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Users often share information about others; sometimes this inadvertently 

violates others’ privacy. Thus, here the authors propose SoSharP, an agent-

based approach to help users maintain their own and others’ privacy by 

guiding a selection of sharing policies in multiuser scenarios. SoSharP 

learns incrementally and asks for users’ input only when required, reducing  

users’ effort.
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S ocial network services (SNSs) 
enable users to share information 
and link with others through facil-

ities such as tagging and mentioning. 
However, linking information presents 
a privacy risk for the linked users. Sup-
pose Alice uploads a photo from a party 
in which she and her friend Bob appear, 
and tags Bob. Bob might find that the 
photo Alice uploaded is sensitive. But 
Bob has no control over that photo 
being uploaded, and Alice’s action 
threatens Bob’s privacy. We term such 
a situation a multiuser privacy scenario 
or, for short, a multiuser scenario.

Currently, SNSs leave the respon-
sibility of setting an appropriate shar-
ing policy for information being shared 
to the uploader. The uploader’s choice 
might not be appropriate for other 
users, who might cope with the problem 
via strategies1 such as self-censorship 
and tag-approval (offered by Face-
book). However, these strategies might 

be ineffective in a multiuser scenario. 
First, by the time a user realizes that 
an inappropriate photo involving him 
was shared and untags himself, the 
sensitive information might have been 
disclosed. Second, even if the uploader 
wants to find a policy that respects each 
user’s preference, doing so is tedious 
and nontrivial.

Multiuser scenarios are tailor-made 
for personal agents that make effective 
recommendations about sharing based 
on relevant features. Such agents help 
reduce the cognitive burden and social 
stress on users in making decisions 
that promote privacy.

SoSharP
We envision each SNS user as employing 
a personal agent to share information in 
a multiuser scenario. A personal agent 
interacts with its user and with personal 
agents of other users in the scenario, and 
recommends a sharing policy to its user.
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To realize this vision, we make two 
contributions.

SoSharP. This personal agent acts as a recom-
mender for sharing policies. SoSharP addresses 
multiuser scenarios by doing the following: 
automatically learning to recommend a shar-
ing policy from features about context, users, 
groups, and preferences; providing recommen-
dations despite incomplete information; and 
improving recommendations by receiving user 
ratings, incrementally.

Bootstrapping SoSharP via crowdsourcing. A 
cold start — producing recommendations before 
obtaining information — is a major challenge 
for recommenders, including SoSharP. Because 
of the variety of multiuser scenarios, collect-
ing sufficient data from users would be time 
consuming. Instead, we bootstrap SoSharP by 
crowdsourcing a dataset that includes diverse 
multiuser scenarios, each associated with a 
suitable sharing policy. We employ this dataset 
to train SoSharP so it can make recommenda-
tions right away, even before it has obtained 
data for a particular user.

Features
Given a multiuser scenario, SoSharP recom-
mends a sharing policy — for example, share 
with common friends — suitable for all users 
involved. To do so, it exploits four types of  
features: contextual and preference-based features 
from our prior work,2 and user and group-based 
features introduced here. These features are moti-
vated by the privacy literature, information avail-
able in existing SNSs, and our intuition.

Context
The context of sharing influences users’ privacy 
attitudes3 and, consequently, sharing decisions 
in a multiuser scenario. SoSharP incorporates 
three key contextual factors in the recom-
mendation process: First, it incorporates rela-
tionships among the individuals (for example, 
privacy attitudes might differ for family versus 
friends). Second, it incorporates the sensitivity 
of the information (for example, users might 
share less sensitive information more freely). 
Third, it incorporates the sentiment of the infor-
mation (expressing emotions and eliciting emo-
tional responses from others influences how 
users build social capital).

User Characteristics
SoSharP exploits research on privacy behavior 
on social media that shows that demographics, 
social media practices, and sharing behaviors 
influence how information is disclosed.

Age and gender. In general, younger users are 
freer than older users and men are freer than 
women in sharing information on social media.4

Education level. This is commonly provided by 
users to receive recommendations of friends 
and relationships.

Use frequency. Active users tend to generate 
more content and share frequently.

Sharing experience. Experienced users would have 
learned the implications of their privacy settings.

Conflict experience. Having dealt with conflict-
ing multiuser scenarios can influence how users 
attempt to resolve sharing conflicts.

Sharing Preferences
SoSharP employs the following features, repre-
senting different combinations of sharing pref-
erences that a multiuser scenario might present.

Most restrictive policy. This is the policy that shares 
the least. For instance, if the policies are share 
with common friends and share with all, the most 
restrictive policy is share with common friends.

Least restrictive policy. This is the opposite of 
most restrictive policy.

Majority policy. This is the policy (or policies in 
case of a tie) preferred by a majority of users.

Group Characteristics
SoSharP employs aggregate measures, specifi-
cally, the mean, maximum, minimum, standard 
deviation, and range (5 maximum 2 minimum) 
of the individuals’ characteristics, as group char-
acteristics. We compute these measures for all 
characteristics except gender, which takes one of 
four values: all or majority of males or females.

Recommenders
SoSharP provides personalized recommenda-
tions without requiring extensive user input, 
thus reducing the burden on users. As Figure 1 
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shows, SoSharP operates in up to three rounds, 
proceeding to the next round only if necessary 
to obtain additional information.

First round. In the first round, SoSharP 
employs only context and user features that can 
be obtained from an SNS (fully automatically), 
thereby avoiding user input. For example, age is 
usually required in SNSs. Additionally, an SNS 
can record how many conflicts were previously 
resolved through SoSharP — to determine the 
conflict experience of each party. Importantly, 
in this round, SoSharP generates recommenda-
tions even when some of the contextual fea-
tures are unknown.

SoSharP makes potentially distinct recom-
mendations to the users. Users might accept 
SoSharP’s recommendations or choose another 
policy. Regardless, if all users agree on a shar-
ing policy, SoSharP stops; otherwise, it moves 
to the next round.

Second round. In the second round, in addi-
tion to context, SoSharP employs users’ pre-
ferred sharing policies, which can be the same 

as SoSharP’s Round 1 recommendations, or dif-
ferent if a user didn’t like the recommendation. 
From the individual users’ preferred policies, we 
compute representative features of most restric-
tive, least restrictive, and majority policy. As 
before, SoSharP makes individual recommenda-
tions. It stops if all users agree on a policy or 
moves to the last round, otherwise.

Third round. In the third round, SoSharP gen-
erates a single recommendation for the whole 
group. To this end, SoSharP considers not 
individual, but group features. The recom-
mendation becomes final if it’s accepted unan-
imously; otherwise, SoSharP stops and lets the 
users proceed manually.

Adaptation. For each multiuser scenario, when 
SoSharP stops (irrespective of the round), it records 
the users’ final decision and the features for that 
scenario. From such data instances, So SharP 
learns a model on how groups of users make shar-
ing decisions in disparate multiuser scenarios. It 
employs the learned model to make recommenda-
tions for the users in subsequent scenarios.

Figure 1. SoSharP’s incremental recommendation approach, highlighting the information added in each round.
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Bootstrapping SoSharP
SoSharP requires historical data about a user’s 
multiuser scenarios to make recommenda-
tions for that user in a new scenario. Instead 
of waiting to accumulate historical data, 
which takes time and user effort, we bootstrap 
So SharP from a training dataset acquired via 
crowdsourcing data. However, SoSharP con-
tinually enhances the training dataset with user- 
specific scenarios and decisions, because of 
which its recommendations can adapt to users 
over time.

Crowdsourcing provides an opportunity to 
collect data from a number of users of diverse 
backgrounds quickly. It enables SoSharP to 
offer recommendations that a majority of peo-
ple are likely to find as appropriate, when user-
specific data aren’t available.

To acquire the crowdsourced training data-
set, first, we present information about two or 
more individuals in a specific scenario: a combi-
nation of context and preferences. Then, we ask 
participants to choose a suitable sharing policy 
for that scenario. We ask participants to iden-
tify themselves with the people involved in the 
scenario, which is similar to the methodology 
employed in related work,5 but for a multiuser 
scenario.

To create scenarios, we reuse the picture 
survey instrument from prior work,2 where we 
employed the collected survey data to assess 
the influence of a feature on the final policy 
in a multiuser scenario. Here, we employ the  
collected data to bootstrap SoSharP.

Picture Survey
To generate picture surveys (Table 1 is an exam-
ple), we combine context and sharing policies.

Context. First, we consider how the indi-
viduals in a picture are related via one of three  
predefined relationships: friends, family, or col-
leagues; second, we consider whether the pic-
tures are sensitive or nonsensitive; and third, 
we consider whether the picture conveys a posi-
tive or negative sentiment. Doing so yields 12 
contexts. We select a representative picture for 
each context. However, as Table 1 shows, we 
ask participants to identify the relationships 
among the people involved in the scenario, and 
rate sensitivity (using the Likert scale where  
1 5 not sensitive at all, and 5 5 very sensitive), 
and sentiment (1 5 extremely positive, and  

5 5 extremely negative). We build the training 
dataset considering participants’ responses.

Sharing policy. A policy can imply no shar-
ing, sharing publicly, or anything in between. 
Furthermore, sharing policies depend on the 
number of a user’s contacts and their relation-
ships. The space of possibilities is large. For 
simplicity, we bootstrap SoSharP considering 
only three disclosure levels (these three levels 
matched the Facebook’s basic privacy settings 
at the time of our study):

1. Share with all. Anyone on the SNS can 
access the information — this is the least 
restrictive policy.

2. Share among themselves. Only those directly 
connected with the information can access 
it. Because the scenarios in our study always 
include individuals who are members of a 
group picture, this policy equals a policy to 
not share, and hence is the most restrictive.

3. Share with common friends. Only common 
friends of the individuals in the scenario can 
access the information. We assume that this 
policy is a reasonable intermediate between 
the previous two.

We limit multiuser scenarios in our study 
to involve three individuals so that a majority 
policy without ties is possible. Although some 
pictures show more than three individuals, our 
scenarios discuss the preferences of only three. 
To train SoSharP, we require scenarios with con-
flict. Thus, we make sure that not all three indi-
viduals in a scenario use the same preference.

Consequently, we generate 216 scenarios: 12 
pictures based on context, three policy pref-
erences for the first two individuals, and two 
preferences for the last (see the aforementioned 
restriction).

Following the picture, its description, and 
context identification, we ask participants to 
answer two questionnaires (Q1 and Q2), sequen-
tially. Each of the two questionnaires tells 
participants that one of the individuals in the 
scenario wants to upload the picture to a social 
media account and asks what sharing policy 
they prefer. The participants choose a policy 
(share with all, share with common friends, or 
share among themselves). In Q1, participants 
know only the contextual attributes, but not 
the sharing preferences of the individuals in the 
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scenario. This case is similar to a real scenario 
where a user wants to share information with-
out asking others potentially concerned with 
the information. Q2 introduces all the users’ 
preferences.

Participants
We recruited participants from Amazon MTurk 
to answer picture surveys. We directed each 
participant to an external website, asking to 
complete a demographics presurvey, five pic-
ture surveys (with distinct pictures), and a post-
survey about the participant’s general opinions 
about dealing with multiuser scenarios. The 
picture survey scenarios were randomized to 
counter ordering bias. Our study was approved 
by an institutional review board (IRB).

Quality Control
We required participants to complete at least 
50 tasks on MTurk and to have a success rate 
of at least 90 percent. We included an atten-
tion check question6 in the ratings section of 
each picture survey, asking how many people 
were present in the picture, because respond-
ing requires counting from the picture. If a 
participant incorrectly answered the atten-
tion check question in a picture survey, we 
excluded that survey from analysis (but paid 
the participant, anyway).

Datasets
We built three training datasets, one for each 
round of SoSharP (see Figure 1), from the MTurk 
study data.

Table 1. Shortened example of a picture survey.2

Picture

Description Maria, Bonita, and Felipe, three junior employees in a company, attend a 
business lunch in which they meet their seniors.

Rating Identify the relationship between Maria, Bonita, and Felipe and rate the 
sensitivity and sentiment of the picture.

Context (Q1) Consider that Maria wants to upload this picture to her social media 
account. What sharing policy should she apply for this picture?

Preferences (Q2) Next, consider users’ preferences as follows:
Bonita share among ourselves
Felipe share among ourselves
Maria share with all
Considering the context and users’ preferences, what sharing policy 
should Maria apply for this picture?
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• The Round 1 training dataset uses partici-
pants’ responses to Q1. Each response is an 
observation, whose features are the ratings 
of contextual factors and the characteristics 
of the participant providing that response.

• The Round 2 training dataset uses partici-
pants’ responses to Q2. Each observation 
includes features analogous to those in 
Round 1 and features computed from the 
preferences presented in the corresponding 
Q2 scenario. For example, if the scenario of 
a given response presented two users prefer-
ring share with all and one preferring share 
with themselves, the feature majority policy 
would be share with all.

• The Round 3 training dataset employs each 
possible triplet of responses provided for Q2. 
To form a triplet, the three responses must 
share the contextual and preference features. 
We consider each triplet as an observation 
with the following features: contextual, 
preferences, and group characteristics.

The class (target) variable’s value for each 
observation in the Rounds 1 and 2 datasets is 
the sharing policy chosen by the correspond-
ing participant. For the Round 3 dataset, it’s the 
majority policy in the response triplet or share 
with common friends in case of a tie. For exam-
ple, if a triplet is formed by two responses that 
chose share with all and one that chose share 
with common friends, the class of the triplet is 
share with all.

Classifiers
From each of the datasets, we train a three-
class (each sharing policy is a class) machine 
learning classifier.

In each round, SoSharP employs the classi-
fier for the corresponding round to recommend 
a sharing policy.

We choose specific classifiers and tune their 
parameters based on empirical evaluations over 
data. Specifically, for Round 1, we train a ran-
dom forest classifier with 150 trees; for Round 
2, we train a logistic regression classifier; and 
for Round 3, we train a random forest classifier 
with 200 trees.

Evaluation
We gathered 3,767 valid picture survey 
responses, of which we use 70 percent (2,637) 
to build training datasets, and the other 30 

percent (1,130) for testing. We form triplets from 
the 1,130 responses. All responses in a triplet 
must share the same contextual and preference 
features.

To calculate the accuracy of SoSharP’s rec-
ommendations, we run each testing triplet 
through SoSharP as if it was an actual multiuser 
scenario. After each round, if a recommenda-
tion is generated, we compare the recommended 
sharing policy with the actual sharing policy  
of each response in the triplet. If both are 
equal, SoSharP recommended a sharing policy  
correctly; otherwise, it failed.

Recommendations
First, we compare SoSharP with three baselines: 
Always Self, Always Common, and Always All, 
each of which always recommends the policy 
corresponding to its name; and second, we com-
pare it with two recommenders based on prefer-
ence aggregation (adapted from other work7,8): 
Veto recommends the most restrictive policy 
among users’ preferred policies and Major-
ity recommends the policy that the majority of 
users prefer.

Figure 2a shows the accuracies of SoSharP 
and the baseline recommenders over 510 trip-
lets we form from 1,130 observations in the 
testing set.

The main goal of our study was to col-
lect data for bootstrapping SoSharP. Thus, we 
didn’t evaluate user interface questions such 
as how users could accommodate SoSharP’s 

Figure 2. Accuracy comparisons between SoSharP, baseline, 
and preference-aggregation recommenders. (a) Baseline (all 
scenarios). (b) Baselines (scenarios with nonconflicting ground 
truth). (c) Preference-aggregation recommenders (all scenarios). 
(d) Preference-aggregation recommenders (scenarios with 
nonconflicting ground truth).
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recommendations or reach an agreement about 
the optimal sharing policy. Instead, we identified 
scenarios where the ground truth is in conflict — 
for example, a scenario where two participants 
chose share with all and the third chose share 
with common friends. From the test data, we 
generated 71 triplets with a nonconflicting 
ground truth (that is, all participants chose the 
same sharing policy). Figure 2b shows the accu-
racies of SoSharP and baseline recommenders 
for these 71 triplets. SoSharP yields an accuracy 
close to 1, indicating that, nearly all of the time 
if all users agree on a sharing policy, SoSharP 
recommends that policy.

Because Veto and Majority depend on users’ 
preferences, they can’t provide any recommen-
dation in the first round of SoSharP. To com-
pare SoSharP with these two recommenders, 
we employ a modified version of SoSharP that 
never provides a recommendation in Round 1. 
Figure 2c shows the results of this comparison. 
As with the baseline recommenders, Figure 2d 
shows the results considering only scenarios 
with a nonconflicting ground truth.

In Figure 2, all differences are statistically 
significant (p , 0.05), except for the Always Self 
versus Always Common comparison in Figure 2b; 
both yield low accuracy with high variance.

Incremental Improvement
To evaluate whether adding features as SoSharP 
proceeds from one round to the next increases 
its accuracy, we measure the accuracy in 
each round separately. That is, when SoSharP 
generates a recommendation, we credit that 
accuracy score to the round that created the 
recommendation.

SoSharP provides recommendations even 
when some contextual features are unspecified. 

For example, a personal agent might infer the 
relationship among the parties but fail to infer 
sentiment and sensitivity. In that case, SoSharP 
would provide a recommendation employing a 
relationship as the sole contextual feature.

Figure 3 shows the average accuracy 
achieved at each round. Further, to simulate 
the effects of unknown contextual features, 
in this evaluation, SoSharP also generates rec-
ommendations employing only one contextual 
feature at a time. Round 2 is the most accu-
rate overall. Although the accuracy in Round 1 
reduces if only one contextual feature is speci-
fied, accuracy in Rounds 2 and 3 is affected 
only slightly. All the differences are statisti-
cally significant (p , 0.05) except for the Only 
Sentiment versus Only Relationship compari-
son in Round 3; both have medians that aren’t 
statistically different.

Discussion
SoSharP focuses on multiuser scenarios. How-
ever, a variety of techniques seek to reduce the 
burden of privacy management on SNSs from an 
individual user’s perspective. Özgür Kafalı and 
colleagues9 detect privacy violations on SNSs. 
Nadin Kökciyan and Pınar Yolum10 expand on 
that approach and employ an agent-based rep-
resentation of an SNS, reasoning about commit-
ments between agents. Lujun Fang11 proposes 
a tool that recommends sharing policies based 
on contact similarity. Anna Cinzia Squicciarini 
and colleagues5 propose A3P, which suggests a 
photo-sharing policy based on context, content, 
and metadata.

A few works focus on multiuser privacy. 
For instance, Anna Cinzia Squicciarini and 
colleagues12 propose an auction-based frame-
work to help users reach an agreement. Other 
approaches elicit sharing policies based on 
fixed8 or variable7 preference aggregation 
methods. Hongxin Hu and colleagues13 describe 
a game-theoretic mechanism for multiparty 
access control. These works base their recom-
mendations on the users’ sharing preferences 
and require users to specify all the information. 
SoSharP, instead, takes into account elements 
such as the context, users’ characteristics, and 
the relationship among them, and can generate 
a recommendation even when some information 
is unknown.

Other works focus on applying individual 
privacy settings to specific elements in a 

Figure 3. Average accuracy per round.
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photo. Jun Yu and colleagues14 present iPri-
vacy, an approach that automatically identi-
fies privacy-sensitive elements in a photo 
and blurs them to protect the user’s privacy. 
Similarly, Panagiotis Ilia and colleagues15 
suggest blurring users’ faces depicted in a pic-
ture based on each user’s preference. These 
approaches can, however, limit the value 
derived from the information.

S oSharP aims to enhance the user’s expe-
rience by recommending an appropriate 

sharing policy and respecting all parties’ pref-
erences. Because SoSharP can work even when 
some of the scenario information is unknown, 
it can proactively recommend sharing policies 
without user input.

Our evaluation demonstrates the validity of 
bootstrapping SoSharP and shows that SoSharP 
performs better than other baseline methods. A 
limitation of our approach is that participants 
provided responses to scenarios where they 
weren’t directly involved. Thus, our method-
ology doesn’t support dynamic feedback and 
whether users would concede ground regarding 
their preferences. For example, a user prefer-
ring share with all could consider the share with 
common friends recommendation as accept-
able.1 Data collected from users employing 
SoSharP for a long period of time would enable 
us to evaluate the acceptability of SoSharP’s 
suggestions.

SoSharP doesn’t address all the informa-
tion inferences that might occur in a multiuser  
scenario. Suppose Alice knows that Bob and 
Charlie were together last Friday, but she doesn’t 
know where. Bob doesn’t want Alice to know 
that he was at a party that day. Charlie wants 
to share a cool picture (in which Bob doesn’t 
appear) from the party. SoSharP doesn’t con-
sider Bob’s preference and recommends sharing 
with all. However, this violates Bob’s privacy 
because if Alice sees Charlie’s picture, she can 
infer that Bob was at the party.

Additional directions for future work 
include engineering additional features during 
recommendation — for example, incorporating 
personality traits as user-based features (Round 
1); adaptive agents that learn how flexible their 
users’ preferences are; and agents that negoti-
ate and persuade each other to identify policies 
acceptable to all users. 
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