has its rows skewed by different amounts. 
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skew

 

• The columns of the second array are skewed. 

skew

 

The two arrays are overlaid, and they then look 
like this: 

This is a systolic algorithm; it rotates both of 
the source matrices at the same time. 

 

• The first source matrix is rotated horizontally. 
• The second source matrix is rotated vertically. 
 

  

At the first time step, the 2nd element of the first row and the 2nd element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the second time step, the 3rd element of the first row and the 3rd element of 
the first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the third time step, the 4th element of the first row and the 4th element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the fourth time step, the 1st element of the first row and the 1st element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

The same thing is going on at all the other points of the matrix. 
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The     serves to cause the correct elements of each row and 
column to meet at the right time. 

Cannon’s method: n2 processors O(n) time 

An additional benefit is that the matrix ends up in the right place. 

Labeling regions in an image 

Let’s consider a really big example. 

Instead of the rocket ship earlier in the lecture, we’ll consider a smaller region.  
(This is one of the problems in talking about data-parallel algorithms.  They’re 
useful for really large amounts of data, but it’s difficult to show that on the 
screen.) 

We have a number of regions in this 
image.  There’s a large central “green” 
region, and a “red-orange” region in the 
upper right-hand corner.  Some disjoint 
regions have the same color. 

We would like to compute a result in 
which each region gets assigned a 
distinct number. 

 
We don’t care which number gets  
assigned, as long as the numbers are distinct (even for regions of the same 
color. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60
 

For example, here the central 
green region has had all its 
pixels assigned the value 19. 
 
The squiggly region in the 
upper left corner has received 
0 in all its pixels. 
 
The region in the upper right, 
even though the same color 
as the central green region, 
has received a different value. 
 

Let’s see how all the building blocks we have discussed can fit together to make 
an interesting algorithm. 
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First, let’s assign each processor a 
different number. 

Here I’ve assigned the numbers 
sequentially across the rows, but 
any distinct numbering would do. 

We’ve seen how the enumeration 
technique can do this in a 
logarithmic number of time steps. 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63  

 

Next, we have each of the 
pixels examine the values of its 
eight neighbors. 

This is easily accomplished 
using regular   —
namely, shifts of the matrix. 

We shift it up, down, left, right, 
to the northeast, northwest, 
southeast, and southwest. 

This is enough for each processor to do elementwise computation and decide 
whether it is on the border. 

 (There are messy details, but we won’t discuss them here, since they have little 
to do with parallelism.) 

The next computation will be carried out only by processors that are on the 
borders (an example of conditional operation). 

We have each of the processors again 
consider the pixel values that came 
from its neighbors, and 

inquire again, using shifting, if each of 
its neighbors are border elements. 

This is enough information to figure 
out which of your neighbors are border 
elements in the same region, so you 
can construct pointers to them.   
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0 1 2 4 5 6

8 9 10 11 13 14 15

17 18 19 20 21 22 23

25 26 28 29 30

32 33 37 38

40 41 42 44 45

48 49 50 51 52 53 54 55

56 59 60 61 62 63  

Now we have stitched together 
the borders in a linked list. 

We now use the pointer-
doubling algorithm.  Each pixel 
on the borders considers the 
number that it was assigned in 
the enumeration step. 

We use the pointer-doubling 
algorithm to do a reduction step 
using the min operation. 

0 0 2 2 5 5

8 0 0 2 2 2 2 5

8 0 19 2 2 2 23

8 19 19 19 23

8 19 19 23

8 19 19 19 23

8 49 49 19 19 23 23 23

49 49 60 60 60 60  

Each linked list performs poin-
ter-doubling around that list, 
and determines which number 
is the smallest in the list. 

Then another pointer-doubling 
algorithm makes copies of that 
minimum all around the list. 

Finally, we can use     operation, not on linked lists, but by operating on the 
columns (or the rows) to copy the processor labels from the borders to the rows. 

Other items, particularly those on 
the edge, may need the numbers 
propagated up instead of down.  
So you do a scan in both 
directions. 

The operation used is a non-
commutative operation that copies 
the old number from the neighbor, 
unless it comes across a new 
number. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

s
ca

n

 

This is known as Lim’s algorithm. 

 Region labeling: O(n2) processors. O(log n) time 

 (Each of the steps was either constant time or O(log n) time.) 
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Data-parallel programming makes it easy to organize operations on large 
quantities of data in massively parallel computers. 

It differs from sequential programming in that its emphasis is on operations on 
entire sets of data instead of one element at a time. 

You typically find fewer loops, and fewer array subscripts. 

On the other hand, data-parallel programs are like sequential programs, in that 
they have a single thread of control. 

In order to write good data-parallel programs, we must become familiar with the 
necessary building blocks for the construction of data-parallel algorithms. 

With one processor per element, there are a lot of interesting operations which 
can be performed in constant time, and other operations which take logarithmic 
time, or perhaps a linear amount of time. 

This also depends on the connections between the processors.  If the hardware 
doesn’t support sufficient connectivity among the processors, a communication 
operation may take more time than would otherwise be required. 

Once you become familiar with the building blocks, writing a data-parallel 
program is just as easy (and just as hard) as writing a sequential program.  And, 
with suitable hardware, your programs may run much faster. 

Exercise:  Run through Lim’s algorithm on the grid given here. 

Questions and answers:  [not shown during class] Question: (Bert Halstead):  
Do you ever get into problems when you have highly data-dependent 
computations, and it’s hard to keep more than a small fraction of the processors 
doing the same operation at the same time? 

Answer:  Yes.  That’s one reason for making the distinction between the data-
parallel style and    hardware.  The best way to design a system to give 
you the most flexibility without making it overly difficult to control is, I think, still an 
open research question. 

Question (Franklin Turback): Your algorithms seem to be based on the 
assumption that you actually have enough processors to match the size of your 
problem.  If you have more data than processors, it seems that the logarithmic 
time growth is no longer justified. 

Answer:  There’s no such thing as a free lunch.  Making the problem bigger 
makes it run slower.  If you have a much larger problem that won’t fit, you’re 
going to have to buy a larger computer. 

http://courses.ncsu.edu/csc506/lec/001/lectures/Data-parallel%20alg.%20question%202.doc
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Question:  How about portability of programs to different machines? 

Answer:  Right now it’s very difficult, because so far, we haven’t agreed on 
standards for the right building blocks to support.  Some architectures support 
some building blocks but not others.  This is why you end up with non-
portabilities of efficiencies of running times. 

Question:  For dealing with large sparse matrices, there are methods that we use 
to reduce complexity.  If this is true, how do you justify the overhead cost of 
parallel processing? 

Answer:  Yes, that is true.  It would not be appropriate to use that kind of 
algorithm on a sparse matrix, just as you don’t use the usual sequential triply-
nested loop. 

    processing on a data-parallel computer calls for very 
different approaches.  They typically call for the irregular communication and 
permutation techniques that I illustrated. 

Question:  What about non-linear programming and algorithms like branch-and-
bound? 

Answer:  It is sometimes possible to use data-parallel algorithms to do seemingly 
unstructured searches, as on a game tree, by maintaining a work queue, like you 
might do in a more control-parallel, and at every step, taking a large number of 
task items off the queue by using an enumeration step and using the results of 
that enumeration to assign them to the processors. 

This may depend on whether the rest of the work to be done is sufficiently 
similar.  If it’s not, then control parallelism may be more appropriate. 

Question:  With the current software expertise in 4GLs for sequential machines, 
do you think that developing data-parallel programming languages will end up at 
least at 4GL level? 

Answer:  I think we are now at the point where we know how to design data-
parallel languages at about the level of expressiveness as C, Fortran, and 
possibly Lisp.  I think it will take awhile before we can raise our level of 
understanding to the level we need to design 4GLs. 


