Polynomials of a Stochastic Matrix and Strong Stochastic Bounds

J.M. Fourneau

Laboratoire PRiSM

Université de Versailles (FRANCE)

June 10, 2006

^aJoint work with Tuğrul Dayar (Bilkent, Turkey), Nihal Pekergin (PRiSM, Versailles, France), and Jean-Marc Vincent (ID, Grenoble, France), supported by a TÜBİTAK-CNRS joint grant, project SurePath from ACI Sécurité, and CNRS-NSF
Motivation

• Solving large Markov chains to check QoS requirements
• Computing bounds rather than exact results
• Strong stochastic bounds on totally ordered state space obtained by some matrix algorithms and numerically solved
• Improving accuracy of the bounds on the steady-state distribution
Strong Stochastic Bounds

- **Definition 1** Let X and Y be random variables on a totally ordered space, X is said to be less than Y in the strong stochastic sense ($X \leq_{st} Y$) iff $E[f(X)] \leq E[f(Y)]$ for all nondecreasing functions f whenever the expectations exist.

- Average number of customers, loss rates are non decreasing functions.

- Discrete Time Markov Chains (continuous time MC can be considered after uniformization)
• **Definition 2** Let X and Y be random variables on the finite state space $\{1, 2, \ldots, n\}$. Let p and q be probability distribution vectors such that

$$p_j = Pr(X = j) \quad \text{and} \quad q_j = Pr(Y = j) \quad \text{for} \quad j = 1, 2, \ldots, n.$$

X is said to be less than Y in the strong stochastic sense, that is, $X \leq_{st} Y$ iff

$$\sum_{j=k}^{n} p_j \leq \sum_{j=k}^{n} q_j \quad \text{for} \quad k = 1, 2, \ldots, n.$$

• $(0.1, 0.2, 0.4, 0.3) <_{st} (0.05, 0.25, 0.2, 0.5)$ because

$$0.3 \leq 0.5 \quad \text{and} \quad 0.4 + 0.3 \leq 0.2 + 0.5 \quad \text{and} \quad 0.2 + 0.4 + 0.3 \leq 0.25 + 0.2 + 0.5$$
Fundamental Theorem

- $P_{i,*}$ refers to row i of P.

Theorem 1 Let P and Q be stochastic matrices respectively characterizing time-homogeneous MCs $X(t)$ and $Y(t)$. Then

$\{X(t), \ t \in T\} \leq_{st} \{Y(t), \ t \in T\}$ if

- $X(0) \leq_{st} Y(0)$,
- st-monotonicity of at least one of the matrices holds, that is,

$$
either \ P_{i,*} \leq_{st} P_{j,*} \ or \ Q_{i,*} \leq_{st} Q_{j,*} \ \forall i, j \ such \ that \ i \leq j,$$

- st-comparability of the matrices holds, that is, $P_{i,*} \leq_{st} Q_{i,*} \ \forall i$.

- we obtain several algorithms based on monotonicity, comparability and some properties to improve but speed of the resolution (lumpability)
Improving the accuracy of the bounds

Possible Solutions

- Reordering the states (Dayar and Pekergin, EUJOR)
- Linear transform (Dayar, Fourneau Pekergin, RAIRO)
- Polynomial transform.
An algebraic approach

- **Definition 3** Let D be the set of polynomials $\Phi()$ such that $\Phi(1) = 1$, Φ different of Identity, and all the coefficients of Φ are non negative.

- **Lemma 1** $\Phi(P)$ has the same steady-state distribution than P.

- **Lemma 2** Let P be an ergodic chain, and let $\Phi()$ be an arbitrary polynomial in D, $\Phi(P)$ is ergodic.

- $<_{el}$ is the element-wise comparison.
Operators

Definition 4 Let P be an arbitrary stochastic matrix, we define:

- r: the summation operator.

$$ r(P)[i, j] = \sum_{k=j}^{n} P[i, k] $$

- v:

$$ v(P)[1, j] = \sum_{k=j}^{n} P[1, k] = r(P)[1, j] $$

And,

$$ v(P)[i, j] = \max_{m \leq i} \{ \sum_{k=j}^{n} P[m, k] \} = \max_{m \leq i} \{ r(P)[m, j] \} $$
• **Property 1** The strong stochastic comparison and the monotonicity of stochastic matrices can be defined through operator r:

 a- st-comparability:
 \[P_1 <_{st} P_2 \iff r(P_1) <_{el} r(P_2) = r(P_1)[i,j] \leq r(P_2)[i,j] \quad \forall i, j \]

 b- P_1 is st-monotone
 \[\iff r(P_1)[i,j] \leq r(P_1)[i+1,j] \quad 1 \leq i \leq n-1 \quad \text{and} \quad \forall j \]

• **Proposition 1** The operator defined by Vincent’s algorithm is $r^{-1}v$.
Optimality of Vincent’s algorithm

Lemma 3 Let $M = r^{-1}v(P)$ then M is the smallest st-monotone stochastic matrix larger than P, i.e. let Q be an arbitrary stochastic matrix such that

- Q is st-monotone
- $P <_{st} Q$

thus M is smaller than Q, i.e. $M <_{st} Q$

- Thus the matrix obtained by Vincent’s algorithm is the smallest one (using the st comparison of matrices).

- But the distribution is not the most accurate.
Fundamental properties: stability

Lemma 4 Let Φ be an arbitrary polynomial in D, let P and Q be two stochastic matrices in A, if $P <_{st} Q$ and Q st-monotone then

1. $\Phi(Q)$ is st-monotone
2. $\Phi(P) <_{st} \Phi(Q)$

- because if Q is st-monotone, then Q^i is also st-monotone for any positive value of i.
- and the convex sum of st-monotone stochastic matrices is st-monotone
Main results

- **Theorem 2** Let Φ be an arbitrary polynomial in D, we have

 $$r^{-1}v(\Phi(P)) <_{st} \Phi(r^{-1}v(P))$$

- **Corollary 1** Consider an arbitrary polynomial $\Phi()$ in D for an arbitrary ergodic Markov chain P, we have:

 $$\pi_P <_{st} \pi_{r^{-1}v(\Phi(P))} <_{st} \pi_{r^{-1}v(P)}$$

- the pre-processing by $\Phi()$ increases the accuracy.
Toy Example

- we study the polynomials $\phi(X) = X/2 + 1/2$ and $\psi(X) = X^2/2 + 1/2$

- $P =\begin{pmatrix}
0.1 & 0.2 & 0.4 & 0.3 \\
0.2 & 0.3 & 0.2 & 0.3 \\
0.1 & 0.5 & 0.4 & 0 \\
0.2 & 0.1 & 0.3 & 0.4
\end{pmatrix}$

- $\phi(P) = \begin{pmatrix}
0.55 & 0.1 & 0.2 & 0.15 \\
0.1 & 0.65 & 0.1 & 0.15 \\
0.05 & 0.25 & 0.7 & 0 \\
0.1 & 0.05 & 0.15 & 0.7
\end{pmatrix}$

- $\psi(P) = \begin{pmatrix}
0.575 & 0.155 & 0.165 & 0.105 \\
0.08 & 0.63 & 0.155 & 0.135 \\
0.075 & 0.185 & 0.65 & 0.09 \\
0.075 & 0.13 & 0.17 & 0.625
\end{pmatrix}$

- $r^{-1}v(\phi(P)) = \begin{pmatrix}
0.55 & 0.1 & 0.2 & 0.15 \\
0.1 & 0.55 & 0.2 & 0.15 \\
0.05 & 0.25 & 0.55 & 0.15 \\
0.05 & 0.1 & 0.15 & 0.7
\end{pmatrix}$

- $r^{-1}v(\psi(P)) = \begin{pmatrix}
0.575 & 0.155 & 0.165 & 0.105 \\
0.08 & 0.63 & 0.155 & 0.135 \\
0.075 & 0.185 & 0.605 & 0.135 \\
0.075 & 0.13 & 0.17 & 0.625
\end{pmatrix}$
• Finally, we compute the steady-state distribution for the bounds and the initial matrix:

\[\pi_P = (0.1530, 0.3025, 0, 3167, 0.2278) \]

\[\pi_{r^{-1}v(P)} = (0.1, 0.2, 0, 3667, 0.3333) \]

\[\pi_{r^{-1}v\phi(P)} = (0.1259, 0.2587, 0, 2821, 0.3333) \]

\[\pi_{r^{-1}v\psi(P)} = (0.1530, 0.2997, 0, 2916, 0.2557) \]

• \(\psi() \) gives the better bound.
How to find a good polynomial

- For degree 1 polynomial, it is proved that the bound does not improve anymore when the matrix becomes Raw Diagonal Dominant.
- Thus $\phi(X) = X/2 + 1/2$ is the best among the degree 1 polynomials.
- Toy example shows that a degree 2 polynomial is even better.
- Question: Can we find the best polynomial for any degree?
- Question: Tradeoff between complexity and accuracy?
- Question: Higher the degree, more accurate the bound?
The set of good polynomials

• **Definition 5** Let P be a stochastic matrix, and $k \geq 1$, Ψ is a good polynomial with degree k iff $\pi_{r-1}v(\Psi(P)) \leq_{st} \pi_{r-1}v(\Phi(P))$ for all polynomial $\Phi()$ with degree $\leq k$.

• Good polynomials of degree k for a chain yield the most accurate strong stochastic bound computed by Vincent’s algorithm on the steady-state distribution of this chain.

• **Theorem 3** The set of good polynomials of degree n is empty or convex
Increasing the degree is not always a good idea

- Idea: P^∞ is monotone
- But increasing the degree is not always a good idea
- For instance for antimonotone Markov chain.

Definition 6 A Markov chain with matrix P is antimonotone, iff
\[\forall u \text{ and } v \text{ such that } u <_{st} v \text{ then } vP <_{st} uP. \]

- Property 2 If P is antimonotone then P^2 is monotone
- Property 3 If P is monotone then $\Phi(P)$ is monotone
- Property 4 If P is antimontone, all the polynomials with odd coefficients equal to 0 are good polynomials and they provide a bound equal to the exact solution.
Conclusion

- Pre-processing of the stochastic matrix to improve accuracy
- Tradeoff between complexity and accuracy
- An algebraic approach but a stochastic version is in the paper.
- A tool available
- Several models (loss rates and queueing delays)