Analysis of Markov Reward Models with Partial Reward Loss Based on a Time Reverse Approach

Gábor Horváth, Miklós Telek
Technical University of Budapest, 1521 Budapest, Hungary
{hgabor,telek}@webspn.hit.bme.hu
Outline

- Markov Reward models with reward loss
- The difficulty of time forward approach
- The time reverse analysis approach
- Properties of the obtained solution
- Numerical examples
- Conclusions
Markov reward models (MRM)

- a finite state CTMC,
- non negative reward rates (r_i),
- performance measures:
 - reward accumulated up to time t,
 - time to accumulate reward w.
We consider

- first order MRM (deterministic dependence on \(Z(t) \)),
- without impulse reward,
- but with potential reward loss at state transition.
In case of partial reward loss:

- α_i remaining portion of reward when leaving state i,
- the lost reward is proportional to:
 - total accumulated reward \Rightarrow partial total loss,
 - reward accumulated in the last state \Rightarrow partial incremental loss.
In case of partial reward loss:

- α_i, remaining portion of reward when leaving state i,

- the lost reward is proportional to:
 - total accumulated reward \Rightarrow partial total loss,
 - reward accumulated in the last state \Rightarrow partial incremental loss.
Time forward approach

Possible interpretation:
- Reduced \(r_i \alpha_i \) reward accumulation up to the last state transition,
- and total \(r_i \) reward accumulation in the last state without reward loss.
Time forward approach

Possible interpretation:
- Reduced \((r_i \alpha_i)\) reward accumulation up to the last state transition,
- and total \((r_i)\) reward accumulation in the last state without reward loss.

Unfortunately, the last state transition before time \(T\) is not a stopping time.
Behaviour of the time reverse process:

- **Inhomogeneous CTMC**

 with initial probability \(\bar{\gamma}(0) = \gamma(T) \)

 and generator \(\bar{Q}(\tau) = \{\bar{q}_{ij}(\tau)\} \),

 where

 \[
 \bar{q}_{ij}(\tau) = \begin{cases}
 \frac{\gamma_j(T - \tau)}{\gamma_i(T - \tau)} q_{ji} & \text{if } i \neq j, \\
 - \sum_{k \in S, k \neq i} \frac{\gamma_k(T - \tau)}{\gamma_i(T - \tau)} q_{ki} & \text{if } i = j.
 \end{cases}
 \]
Time reverse approach

Behaviour of the time reverse process:

- Inhomogeneous CTMC

 with initial probability $\gamma^r(0) = \gamma(T)$

 and generator $\widehat{Q}(\tau) = \{\widehat{q}_{ij}(\tau)\}$,

where

$$\widehat{q}_{ij}(\tau) = \begin{cases}
\frac{\gamma_j(T - \tau)}{\gamma_i(T - \tau)}q_{ji} & \text{if } i \neq j, \\
- \sum_{k \in S, k \neq i} \frac{\gamma_k(T - \tau)}{\gamma_i(T - \tau)}q_{ki} & \text{if } i = j.
\end{cases}$$

- Total (r_i) reward accumulation in the first state,
- and reduced ($r_i\alpha_i$) reward accumulation in all consecutive states
- without reward loss.
Potential model description:

- duplicate the state space to describe
 - the total reward accumulation in the first state \(r_i \),
 - and the reduced reward accumulation in all further states \(r_i \alpha_i \).
Time reverse approach

Potential model description:

- duplicate the state space to describe
 - the total reward accumulation in the first state \(r_i \),
 - and the reduced reward accumulation in all further states \(r_i \alpha_i \).

\[
\pi^*(0) = [\gamma(T), 0], \quad \tilde{Q}^*(\tau) = \begin{bmatrix}
\tilde{Q}_D(\tau) & \tilde{Q}(\tau) - \tilde{Q}_D(\tau) \\
0 & \tilde{Q}(\tau)
\end{bmatrix}, \quad R^* = \begin{bmatrix}
R & 0 \\
0 & R_{\alpha}
\end{bmatrix}
\]
Introducing

\[\overline{Y}_i(\tau, w) = P r(\overline{B}(\tau) \leq w, \overline{Z}(\tau) = i) \]

we can apply the analysis approach available for inhomogeneous MRMs.

It is based on the solution of the inhomogeneous partial differential equation

\[
\frac{\partial}{\partial \tau} \overline{Y}(\tau, w) + \frac{\partial}{\partial w} \overline{Y}(\tau, w)R = \overline{Y}(\tau, w)Q(\tau),
\]

where \(\overline{Y}(\tau, w) = \{ \overline{Y}_i(\tau, w) \} \).
Inhomogeneous differential equation

Introducing

\[\overline{Y}_i(\tau, w) = Pr(\overline{B}(\tau) \leq w, \overline{Z}(\tau) = i) \]

we can apply the analysis approach available for inhomogeneous MRMs.

It is based on the solution of the inhomogeneous partial differential equation

\[\frac{\partial}{\partial \tau} \overline{Y}(\tau, w) + \frac{\partial}{\partial w} \overline{Y}(\tau, w)R = \overline{Y}(\tau, w)\overline{Q}(\tau), \]

where \(\overline{Y}(\tau, w) = \{ \overline{Y}_i(\tau, w) \} \).

But a drawback of this approach is that it requires the computation of \(\overline{Q}(\tau) \).
Homogeneous differential equation

To overcome this drawback we introduce the conditional distribution of reward accumulated by the reverse process

\[\tilde{V}_i(\tau, w) = \Pr(\tilde{B}(\tau) \leq w \mid \tilde{Z}(\tau) = i) \]

and the row vector \(\tilde{V}(\tau, w) = \{\tilde{V}_i(\tau, w)\}. \)
To overcome this drawback we introduce the conditional distribution of reward accumulated by the reverse process

\[\hat{V}_i(\tau, w) = Pr(\hat{B}(\tau) \leq w \mid \hat{Z}(\tau) = i) \]

and the row vector \(\hat{V}(\tau, w) = \{\hat{V}_i(\tau, w)\} \).

Using this performance measure we have to solve

\[\frac{\partial}{\partial \tau} \hat{V}(\tau, w) + \frac{\partial}{\partial w} \hat{V}(\tau, w)R = \hat{V}(\tau, w)Q^T, \]

where \(Q^T \) is the transpose of \(Q \).
Block structure of the differential equation

Utilizing the special block structure of the $Q'(\tau)$ and the R' matrices (of size $2\#S$) we can obtain two homogeneous partial differential equations of size $\#S$:

\[
\frac{\partial}{\partial \tau} \bar{X}^1(\tau, w) + \frac{\partial}{\partial w} \bar{X}^1(\tau, w) R = \bar{X}^1(\tau, w) Q_D,
\]

and

\[
\frac{\partial}{\partial \tau} \bar{X}^2(\tau, w) + \frac{\partial}{\partial w} \bar{X}^2(\tau, w) R_{\alpha} = \bar{X}^1(\tau, w) (Q - Q_D)^T + \bar{X}^2(\tau, w) Q^T.
\]
Moments of accumulated reward

The analysis approach available for inhomogeneous MRMs allows to describe the moments of IMMRs with an inhomogeneous ordinary differential equation.

Similar to the reward distribution case, this approach is also applicable for our model, but it requires the computation of \(\overline{Q}(\tau) \).
Moments of accumulated reward

The analysis approach available for inhomogeneous MRMs allows to describe the moments of IMRMs with an inhomogeneous ordinary differential equation.

Similar to the reward distribution case, this approach is also applicable for our model, but it requires the computation of $\bar{Q}(\tau)$.

Using similar state dependent moment measures we obtain homogeneous ordinary differential equations

$$\frac{d}{d\tau} \bar{M}^{(n)}_1(\tau) = n\bar{M}^{(n-1)}_1(\tau)R + \bar{M}^{(n)}_1(\tau)Q_D,$$

and

$$\frac{d}{d\tau} \bar{M}^{(n)}_2(\tau) = n\bar{M}^{(n-1)}_2(\tau)R_\alpha + \bar{M}^{(n)}_1(\tau)(Q - Q_D)^T + \bar{M}^{(n)}_2(\tau)Q.$$
Randomization based numerical method

The ordinary differential equation with constant coefficients allows to compose a randomization based numerical method.

\[\overline{M1}^{(n)}(\tau) = \tau^n \text{e} \mathbf{R}^n \mathbf{E}_D(\tau), \]
and

\[\overline{M2}^{(n)}(\tau) = n!d^n \sum_{k=0}^{\infty} e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!} \mathbf{D}^{(n)}(k), \]

where

\[\mathbf{D}^{(n)}(k) = \begin{cases} e (\mathbf{I} - \mathbf{A}_D^k) & n = 0 \\ 0 & k \leq n, n \geq 1 \\ \mathbf{D}^{(n-1)}(k-1)\mathbf{S}_{\alpha} + \mathbf{D}^{(n)}(k-1)\mathbf{A}_D + \frac{(k-1)}{n} e \mathbf{S}^n \mathbf{A}_D^{k-1-n}(\mathbf{A} - \mathbf{A}_D) & k > n, n \geq 1 \end{cases} \]
Numerical Example

Structure of the Markov chain

Moments of the accumulated reward

With parameters $N = 500000$, $\lambda = 0.000004$, $\sigma = 1.5$, $\rho = 0.1$, $r = 0.000002$, $\alpha = 0.5$,
\[
\begin{align*}
\alpha_N &= 0.5 \quad \alpha_{N-1} = 0.5 \quad \alpha_{N-2} = 0.5 \quad \alpha_0 = 1 \\
r_N &= Nr \quad r_{N-1} = (N-1)r \quad r_{N-2} = (N-2)r \quad r_0 = 0 \\
\end{align*}
\]
Conclusions

The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:
Conclusions

The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:

- non stopping time \(\Rightarrow\) time reverse approach
Conclusions

The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:
- non stopping time ⇒ time reverse approach
- inhomogeneous differential equation ⇒ proper performance measure,
The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:

- non stopping time \Rightarrow time reverse approach
- inhomogeneous differential equation \Rightarrow proper performance measure,
- partial differential equation \Rightarrow ordinary differential equations,
Conclusions

The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:

- non stopping time \Rightarrow time reverse approach
- inhomogeneous differential equation \Rightarrow proper performance measure,
- partial differential equation \Rightarrow ordinary differential equations,
- numerical stability, error control \Rightarrow randomization based analysis.
Conclusions

The analysis of partial loss MRM is usually rather complex.

We propose an analysis method with the following features:

- non stopping time \Rightarrow time reverse approach
- inhomogeneous differential equation \Rightarrow proper performance measure,
- partial differential equation \Rightarrow ordinary differential equations,
- numerical stability, error control \Rightarrow randomization based analysis.

Thanks for your attention.