
Automating Spoken Dialogue Systems

Mona Singh,1,2? James Barnett,2 Munindar P. Singh1??

1 Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

2 Dragon Systems Inc.
320 Nevada Street

Newton, MA 02160, USA

mona singh@ncsu.edu

Abstract. Spoken dialogue interfaces apply in a number of applica-
tions. Engaging in meaningful conversation presupposes the ability to
recognize and generate different conversational moves, and to adaptively
carry on a dialogue. Although the portability of dialogue interfaces is
highly desirable, few current approaches address it seriously.

We describe a portable toolkit for constructing spoken dialogue inter-
faces. We present the representations and techniques used to customize
an interface to a particular domain and application. Our approach relies
on shallow knowledge of the domain, and interprets a rule-based model
of the dialogue.

1 Introduction

Spoken dialogue interfaces have been widely recognized as being highly desir-
able for a number of applications [1, 6]. There are two important dimensions
of a user interface: user-friendliness and developer-friendliness. The former is
improved through mixed-initiative dialogue, and the latter through portability.
Mixed-initiative dialogue means that the system dynamically shares control of
the dialogue with the user. Portability refers to ease of applying the interface
to a new domain or application (portability across languages has to do with
lower-level aspects, and we ignore it here).

Current systems tend to be limited along both of the above dimensions.
They are frequently system-centric in requiring rigid control of the dialogue,
and frequently tied to a specific application [7], such as air travel information
or train schedules [1]. Although components of these systems might be portable,
there is clear need for toolkits to facilitate system construction [6].
? Mona Singh and James Barnett are supported by the National Institute of Standards

and Technology under grant NIST-70NANB5H1181.
?? Munindar Singh is supported by the NCSU College of Engineering, the National Sci-

ence Foundation under grants IRI-9529179 and IRI-9624425, and IBM corporation.



Before we come to the technical details, we outline our major design criteria.
Our work is being performed in the research division of a speech recognition
products vendor. The applicability of our research to products is an essential
factor. Our goal is to market a commercial toolkit that can be used by program-
mers to build applications of interest to end-users (some of these applications are
built in-house). These programmers would customize the toolkit as appropriate
by acquiring knowledge, and developing application programs. Importantly, as
a commercial reality, the programmers using the product are not expected to be
specialists in AI or linguistics (Fraser & Dalsgaard make a similar observation
[6]). Thus, the complex models used in classical knowledge-based systems are
not feasible. This echoes a sentiment from recent work in information retrieval
and text extraction [4]. Consequently, we have been forced to make particular
design trade-offs in attempting to maximize user-friendliness (e.g., as reflected
in mixed-initiative dialogue) without compromising developer-friendliness (e.g.,
as reflected in portability). We believe, however, that our considerations are not
far different from toolkit approaches in general.

The design of a portable toolkit poses special challenges. We must ensure
that the toolkit is generic, and can be readily customized to a wide variety of
applications. On the other hand, full automation is not required—wizards that
suggest good defaults to developers can help increase their productivity. Lastly,
there is an incentive to use the most robust, rather than the fanciest, techniques
in the toolkit.

This paper focuses on the adaptive management of conversational moves.
Our contribution is in an approach that facilitates the developer’s task

– without rigid control of the user’s actions, and
– using a not-very-complex knowledge representation.

Section 2 describes our system architecture, and the models necessary to cus-
tomize it. Section 3 presents the generic parts of our toolkit. It describes the con-
versational moves and dialogue controller, as well as an algorithm for proposing
utterances for the conversational moves. Section 4 presents a sample dialogue.
Section 5 presents the key features of our toolkit.

2 Architecture and Key Models

Our system is customized to a specific application and domain through the
following main models. For concreteness, we consider the application of giving
healthcare advice.

2.1 Domain Model

Since a dialogue system must support a conversation between a human and
an information system, it is important to model the structure of the latter.
The Domain Model (DM) does just that. It provides a static conceptual model
of the domain, which includes the key concepts and their interrelationships.



A conceptual model of the data is easy to understand, and is a key step in
developing an information system [3].

Fig. 1. Simplified Domain Model for Healthcare

The DM is expressed using a variant of the Entity-Relationship (ER) ap-
proach [3]. The ER approach diagrammatically captures a high-level view of the
data, independent of its physical storage. Figure 1, which is loosely based on a
very small part of a healthcare advisory model [2, pp. 70–232], illustrates the
key ideas. The basic concepts of ER diagrams are entities, attributes, and rela-
tionships. An entity describes a class of real or abstract objects that are worth
talking about—e.g., patient. An attribute gives some simple, direct properties of
entities—e.g., name. A relationship defines a specific relation among entities—
e.g., suffer from. We include information on the cardinality of a relationship, and
whether participation in it is required or optional.

Entities can be subclasses of other entities; they inherit the attributes and
relationships of their superclasses. Importantly, we attach action descriptions to
the ER model. The actions describe what operations a user may carry out in
the given application—e.g., assess risk.

Thus, the DM gives the main concepts of interest to an application, but



does not supply any of the background common-sense knowledge. Indeed, ER
models are small—typically, proportional to the number of tables or columns
in a relational database, for instance. Thus, we only require shallow knowledge,
which limits the cost of porting the system to a new domain [4].

Identifiability. To generate utterances for the conversational moves, we must
distinguish between the attributes that the users typically know, e.g., tempera-
ture, and those they don’t, e.g., problem or disease. This knowledge is given in
the DM. The system only queries about attributes and entities that are known
to the user.

Independent existence. Some concepts may be dependent on other concepts. For
example, symptoms are well-defined only for a given patient, not in themselves.
Dependence is important, because it influences how we refer to a concept during
a dialogue. Dependent concepts are shown as double boxes in Figure 1.

Relational logical model. We assume that the DM is in a cleaned up form in
which all relationships are binary, with cardinality 1-1, 1-M, or M-1.

2.2 Transaction Model

The transaction model (TM) specifies the desired actions, which are the domain-
specific operations that users are allowed to perform. The TM is essentially
specified as a nested template or form, which specifies the slots that users may
fill and the operations they may invoke. The slots and operations are jointly
termed transaction nodes or Tnodes.

Actions are specified by giving their procedure name, their input slots, outputs
slots, and a specification of which of the inputs are vital. The TM also includes a
specification of the likelihood of (a) different slots being filled, and (b) different
operations being invoked. These likelihoods are used in disambiguating the users’
utterances when necessary. The TM representation maximizes the flexibility with
which the slots are filled, which is crucial in enabling mixed-initiative dialogue.

In order to carry out an effective dialogue, it is also important to model the
dynamic properties of the different actions. For this reason, we incorporate the
abstractions of commit, rollback, and checkpoint as conversational moves in the
toolkit. The TM specifies where and how to incorporate them, based on the
application and the view being presented to the users.

2.3 Dialogue Model

The dialogue model describes the desired properties of the conversation with
the user. These are given in terms of user and system rule-sets that specify the
dialogue control strategy, which encodes when and how the different conversa-
tional moves are exercised in the dialogue. Confusable slots may be set up for
paraphrasing instead of verification, since paraphrasing is likelier to resolve am-
biguity more reliably [11]. Factors such as the level of confidence in the speech



input and the anticipated confusability of the subslots can influence the selection
of moves [9].

The dialogue model carries the functionality to determine the meanings of the
users utterances, and to deal appropriately with the user. Some of this function-
ality is simply derived from the specifications provided by the developer in terms
of the DM, TM, and the grammars for the various slots. However, a significant
component of the dialogue is conducted based on more flexible specifications
of dialogue control strategies, and of the allowed conversational moves. These
specifications are given as rule-sets.

3 Generic Components of the Toolkit

The above models are interpreted by the dialogue controller, which is the core
of the toolkit. At run-time, the system constructs internal representations that
involve dialogue nodes (Dnodes) linked to appropriate Tnodes—operations and
slots. The Dnodes are automatically generated as needed for each Tnode in the
TM. The system maintains a history of the ongoing conversation in terms of the
Dnodes that are instantiated. The history is used to determine the appropriate
rules to apply at a given stage in the conversation.

3.1 Conversational Moves

A variety of conversational moves and coherence relations have been proposed
to explain the structure of discourse [10, 12]. While useful, these moves are not
sufficient for transaction-oriented applications, especially with spoken interfaces
[8]. While researchers acknowledge this fact, traditional moves may not even
cover simple database access applications.

The moves should be powerful enough to represent the dynamic properties
of the underlying actions. For example, making an appointment requires that
the user commit to the agreed upon time; if the user is a no show, she may be
liable for charges. Similarly, the interface should be able to guarantee that the
appointment is in fact made. This limits the flexibility in other respects. For
example, if a patient want to schedule two separate appointments in the same
time-frame, she must be able to hold a spot without committing to it, or be
able to cancel her commitment (so as to reschedule). Similarly, the user might
want to checkpoint (or bookmark) a state of the dialogue to be able to return to
it in case of error or confusion. The toolkit provides the above abstractions as
conversational moves; the dialogue model specifies where and how to incorporate
them, based on restrictions imposed by the TM.

We propose seven classes of conversational moves. For reasons of space, we
do not describe all the moves in detail, but give examples of each class below.

Transactional. These moves deal with the backend system, and are inherently
asymmetric between the user and system. For example, a user’s request for infor-
mation is treated as invoking an operation—a query. Transactional moves include



request for information, information, offer to perform an operation, invoke an
operation, undo an operation, and further development.

Authorizational and Commissive. Many applications require the user to explic-
itly authorize the system to take some action on his behalf. This authorization
might involve the user committing some transactions, with social or economic
effects beyond the dialogue. Authorizational moves include offer to commit and
commit.

Error Detection and Correction. These are moves through which the system
and the user find and remove miscommunications and misunderstandings. Error
detection and correction moves include request for verification, paraphrasing,
request for confirmation, verification, confirmation, correction, and restatement.
In principle, these could all be performed by the system or the user. Some of
these, e.g., paraphrasing, if attempted by a user, might be difficult for the system
to understand.

Interactional. These moves enable the system and user to maintain their con-
versation history. Interactional moves include request for location, location, top-
icalization, request for options, options, return to prior context space, offer to
checkpoint, checkpoint, rollback, interruption, and silence.

Presentational. These are moves through which the system gives information to
the user. The realization of presentational moves depends on the media available
for interaction. In general, we assume that either the presentation can be of
(a) some atomic entity, possibly large like a picture, or (b) some structured
entity, such as a set of documents. Atomic entities can be viewed based on
their physical components; structured entities can also be viewed based on their
logical structure. A generic toolkit can only include a means to present the
results serially (temporally or spatially), and a means to identify components.
Presentational moves include request a component, present logical component,
request scrolling, present physical component, serialize, request attention, and
grant attention.

Assistance. These are moves through which the system helps the user in un-
derstanding the meaning of the different steps in the given dialogue. Assistance
moves include request for explanation, explanation, and feedback.

Sessional. These are moves through which the user and system initiate, resume,
and close their conversations. Sessional moves include initiate, authenticate, re-
quest preferences, set preferences, close, and resume.

3.2 Dialogue Controller

The dialogue controller is the heart of our system. This is the module that
interprets the application-specific models, and orchestrates the conversation with
the user in a way that respects those models.



To ensure mixed-initiative dialogue, the controller gives the user an opportu-
nity to speak (and allows interruptions where possible). This is processed during
the user phase. When the user relinquishes control of the dialogue, the system
phase is initiated.

User phase. The user phase invokes the recognizer with a list of possible gram-
mars for the nodes (slots or actions) in the TM. The recognizer produces a list
of interpretations along with the matching grammar and (depending on the rec-
ognizer) the confidence in the match. The controller picks out the node yielding
the best interpretation. The best interpretation is determined by a metric that
prefers the best confidence and highest probability of occurrence—the latter is
based on the probability of a particular node being the next node. From the se-
lected slot, the controller applies the rules describing the user interactions (these
are as encoded in the user-rules rule-set).

System phase. In this phase, the controller selects the best target action based
on the current probabilities. Unlike in the user phase, no slot can be selected.
Once the target action is determined, the controller checks if enough is known
to execute it. Specifically, if the vital inputs for the action are not known (at
a high enough confidence level), the controller attempts to obtain those values
from the user. When the values are obtained, the system executes the appropriate
procedure and presents the results. The execution can involve checkpointing and
committing, which as explained in section 3.1, gives the user an opportunity to
cause backend system actions in a controlled manner.

History matching. The apply-strategy module takes a node, a history, and a
rule-set to determine what to do. The rule-set declaratively captures the in-
tended behavior of the system. The rules are if-then rules with a pattern in the
antecedent and an action in the consequent. We allow rules with antecedents
that have a predicate-variable structure, and provide restricted constructs for
the temporal aspects.

The rule-set is matched against the history to find the best (i.e., most specific)
match. The action of this rule is executed on the given node. We allow actions for
each of the conversational moves. The details of matching are beyond the scope
of this paper, but we present a partial set of rules for verification, simplified and
sanitized for ease of exposition.

If you are at a node and the confidence level is <0.5 and the node is verifiable,
then verify the node. This rule can match any node whose name is bound to
?node. ?value is its likeliest value and ?conf is the corresponding confidence in
the recognized speech. This is the most basic rule for verifiable Tnodes.

if (Tnode ?node (?value ?conf))
AND (?conf < 0.5)
AND (verifiable? ?node)

then VERIFY ?node



Thus rules that match the dialogue history are executed and determine what
the next conversational move should be.

3.3 Move Generation

Based on the action desired by the user, the dialogue control strategy determines
a specific system move. This invokes the move generation module to produce the
appropriate utterance. The generation module uses knowledge encoded in the
DM and TM. In practice, a developer would design—and fine tune—the DM
and TM concurrently with testing the generation. We discuss certain aspects of
the DM that are especially important to generation, following which we describe
our strategic and tactical algorithms.

Handle. An effective dialogue requires that there be something that the system
and the user can both refer to, and assume the other party will know. We call
this default starting point the handle of a dialogue model. As a last resort, the
handle can be taken to be the user himself—the meaning of you. We should
then be able to ask who are you and what do you want. Good DMs would have
an entity for the user, or for something equally salient, such as the patient. In
selecting pronouns, it matters whether the conversant and the patient are the
same person.

Relative significance. Knowledge of the relative significance of entities is used
in choosing utterances appropriately. In principle, this knowledge is part of the
dialogue model, although it is more practical to put in the DM, where the entities
are defined. In general, identifiable entities are more significant, as are entities
that exist independently (as explained in section 2.1).

3.3.1 Strategic Algorithm The strategic algorithm attempts to generate
utterances necessary to have the dialogue proceed in a manner that respects the
TM, while allowing the user to share control with the system. This algorithm
is essentially heuristic graph search. For informational prompts, we assume we
know a relevant action. If all its vital inputs are known, we can proceed with it.
Otherwise, we make a list of all missing inputs (even the nonvital ones). We find
the entities these attributes occur in. These entities become the terminal points.
We use a number of heuristics to identify likely starting points, and to search
for a set of paths from the starting points to the terminal points. We lack the
space to include these heuristics here.

Given a path, we proceed along it by querying for entities along it. To move
from an entity to the next, we use the intervening relationship to generate the
relationship prompts, e.g., What is the patient’s nurse’s name? When we arrive
at a terminal entity, we query the user for the necessary attributes of that entity.
For this purpose, we use the tactical algorithm.



3.3.2 Tactical Algorithm The new entity’s identifier is first introduced by
referring to it by a linguistic construction that relates both the known with the
unknown entity. When the new entity has been identified, the tactical algorithm
is invoked to query the remaining attributes.

Consider informational prompts. Such prompts need to be generated for all
slots. In order to generate natural language utterances from the DM, we need
heuristics to generate queries to obtain information about specific attributes and
whole entities via their identifiers. Assuming our DM states that patients take
medications, we can generate utterances such as What medication is the patient
taking? The other moves are similar.

The tactical rules apply when the entity’s identifier slot has been filled and the
entity is the active referent. For entities that are not current, but were previously
identified, we use the strategic algorithm to “revive” them in the dialogue.

Our algorithm essentially derives simple templates from the DM. It proposes
a set of utterances that the developer can choose from. Further, we use heuristics
to choose among the various templates during a dialogue. The idea is to use
varying templates even for successive instances of the same conversational move.
This helps reduce the monotony of the dialogue.

4 An Example Dialogue

We present a brief example of a dialogue. Here U refers to the user and S to the
system. Comments are in the typewriter font.

User calls in.
U: I have a problem and I was wondering if I could get some help.
S: What kind of a problem do you have?
U: Well, I have pain in the chest.
S: Do you have chest pain?
verifying a vital slot.
U: Yes.
S: What kind of pain is it? Is it dull and persistent? Enumerating the
possible values of the attribute kind. All possible values are
prompted for till the first positive response.
U: No.
S: Is it stabbing?
U: No.
S: Is it crushing?
U: Yes, it’s sort of crushing.
S: When did the crushing pain begin?
Confirmation of the kind of pain
U: Yesterday afternoon.
. . .



5 Conclusions

Our toolkit can conduct mixed-initiative dialogue and is portable with relatively
little effort. Our approach has the following distinct features. It

– models the dialogue control strategy as rules instead of finite state automata,
which is typical, e.g., [5].

– incorporates reasoning about the confidence levels of the recognizer, if such
information is available.

– dynamically determines desired actions based on user input.
– incorporates the ability to commit and rollback.
– helps generate utterances for moves.

Well-designed information systems almost always have ER models associated
with them already. Several commercial products exist to help construct good ER
models for database applications. We are considering enhancements to a product
to include actions, TMs, as well as features to display the possible utterances
for different moves. We are presently experimenting with ERWinTM , which is a
leading product. However, our approach is independent of any such tool.

References

1. James Allen, Bradford Miller, Eric Ringger, and Teresa Sikorski. A robust system
for natural spoken dialogue. In Proc. 34th Meeting of the ACL, 1996.

2. AMA. The American Medical Association Family Medical Guide. Random House,
1987.

3. Carlo Batini, Stefano Ceri, and Sham Navathe. Conceptual Database Design: An
Entity-Relationship Approach. Benjamin Cummings, 1992.

4. Jim Cowie and Wendy Lehnert. Information extraction. Communications of the
ACM, 39(1):80–91, January 1996.

5. N. Dählback and A. Jönsson. An empirically based computationally tractable di-
alogue model. In Proc. 14th Conference of the Cognitive Science Society, 1992.

6. Norman Fraser and Paul Dalsgaard. Spoken dialogue systems: A European per-
spective. In Proc. International Symp. Spoken Dialogue, 25–37, 1996.

7. Masato Ishizaki, Yasuharu Den, Syun Tutiya, Masafumi Tamota, and Shu
Nakazato. Classifying dialogue tasks: Task oriented dialogue reconsidered. In
Proc. International Symp. Spoken Dialogue, 37–40, 1996.

8. Arne Jönsson. Dialogue actions for natural language interfaces. In Proc. 14th
International Joint Conference on Artificial Intelligence, 1405–1411, 1995.

9. C. Proctor and S. Young. Dialogue control in conversational speech interfaces. In
M. Taylor, F. Neel, and D. Bouwhuis, editors, The Structure of Multimodal Dia-
logue, 385–399. Elsevier, 1991.

10. R. Reichman. Getting Computers to Talk Like You and Me. MIT Press, 1986.
11. S. Tanaka, S. Nakazato, K. Hoashi, and K. Shirai. Spoken dialogue interface in

dual task situation. In Proc. International Symp. Spoken Dialogue, 153–156, 1996.
12. David Traum and Elizabeth Hinkelman. Conversation acts in task-oriented spoken

dialogue. Computational Intelligence, 8:575–599, 1992.

This article was processed using the LATEX macro package with LLNCS style


