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ABSTRACT
Link prediction on social media is an important problem for
recommendation systems. Understanding the interplay of
users’ sentiments and social relationships can be potentially
valuable. Specifically, we study how to exploit sentiment
homophily for link prediction. We evaluate our approach
on a dataset gathered from Twitter that consists of tweets
sent in one month during U.S. 2012 political campaign along
with the “follows” relationship between users. Our first con-
tribution is defining a set of sentiment-based features that
help predict the likelihood of two users becoming “friends”
(i.e., mutually mentioning or following each other) based on
their sentiments toward topics of mutual interest. Our eval-
uation in a supervised learning framework demonstrates the
benefits of sentiment-based features in link prediction. We
find that Adamic-Adar and Euclidean distance measures are
the best predictors. Our second contribution is proposing
a factor graph model that incorporates a sentiment-based
variant of cognitive balance theory. Our evaluation shows
that, when tie strength is not too weak, our model is more
effective in link prediction than traditional machine learning
techniques.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—
Data mining ; J.4 [Computer Applications]: Social and
Behavioral Sciences—Sociology

General Terms
Algorithms, Experimentation
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Social media; Social networks; Link prediction; Sentiment
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1. INTRODUCTION
Link prediction refers to inferring potential relationships

from a snapshot of a social network. A common intuition be-
hind link prediction approaches is the presence of homophily
in networks—similarity breeds connections [25]. Existing
works derive similarities among users from network topol-
ogy [21] (structural similarity), and users’ interests [30] and
geography [29] (semantic similarity).

However, structurally or semantically similar users may
express different sentiments toward a common characteris-
tic. Thelwall [33] found some evidence of both positive and
negative sentiment homophily among MySpace friends. We
posit that there exists a sentiment homophily in networks—
similarity in users’ sentiments breeds connection. Sentiment
can be an important trait for link prediction because of its
application in different domains such as political election
prediction [9], location recommendation [37], and event de-
tection [34].

Romero et al. [28] found that topics of interest to users
can predict social relationships. For example, two users in-
terested in the topic “Obama for President” are likely to be
friends. However, the two users may exhibit the same (both
support or oppose Obama) or contradictory sentiments (one
supports and the other opposes Obama) toward the topic.
Motivated by sentiment homophily, we imagine that the two
users are more likely to become friends in the former case
than in the latter. Based on the above intuition, we ask two
questions:

• How may we exploit sentiments for link prediction?
• Can sentiment homophily help in link prediction?

Two challenges arise when answering the first question.
First, how can we design sentiment-based features between
two users in order to quantify sentiment homophily? Unlike
features such as number of common friends, age, number of
common places, designing sentiment features is much more
complex because interpreting the sentiment of a tweet de-
pends upon its domain and topic.

Second, employing traditional machine learning techniques
(e.g., logistic regression) for link prediction assumes inde-
pendence among pairs of nodes in a network, i.e., whether
A–B is connected is independent of other connected pairs.
However, such a case seldom exists in the real world. Hei-
der [16] proposed cognitive balance theory in social psychol-
ogy suggesting that if strong ties A–B and A–C exist, the
likelihood of B–C becoming a tie (whether weak or strong)
increases because of the “psychological strain”: C will want
to maintain his or her own feelings to agree with A and A’s
friend, B. Granovetter claimed that the B–C tie is always



present in this case. The strength of a tie can be “a com-
bination of the amount of time, the emotional intensity, the
intimacy, and the reciprocal services” [11]. Therefore, we
hypothesize that it is nontrivial to capture dependence be-
tween pairs of nodes (e.g., A–B and A–C ties predicting the
B–C tie) via a machine learning technique. If sentiment ho-
mophily exists, can we leverage such homophily to quantify
the strength of a tie? Will the sentiment-based cognitive
balance theory help in link prediction? How to build such
a model and how to define the strength of a tie through
sentiments are our second challenge.

We employ a dataset of political tweets (and associated
users) to address the second question. We extract users’
sentiments toward different topics from their tweets, where
sentiments are modeled as numeric scores and categorical
values. Further, we design several sentiment-based features,
and evaluate the effect of sentiment homophily in a su-
pervised setting on two social networks: the mutual-follow
graph and the graph formed by users referring to each other
using “@” mentions (Section 4). We find that sentiment-
based features improve the performance of link prediction
in terms of the F1 score on both networks. We also inves-
tigate each sentiment-based feature and find that sentiment
features based on the Adamic-Adar and Euclidean distance
measures are the best predictors (Section 6.1).

We further propose a factor graph model based on Dong
et al. [10], incorporating Heider’s cognitive balance theory,
where the strength of ties is defined based on sentiment-
based features (Section 5). Our model outperforms the other
two well-known classifiers (logistic regression and random
forest) in the mutual-follow graph and in mention graphs
where the strength of ties is not too weak (number of men-
tions exceeds three) (Section 6.2).

Although our analyses focus on Twitter, we conjecture
that our approach can extend to a broad setting involving
online information sharing, e.g., for restaurant or movie rec-
ommendations.

Contributions
Sentiment-based features. We define features that quan-

tify the likelihood of two users becoming friends based on
their sentiments toward topics of mutual interest. We
evaluate the potential benefits of each feature.

Graphical model. We propose a model that incorporates
the sentiment-based cognitive balance theory for link pre-
diction. Our evaluation suggests that our model yields
improved the performance (F1 score) of link prediction
when compared to traditional machine learning models.

2. DATA AND OBSERVATIONS
To obtain a dataset involving strong sentiments, we crawled

Twitter during U.S. 2012 political campaign (from March 23
to April 23 in 2012) using the keywords “Obama” and“Rom-
ney.” We preprocessed the dataset by first removing tweets
that contain more than 10 hashtags. Because Twitter limits
140 characters in one tweet, a tweet containing too many
hashtags is likely to be spam [18]. In addition, we treat
users with less than five tweets as “inactive” and exclude
them. The resulting dataset contains 3, 970, 974 tweets from
123, 073 distinct user accounts.

Topics. A Twitter hashtag [35] is a string beginning with
“#”, which is viewed as a topic marker in the tweet. Typ-

ically, users adopt the same hashtag to discuss a particular
topic. Thus, we use hashtags to represent different topics.

Graphs. We investigate two kinds of undirected graphs:
the mention graph and the mutual-follow graph. The men-
tion graph is based on “@” mentions: whether a retweet,
a reply, or direct reference to a user. If two users mention
each other more often than a certain threshold, we create an
edge in their mention graph (we experiment with multiple
thresholds). In the mutual-follow graph, we create an edge
between two users if they follow each other.

2.1 Sentiment Extraction
We use an established sentiment lexicon, SentiWordNet

[3], to obtain the sentiment scores of all tweets. SentiWord-
Net contains three real-valued scores for each word in its
lexicon indicating positivity, negativity, and objectivity ; the
sum of the three scores is one. In addition, we extract emoti-
cons from tweets and estimate the three sentiment scores of
each emoticon. Agarwal et al. [2] provide a list of emoticons
and categorize them into five categories: extremely positive,
positive, neutral, negative, and extremely negative. We assign
the sentiment scores to each category as triples of positiv-
ity, objectivity, and negativity scores, respectively, 〈1, 0, 0〉,
〈3/4, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 3/4〉, and 〈0, 0, 1〉.

We adapt the major methods described by Bakliwal [5]
to compute the sentiment score of a tweet. First, we choose
only the adjectives in the lexicon and extract their stems [27]
to build a pairwise stem-score mapping dictionary. We con-
sider only adjectives because adjectives are strong indicators
of sentiment [15] and can improve sentiment prediction ac-
curacy [5]. Second, we use the Twitter part-of-speech tagger
to extract the adjectives and emoticons in a tweet. Third,
we handle the negation pattern through the Stanford parser
[8], which contains a dependency schema (neg) to indicate
negation. We reverse the sentiment polarity for each word
marked in a neg schema. Finally, we obtain the positivity
and negativity scores of a tweet by averaging the two scores
for each adjective and emoticon; The objectivity score of the
tweet is one minus the two polar scores.

2.2 Observations on the Data
As a sanity check on our intuition about sentiment ho-

mophily in the graphs we consider, we first determine the
probability of two users sharing a same sentiment toward a
topic of mutual interest, conditioned on whether they are
connected.

We construct a mention graph choosing the threshold of
mentions as three. That is, two users are connected if they
mention each other at least three times. From the mutual-
follow graph, we randomly choose a subgraph with 175 users
and their friends. A pair of users is connected if there is an
edge between them. For each graph, we construct pairs of
unconnected users, whose number is identical to the number
of connected pairs in the same graph. We choose the six
most frequent topics (hashtags) in our dataset, and we want
to compare the probability of two connected users sharing a
sentiment with that of two unconnected users.

As Figure 1 shows, the probability of sharing a senti-
ment is 6% higher, on average, for connected users than
unconnected users in the mention graph. In the mutual-
follow graph (Figure 2), the mean difference in probability
between connected and unconnected users is 4%, but the
difference varies across topics. The probability difference is
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Figure 1: Probability of two users in the mention graph
sharing a sentiment toward the six most frequent topics.
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Figure 2: Probability of two users in the mutual-follow graph
sharing a sentiment toward the six most frequent topics.

pronounced for “#romney” and “#santorum” (8%), whereas
the difference is −1% for “#teaparty”. These observations
support our intuition that sentiments and connections are
correlated.

3. PROBLEM DEFINITION
Let G(V,E) be a social network, where V is the set of

users and E is the social relationship between the users. For
a given node vs and a candidate set C = {v1, v2, . . . , v|C|},
our goal is to predict whether there is a link between vs and
vi (vi ∈ C). Specifically, the task is to find a predictive func-
tion for vs such that: Y = f(G, vs, C), where Y = {ysi|vi ∈
C} is a vector of inferred results; i.e., ysi = p(1|G, vs, C)
represents the probability that vs will create a link with vi.

To do so, we take two steps. First we generate a can-
didate set for a source node vs as described next. Second,
we learn a predictive function by defining prediction features
(Section 4) and applying a factor graph model incorporating
cognitive balance theory (Section 5).

3.1 Candidate Generation
For each source node vs, we choose its two-hop neighbor-

hood as its candidate set: friends and friends of friends. We
choose the two-hop neighborhood as the candidate set be-
cause (1) the number of candidates increases exponentially
with the number of hops [22]; (2) the number formed friend-
ships decays exponentially with the number of hops [20].

We model our problem as a classification problem, where
friends are positive instances and friends of friends are neg-

ative instances. We assign half of the source nodes into a
training set and half into a test set. We measure F1 scores to
validate our recommendations with respect to the existing
friends of vs in the test set.

We can derive the potential friends of vs from its friends
of friends and then make recommendations based on ranked
probabilities of links between vs and its friends of friends.
However, measuring the validity of such recommendations
requires that we train a model from candidates at one time
instance and test for candidates at a future time instance.
Since our dataset does not have information about when the
links were formed, such an evaluation is out of our scope.

4. PREDICTION FEATURES
With the development of online information sharing, the

coevolution of social and affiliation networks is gaining at-
tention, e.g., [38]. We consider a user as affiliating with a
topic if the user evinces interest in it, and we call the af-
filiation topical affiliation. On Twitter, topical affiliation
happens when a user includes a hashtag in his or her tweet.

Combining sentiment analysis of users’ messages and top-
ical affiliation, we call such an affiliation the topic-sentiment
affiliation. That is, a user affiliates with a set of topics, and
associates a sentiment with each topic. We now describe how
a user’s topic-sentiment affiliation can help link prediction
by describing our prediction features.

We consider three kinds of features: sentiment, structural,
and topical. Sentiment features are extracted from topic-
sentiment affiliation; structural features are based on the
graph-based similarity between two users; topical features
are based on the topical affiliation of two users, measuring
the similarity in their usage of topics. The sentiment fea-
tures are our contribution whereas the other two categories
serve as baseline predictors.

4.1 Topic-Sentiment Affiliation Construction
We compute each tweet’s positivity, negativity, and ob-

jectivity scores using the methods of Section 2.1. If a user
mentions a hashtag in one of his or her tweets, we affili-
ate him with the topic-sentiment pair; if a user mentions
the same hashtag in several tweets, we take the mean of the
three scores of these tweets. We further adopt the sentiment-
volume-objectivity (SVO) function [13] to measure the aggre-
gate effect of a user’s level of interest and his or her sentiment
scores toward a topic. The SVO score is a real value between
0 and 1 that incorporates three elements: polar sentiment
(positivity or negativity), number of times a user mentions
a topic, and objectivity. Therefore, the sentiment in the af-
filiation system consists of four numeric scores: positivity,
negativity, objectivity, and the SVO score. In this way, we
obtain a topic-sentiment affiliation for each user from his or
her tweets.

4.2 Sentiment Features
We use the difference between the positivity and negativ-

ity scores to decide a user’s categorical sentiment toward a
hashtag. The opinion is positive (negative) if the difference
is greater (less) than zero; otherwise, the opinion is objec-
tive. In addition, the size of a hashtag is the number of users
who have adopted it. We adopt the following notation:

• Let v1, v2, . . . , vN be N users.
• Let h1, h2, . . . , hM be M hashtags.



• Let Pi, Ni, Oi be user vi’s adopted hashtags set with
positive, negative, objective sentiments, respectively.
• Let Pj , Nj , Oj be the set of users who expressed pos-

itive, negative, objective sentiments in a hashtag hj ,
respectively.
• Let Hi = Pi ∪Ni ∪Oi
• Let U(hj) = Pj ∪Nj ∪Oj
• Let si(hj) be user vi’s SVO score toward hashtag hj .

Given two users vs and vt, we divide sentiment features
into the following seven categories:

1. The number of hashtags for which they have the
same sentiments.

• sentiment-agreement: |Ps ∩ Pt| + |Ns ∩ Nt| +
|Os ∩Ot|

2. Sentiment alignment coefficient: among the com-
mon hashtags, the number that involve the same or
opposite polar sentiments.

• sentiment-aligned: (|Ps ∩Pt|+ |Ns ∩Nt|)/|Hs ∩
Ht|
• sentiment-misaligned:

(|Ps ∩Nt|+ |Ns ∩ Pt|)/|Hs ∩Ht|
3. Size of the rarest common hashtags: among the

hashtags for which the users share polar sentiments, the
one that is the least adopted by all of them.

• sentiment-rarest: min(minhj∈Ps∩Pt |Pj |,
minhj∈Ns∩Nt |Nj |)

4. Adamic-Adar: sum of the Adamic-Adar distances for
each hashtag set affiliated with the three opinions.

• sentiment-AA:
∑
hj∈Ps∩Pt

1/ log |Pj |+∑
hj∈Ns∩Nt

1/ log |Nj |+
∑
hj∈Os∩Ot

1/ log |Oj |
5. Sum of inverse size.

• sentiment-inverse:
∑
hj∈Ps∩Pt

1/|Pj |+∑
hj∈Ns∩Nt

1/|Nj |+
∑
hj∈Os∩Ot

1/|Oj |
6. Mean size of common hashtags for which they

share the same sentiment.

• sentiment-mean: 1
sentiment-agreement

×
(
∑
hj∈Ps∩Pt

|Pj |
+
∑
hj∈Ns∩Nt

|Nj |+
∑
hj∈Os∩Ot

|Oj |)
7. Topic-SVO distance.

• Euclidean:
√∑

hj∈Hs∩Ht
(ss(hj)− st(hj))2

• cosine: dsdt/‖ds‖‖dt‖, where ds and dt are the
SVO score vectors for common hashtags

4.3 Structural Features
These features are based on graph structure without con-

sidering semantic information. We choose four predictors
introduced by Liben-Nowell et al. [21].

1. Number of common neighbors (CN) between two users.
2. Jaccard’s coefficient (JC): CN divided by the total num-

ber of neighbors.
3. Adamic-Adar (Structural-AA) [1]: weighting the im-

portance of a common neighbor by the degree of the
neighbor.

4. Preferential attachment (PA): the product of two users’
degrees.

4.4 Topical Features
These features, introduced by Romero et al. [28], are base-

line predictors in our study.

1. The number of common hashtags (common): |Hs∩Ht|
2. Size of the smallest common hashtag (smallest):

minhj∈Hs∩Ht |U(hj)|
3. Adamic-Adar distance (Topical-AA):∑

hj∈Hs∩Ht
1/ log |U(hj)|

4. Sum of inverse sizes (inverse):
∑
hj∈Hs∩Ht

1/|U(hj)|
5. Mean size of common hashtags (mean):

1
|Hs∩Ht|

∑
hj∈Hs∩Ht

|U(hj)|

5. PROPOSED MODEL: TSAM
To investigate how to better exploit sentiments for link

prediction, we propose a topic-sentiment affiliation based
graphical model (TSAM). The motivation underlying TSAM
arises from cognitive balance theory: if A–B and A–C are
strong ties, then these two links are not independent because
B–C is likely to be present. We seek (1) a way of building
such relationships where the strength of a tie incorporates
sentiment and (2) to study whether this sentiment-based
cognitive balance theory could improve link prediction.

A TSAM model is an undirected graph G(V, E), where V
represents the set of variables and E is the set of edges in the
graphical model. Below, variables and edges refer to entities
in TSAM, and nodes and links refer to entities in the social
network.

We now describe how we build a TSAM model G(V, E) by
representing links and their relationships in a social network
G(V,E). Given the social network G(V,E), a source node vs
and its candidate set C = {v1, v2, . . . , v|C|}, link prediction
seeks to infer the probability ysi that vs will create a link
with vi. Thus, we treat ysi as a variable (hidden) and the
relationships between such variables as edges E in the TSAM
model.

There is an edge between any two hidden variables if they
contain the same source node vs. Thus, for each source node,
there is a clique in the TSAM model. For each hidden vari-
able, an observed variable is connected with it, representing
a vector of features associated with the hidden variable.

For example, suppose vs has five candidates: {v1, v2}, its
one-hop friends, and {v3, v4, v5}, its friends of friends. The
resulting TSAM model of Figure 3 has five hidden variables
{ys1, · · · , ys5} and five observed variables {xs1, · · · , xs5}.

Even though the figure only shows the factor graph for
one source node, our model captures a scenario with mul-
tiple source nodes. Correspondingly, a TSAM model with
multiple source nodes is composed of multiple disconnected
components, where all the hidden variables in one compo-
nent form a clique.

ys,1

ys,2

ys,3

ys,4ys,5

xs,2

xs,1

xs,4xs,5

xs,3

Figure 3: Graphical representation of TSAM.



Let T represent the set of indices for any link between a
source node and one of its candidates. Then Y = {yt|t ∈ T}
and X = {xt|t ∈ T} denote the set of hidden and observed
variables in the TSAM model, respectively.

The graph can be modeled as a conditional random field
[19] that defines a distribution over the graph:

P (Y |X) =
1

Z

∏
t∈T

ϕ(yt, xt)
∏

(yt,yt′ )∈E

ψ(yt, yt′)

where Z is a constant that ensures
∑
Y P (Y |X) = 1.

The model incorporates two factor functions, which we
instantiate by the Hammersley-Clifford theorem [14]. We
follow the presentation of Dong et al. [10]: the attribute
factor models the influence of different features on the hid-
den variable (link).

ϕ(yt, xt) = exp{
d∑

m=1

αmfm(yt, xtm)} (1)

where αm is a weight constant and d is the number of fea-
tures associated with yt. We include all the features in
Section 4 to build the attribute factor. Second, the edge
factor encodes the relationships between connected hidden
variables.

ψ(yt, yt′) = exp{
k∑
n=1

βngn(yt, yt′)} (2)

where βn is a weight constant and k is the number of features
associated with the edge (yt, yt′) in the TSAM model.

We define gn(yt, yt′) as a binary function. For any two
hidden variables yt and yt′ , a triad is potentially involved
because yt and yt′ contain the same source node. The triad
would be cognitively balanced if both yt and yt′ are strong
ties. We can use any sentiment feature that satisfies the
axioms of Gupte and Eliassi-Rad [12] to define tie strength.
Let’s take the feature sentiment-AA as an example. Fol-
lowing Hopcroft et al.’s [17] definition of the importance of
an user, we select the top 1% edges in the social network
G(V,E) in terms of sentiment-AA features as strong ties.
Therefore, gn(yt, yt′) is one when both yt and yt′ are strong
ties; otherwise, it is zero.

Accordingly, the log-likelihood objective function is

O(θ, Y |X) = logP (Y |X) =
∑
i∈T

d∑
m=1

αmfm(yi, xim)+

∑
(i,j)∈E

k∑
n=1

βngn(yi, yj)− logZ

Here θ = (α, β) is the model (parameter configuration) that
we seek to learn to maximize the log-likelihood objective
function: θ? = arg maxθ O(θ, Y |X).

We adapt the methods in [32] to learn the model except
that we conduct experiments in a supervised setting; we use
gradient descent to optimize the objective function, where
the gradient is approximated by loopy belief propagation
[26]. With the estimated model θ?, the goal of link pre-
diction is to determine the probabilities of hidden variables
that maximize the joint probability P (Y |X, θ?):

Y ? = arg max
Y

P (Y |X, θ?) (3)

6. EXPERIMENTAL EVALUATION
We seek to answer two questions:

• Do sentiment features help in link prediction?

• Does our proposed graphical model incorporating the
sentiment-based cognitive balance theory benefit link
prediction?

6.1 Sentiment Features Evaluation
Evaluation Strategy. We conduct our experiments us-

ing the mention and mutual-follow graphs. For the mention
graphs, the number of “@” references between users can be
viewed as the strength of a tie. We therefore define several
mention graphs by setting different strengths of ties. Ta-
ble 1 shows the statistics of mention graphs with different
thresholds and of the mutual-follow graph.

Table 1: Graph statistics.

Graph Nodes Edges Mean degree

@ ≥ 1 23,915 53,009 4.43
@ ≥ 2 8,936 12,978 2.90
@ ≥ 3 4,770 5,933 2.49
@ ≥ 5 2,106 2,134 2.03
@ ≥ 7 1,201 1,100 1.83
@ ≥ 9 762 639 1.68

Follow 11,239,979 48,572,793 8.64

For each mention graph, we choose all users whose degree
is less than 50 as vs. For the mutual-follow graph, we select
users who adopt at least 50 hashtags; additionally, we only
select “active” users, with the degree falling within range
[50, 100]. Then we generate the two-hop candidate set for
each source node. A pair is constructed between each source
node and any one of its candidates. Doing so leads to the
class imbalance being extremely high, a common problem
in link prediction [22]. Because we first want to investigate
the effect of sentiment features in link prediction, we under-
sample the negative instances to obtain a balanced dataset.
Table 2 shows the number of instances of all the learning
datasets after preprocessing.

Table 2: Learning dataset statistics.

Graph Overall Positive Negative

@ ≥ 1 183,359 78,301 105,058
@ ≥ 2 46,357 22,087 24,270
@ ≥ 3 21,816 10,763 11,053
@ ≥ 5 7,429 3,981 3,448
@ ≥ 7 3,653 2,094 1,559
@ ≥ 9 2,064 1,232 832

Follow 11,153 5,193 5,960

We normalize all the features to [0, 1]. We apply logistic
regression and random forest models from the WEKA frame-
work, and we conduct a 10-fold cross-validation with default
parameters. The F1 score and the Area under the Receiver-
Operating-Characteristic Curve (AUC) are two widely used
metrics in evaluating performance of classifiers [7]. In our
setting, we are more interested in the true positive than
the true negative metric for two reasons. First, positive in-
stances (links between source nodes and their existing friends)
are ground truth, and ensuring high recall of positive in-
stances is nontrivial. Second, false positive with zero, in-
dicating no new friends to recommend, is not necessarily



desirable. Because AUC incorporates both positive and neg-
ative instances equally whereas F1 ignores the true negative
metric, we adopt F1 as our performance metric.

Results. Table 3 shows F1 scores on different combina-
tions of features for logistic regression and random forest
classifiers. In general, sentiment features yield better per-
formance in terms of F1 scores, no matter whether they are
combined with structural features to build the model. To
investigate whether sentiment features indeed help improve
the F1 score, we conduct a paired t-test: each value in sam-
ple one is the F1 score with sentiment or sentiment plus
structural features; each value in sample two is the F1 score
with topical or topical plus structural features. The p-value
is 0.0012, indicating the difference is statistically significant.
In addition, structural features perform much better than
both sentiment and topical features, but adding sentiment
features can generally improve performance. Thus, senti-
ment features can indeed help in link prediction, but as ad-
juncts to the structural features.

Individual Feature Evaluation. We show the perfor-
mance of each sentiment feature for random forest since it
outperforms logistic regression in Table 3. Table 4 shows
the F1 score for individual sentiment feature. We highlight
the top three ranked features in each graph. We find that in
the mention graphs, the features Euclidean, sentiment-
mean, and sentiment-AA perform best. We find that in
the mutual-follow graph, the feature sentiment-agreement
performs best, but Euclidean and sentiment-AA are good
indicators. And, sentiment-rarest is not as informative
as smallest (topical features). In addition, sentiment-
aligned outperforms sentiment-misaligned in general in
all graphs, indicating the existence of sentiment homophily.
Therefore, our evaluation suggests that sentiment homophily
exists and can benefit link prediction.

6.2 TSAM Model Evaluation
Following the preprocessing strategy proposed by Back-

strom and Leskovec, we choose “active” source nodes in all
graphs. That is, active nodes are those whose degree is
within the range [lower, upper]. After constructing pairs
consisting of each source node and each of its candidates,
we remove those whose number of common friends is less
than a threshold, because users with only a few common
friends are unlikely to form friendships. Table 5 shows the
criteria we used. The criteria differ for graphs with differing
statistics. As the ties become stronger, the mention graph
becomes smaller. Thus an overfitting problem may arise if
the dataset is too small. We therefore limit our evaluation
to graphs with more than 100 source nodes left after prepro-
cessing.

Table 5: Preprocessing parameters for evaluating TSAM.

Graph Lower Upper Threshold

@ ≥ 1 10 50 4
@ ≥ 2 10 50 4
@ ≥ 3 5 50 4
@ ≥ 5 3 50 2
@ ≥ 7 3 50 2
@ ≥ 9 3 50 2

Follow 50 100 4

Because the feature sentiment-AA ranks in the top three
features for each graph in Table 4, we choose it to define the
strength of a tie in the edge-factor function. For each graph,
we assign half of the source nodes into a training and half
into a test set. In the training phase, we set the learning
rate λ = 0.001 and the number of iterations as 500. We
split each graph five times and report the mean precision,
recall, and F1 scores of the TSAM model as well as for lo-
gistic regression and random forest, and identify the best
performing model in terms of F1. TSAM outperforms the
other two models in the mutual-follow graph. In the men-
tion graphs, TSAM performs best when the ties are strong
(@ ≥ 3 and @ ≥ 5), but not for weak ties (@ ≥ 1 and @ ≥ 2).
This suggests that when the ties are weak, sentiment-based
cognitive balance theory does not help because the links be-
tween users are somewhat random; hence, a balanced cog-
nitive structure does not necessarily mean any relationship
between two pairs.

Overall, our results indicate that performance of link pre-
diction could be improved when we incorporate sentiment-
based cognitive balance theory, especially on graphs where
the strength of relationship is not too weak (mutual-follow
graph or mention graphs where the number of mentions ex-
ceeds three).

7. RELATED WORK
Link Prediction. Existing work on link prediction can

be classified into two categories. For the unsupervised meth-
ods, Liben-Nowell and Kleinberg evaluated different “prox-
imity”features extracted from network topology. They found
that the Adamic-Adar metric performs best in predicting
links. Most recent works are based on supervised methods.
Lichtenwalter et al. [22] provided a detailed analysis of chal-
lenges, such as class imbalance, of using supervised methods
in link prediction. Dong et al. [10] proposed a probabilistic
graphical model to predict links. Backstrom and Leskovec
[4] developed a supervised random walk algorithm for friend
recommendation on Facebook. Scellato et al. [29] exploited
place features in predicting links on location-based social
networks. Whereas we adopt a supervised approach, we ad-
ditionally consider sentiment features and investigate how
they improve link prediction.

Collaborative Tagging Systems. These are based on
a tripartite structure: users, tags, and resources, enabling
users to share their tags for particular resources. Combined
with social structure, collaborative tagging systems provide
new modalities of link prediction. Marlow et al. [24] found
that users tend to have a larger similarity of tag vocabularies
with their friends compared with random users. Markines
et al. [23] built a foundation for the folksonomy-based sim-
ilarity measures, such as matching, overlap, Jaccard, and
cosine similarity. Romero et al. [28] studied the relationship
between topical affiliations and social network on Twitter.
They found that the adoption of hashtags can predict users’
social relationships. We design sentiment features based on
Romero et al.’s findings. Further, we propose a graphical
model based on sentiment features.

Sentiment Analysis. With the popularity of social me-
dia, sentiment analysis brings us deeper understanding of so-
cial network analysis. Twitter enables researchers to access
huge amounts of data to discover collective sentiments [6,
34], predict political elections [9, 36], and so on. In other ap-
plications, Yang et al. [37] extracted sentiments from users’



Table 3: F1 scores on the positive instances for different classifiers on different combination of features.

Classifier Set of features @ ≥ 1 @ ≥ 2 @ ≥ 3 @ ≥ 5 @ ≥ 7 @ ≥ 9 Follow

Logistic
Regression

Topical 0.295 0.489 0.530 0.650 0.720 0.735 0.479
Sentiment 0.312 0.500 0.550 0.650 0.712 0.739 0.499
Structural 0.736 0.740 0.759 0.792 0.812 0.846 0.666
Topical+Structural 0.689 0.777 0.792 0.818 0.846 0.880 0.678
Sentiment+Structural 0.717 0.789 0.800 0.834 0.861 0.877 0.679

All 0.705 0.778 0.795 0.838 0.858 0.880 0.682

Random
Forest

Topical 0.628 0.765 0.804 0.839 0.853 0.880 0.516
Sentiment 0.723 0.818 0.845 0.859 0.876 0.883 0.517
Structural 0.875 0.908 0.913 0.939 0.946 0.957 0.667
Topical+Structural 0.914 0.946 0.956 0.971 0.972 0.972 0.680
Sentiment+Structural 0.916 0.949 0.959 0.972 0.975 0.979 0.685

All 0.916 0.949 0.958 0.972 0.970 0.979 0.684

Table 4: F1 scores on individual sentiment feature with Random Forest classifier.

Feature @ ≥ 1 @ ≥ 2 @ ≥ 3 @ ≥ 5 @ ≥ 7 @ ≥ 9 Follow

sentiment-agreement 0.166 0.430 0.498 0.636 0.696 0.711 0.488
sentiment-aligned 0.192 0.291 0.555 0.650 0.700 0.735 0.452
sentiment-misaligned 0.122 0.509 0.526 0.640 0.689 0.710 0.390
sentiment-rarest 0.122 0.307 0.360 0.691 0.721 0.742 0.295
sentiment-AA 0.430 0.589 0.706 0.753 0.789 0.822 0.466
sentiment-inverse 0.349 0.501 0.648 0.741 0.785 0.812 0.452
sentiment-mean 0.455 0.593 0.706 0.757 0.791 0.825 0.454
Euclidean 0.589 0.721 0.751 0.788 0.825 0.832 0.467
cosine 0.247 0.480 0.525 0.625 0.692 0.748 0.456

Table 6: Evaluation results for the TSAM.

Feature
Logistic Regression Random Forest TSAM

Precision Recall F1 Precision Recall F1 Precision Recall F1

@ ≥ 1 0.350 0.443 0.391 0.445 0.196 0.272 0.193 0.890 0.317
@ ≥ 2 0.456 0.780 0.576 0.616 0.535 0.573 0.602 0.539 0.569
@ ≥ 3 0.727 0.596 0.655 0.667 0.628 0.647 0.712 0.620 0.663
@ ≥ 5 0.752 0.701 0.726 0.863 0.806 0.834 0.859 0.863 0.861

Follow 0.794 0.636 0.705 0.759 0.664 0.708 0.677 0.801 0.734

reviews on venues to improve location recommendation ser-
vices; Tan et al. [31] used the social relationship to improve
user-level sentiment prediction. We conduct our work with
a different purpose: using sentiment homophily to predict
links.

8. CONCLUSIONS
We study how to exploit sentiments for link prediction,

and evaluate the extent to which sentiment homophily can
help improve link prediction. By extracting users’ senti-
ments from their tweets on different topics, we describe
a set of sentiment features to quantify the likelihood of
two users becoming friends. The evaluation results sug-
gest that sentiment features improve the performance of
link prediction in terms of F1 in both mutual-follow and
mention graphs. Upon investigating the predictive power
of each sentiment feature, we find that Adamic-Adar and
Euclidean distance based measures perform best. We pro-

pose a factor graph model considering the sentiment-based
cognitive balance theory. The results show that our model
outperforms the other two well-known classifiers (logistic re-
gression and random forest) in the mutual-follow graph and
mention graphs where the strength of ties is not too weak
(@ ≥ 3). In future work, we plan to evaluate our work in
a friend recommendation framework by exploiting temporal
information regarding how links form.
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