
Ag
en

ts
 f

or
 S

oc
ia

l
M

ed
ia

28 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Users often share information about others; sometimes this inadvertently

violates others’ privacy. Thus, here the authors propose SoSharP, an agent-

based approach to help users maintain their own and others’ privacy by

guiding a selection of sharing policies in multiuser scenarios. SoSharP

learns incrementally and asks for users’ input only when required, reducing

users’ effort.

SoSharP: Recommending
Sharing Policies in Multiuser
Privacy Scenarios

Ricard L. Fogues
Universitat Politecnica de Valencia

Pradeep K. Murukannaiah
Rochester Institute of Technology

Jose M. Such
King’s College London

Munindar P. Singh
North Carolina State University

S ocial network services (SNSs)
enable users to share information
and link with others through facil-

ities such as tagging and mentioning.
However, linking information presents
a privacy risk for the linked users. Sup-
pose Alice uploads a photo from a party
in which she and her friend Bob appear,
and tags Bob. Bob might find that the
photo Alice uploaded is sensitive. But
Bob has no control over that photo
being uploaded, and Alice’s action
threatens Bob’s privacy. We term such
a situation a multiuser privacy scenario
or, for short, a multiuser scenario.

Currently, SNSs leave the respon-
sibility of setting an appropriate shar-
ing policy for information being shared
to the uploader. The uploader’s choice
might not be appropriate for other
users, who might cope with the problem
via strategies1 such as self-censorship
and tag-approval (offered by Face-
book). However, these strategies might

be ineffective in a multiuser scenario.
First, by the time a user realizes that
an inappropriate photo involving him
was shared and untags himself, the
sensitive information might have been
disclosed. Second, even if the uploader
wants to find a policy that respects each
user’s preference, doing so is tedious
and nontrivial.

Multiuser scenarios are tailor-made
for personal agents that make effective
recommendations about sharing based
on relevant features. Such agents help
reduce the cognitive burden and social
stress on users in making decisions
that promote privacy.

SoSharP
We envision each SNS user as employing
a personal agent to share information in
a multiuser scenario. A personal agent
interacts with its user and with personal
agents of other users in the scenario, and
recommends a sharing policy to its user.

SoSharP: Recommending Sharing Policies in Multiuser Privacy Scenarios

NOVEMBER/DECEMBER 2017 29

To realize this vision, we make two
contributions.

SoSharP. This personal agent acts as a recom-
mender for sharing policies. SoSharP addresses
multiuser scenarios by doing the following:
automatically learning to recommend a shar-
ing policy from features about context, users,
groups, and preferences; providing recommen-
dations despite incomplete information; and
improving recommendations by receiving user
ratings, incrementally.

Bootstrapping SoSharP via crowdsourcing. A
cold start — producing recommendations before
obtaining information — is a major challenge
for recommenders, including SoSharP. Because
of the variety of multiuser scenarios, collect-
ing sufficient data from users would be time
consuming. Instead, we bootstrap SoSharP by
crowdsourcing a dataset that includes diverse
multiuser scenarios, each associated with a
suitable sharing policy. We employ this dataset
to train SoSharP so it can make recommenda-
tions right away, even before it has obtained
data for a particular user.

Features
Given a multiuser scenario, SoSharP recom-
mends a sharing policy — for example, share
with common friends — suitable for all users
involved. To do so, it exploits four types of
features: contextual and preference-based features
from our prior work,2 and user and group-based
features introduced here. These features are moti-
vated by the privacy literature, information avail-
able in existing SNSs, and our intuition.

Context
The context of sharing influences users’ privacy
attitudes3 and, consequently, sharing decisions
in a multiuser scenario. SoSharP incorporates
three key contextual factors in the recom-
mendation process: First, it incorporates rela-
tionships among the individuals (for example,
privacy attitudes might differ for family versus
friends). Second, it incorporates the sensitivity
of the information (for example, users might
share less sensitive information more freely).
Third, it incorporates the sentiment of the infor-
mation (expressing emotions and eliciting emo-
tional responses from others influences how
users build social capital).

User Characteristics
SoSharP exploits research on privacy behavior
on social media that shows that demographics,
social media practices, and sharing behaviors
influence how information is disclosed.

Age and gender. In general, younger users are
freer than older users and men are freer than
women in sharing information on social media.4

Education level. This is commonly provided by
users to receive recommendations of friends
and relationships.

Use frequency. Active users tend to generate
more content and share frequently.

Sharing experience. Experienced users would have
learned the implications of their privacy settings.

Conflict experience. Having dealt with conflict-
ing multiuser scenarios can influence how users
attempt to resolve sharing conflicts.

Sharing Preferences
SoSharP employs the following features, repre-
senting different combinations of sharing pref-
erences that a multiuser scenario might present.

Most restrictive policy. This is the policy that shares
the least. For instance, if the policies are share
with common friends and share with all, the most
restrictive policy is share with common friends.

Least restrictive policy. This is the opposite of
most restrictive policy.

Majority policy. This is the policy (or policies in
case of a tie) preferred by a majority of users.

Group Characteristics
SoSharP employs aggregate measures, specifi-
cally, the mean, maximum, minimum, standard
deviation, and range (5 maximum 2 minimum)
of the individuals’ characteristics, as group char-
acteristics. We compute these measures for all
characteristics except gender, which takes one of
four values: all or majority of males or females.

Recommenders
SoSharP provides personalized recommenda-
tions without requiring extensive user input,
thus reducing the burden on users. As Figure 1

Agents for Social Media

30 www.computer.org/internet/ IEEE INTERNET COMPUTING

shows, SoSharP operates in up to three rounds,
proceeding to the next round only if necessary
to obtain additional information.

First round. In the first round, SoSharP
employs only context and user features that can
be obtained from an SNS (fully automatically),
thereby avoiding user input. For example, age is
usually required in SNSs. Additionally, an SNS
can record how many conflicts were previously
resolved through SoSharP — to determine the
conflict experience of each party. Importantly,
in this round, SoSharP generates recommenda-
tions even when some of the contextual fea-
tures are unknown.

SoSharP makes potentially distinct recom-
mendations to the users. Users might accept
SoSharP’s recommendations or choose another
policy. Regardless, if all users agree on a shar-
ing policy, SoSharP stops; otherwise, it moves
to the next round.

Second round. In the second round, in addi-
tion to context, SoSharP employs users’ pre-
ferred sharing policies, which can be the same

as SoSharP’s Round 1 recommendations, or dif-
ferent if a user didn’t like the recommendation.
From the individual users’ preferred policies, we
compute representative features of most restric-
tive, least restrictive, and majority policy. As
before, SoSharP makes individual recommenda-
tions. It stops if all users agree on a policy or
moves to the last round, otherwise.

Third round. In the third round, SoSharP gen-
erates a single recommendation for the whole
group. To this end, SoSharP considers not
individual, but group features. The recom-
mendation becomes final if it’s accepted unan-
imously; otherwise, SoSharP stops and lets the
users proceed manually.

Adaptation. For each multiuser scenario, when
SoSharP stops (irrespective of the round), it records
the users’ final decision and the features for that
scenario. From such data instances, So SharP
learns a model on how groups of users make shar-
ing decisions in disparate multiuser scenarios. It
employs the learned model to make recommenda-
tions for the users in subsequent scenarios.

Figure 1. SoSharP’s incremental recommendation approach, highlighting the information added in each round.

Round 1 Round 2 Round 3

Recommender 1 Recommender 2 Recommender 3

Make a
recommendation?

Yes

No

Apply the recommendation
users agreed on

Context-based
features

User-based
features

Training set 1

Individual predictions
No

Users
agree on a

recommendation?

Yes

Make a
recommendation?

Yes

Apply the recommendation
users agreed on

Apply the recommendation
users agreed on

Users
agree on a

recommendation?

Users
agree on a

recommendation?

Yes

User-based
features

Training set 2

Individual predictions

Preference-
based features

No

Yes

Context-based
features

Group-based
features

Training set 3

Group prediction

Preference-
based features

Recommend manual resolution

Context-based
features

SoSharP: Recommending Sharing Policies in Multiuser Privacy Scenarios

NOVEMBER/DECEMBER 2017 31

Bootstrapping SoSharP
SoSharP requires historical data about a user’s
multiuser scenarios to make recommenda-
tions for that user in a new scenario. Instead
of waiting to accumulate historical data,
which takes time and user effort, we bootstrap
So SharP from a training dataset acquired via
crowdsourcing data. However, SoSharP con-
tinually enhances the training dataset with user-
specific scenarios and decisions, because of
which its recommendations can adapt to users
over time.

Crowdsourcing provides an opportunity to
collect data from a number of users of diverse
backgrounds quickly. It enables SoSharP to
offer recommendations that a majority of peo-
ple are likely to find as appropriate, when user-
specific data aren’t available.

To acquire the crowdsourced training data-
set, first, we present information about two or
more individuals in a specific scenario: a combi-
nation of context and preferences. Then, we ask
participants to choose a suitable sharing policy
for that scenario. We ask participants to iden-
tify themselves with the people involved in the
scenario, which is similar to the methodology
employed in related work,5 but for a multiuser
scenario.

To create scenarios, we reuse the picture
survey instrument from prior work,2 where we
employed the collected survey data to assess
the influence of a feature on the final policy
in a multiuser scenario. Here, we employ the
collected data to bootstrap SoSharP.

Picture Survey
To generate picture surveys (Table 1 is an exam-
ple), we combine context and sharing policies.

Context. First, we consider how the indi-
viduals in a picture are related via one of three
predefined relationships: friends, family, or col-
leagues; second, we consider whether the pic-
tures are sensitive or nonsensitive; and third,
we consider whether the picture conveys a posi-
tive or negative sentiment. Doing so yields 12
contexts. We select a representative picture for
each context. However, as Table 1 shows, we
ask participants to identify the relationships
among the people involved in the scenario, and
rate sensitivity (using the Likert scale where
1 5 not sensitive at all, and 5 5 very sensitive),
and sentiment (1 5 extremely positive, and

5 5 extremely negative). We build the training
dataset considering participants’ responses.

Sharing policy. A policy can imply no shar-
ing, sharing publicly, or anything in between.
Furthermore, sharing policies depend on the
number of a user’s contacts and their relation-
ships. The space of possibilities is large. For
simplicity, we bootstrap SoSharP considering
only three disclosure levels (these three levels
matched the Facebook’s basic privacy settings
at the time of our study):

1. Share with all. Anyone on the SNS can
access the information — this is the least
restrictive policy.

2. Share among themselves. Only those directly
connected with the information can access
it. Because the scenarios in our study always
include individuals who are members of a
group picture, this policy equals a policy to
not share, and hence is the most restrictive.

3. Share with common friends. Only common
friends of the individuals in the scenario can
access the information. We assume that this
policy is a reasonable intermediate between
the previous two.

We limit multiuser scenarios in our study
to involve three individuals so that a majority
policy without ties is possible. Although some
pictures show more than three individuals, our
scenarios discuss the preferences of only three.
To train SoSharP, we require scenarios with con-
flict. Thus, we make sure that not all three indi-
viduals in a scenario use the same preference.

Consequently, we generate 216 scenarios: 12
pictures based on context, three policy pref-
erences for the first two individuals, and two
preferences for the last (see the aforementioned
restriction).

Following the picture, its description, and
context identification, we ask participants to
answer two questionnaires (Q1 and Q2), sequen-
tially. Each of the two questionnaires tells
participants that one of the individuals in the
scenario wants to upload the picture to a social
media account and asks what sharing policy
they prefer. The participants choose a policy
(share with all, share with common friends, or
share among themselves). In Q1, participants
know only the contextual attributes, but not
the sharing preferences of the individuals in the

Agents for Social Media

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

scenario. This case is similar to a real scenario
where a user wants to share information with-
out asking others potentially concerned with
the information. Q2 introduces all the users’
preferences.

Participants
We recruited participants from Amazon MTurk
to answer picture surveys. We directed each
participant to an external website, asking to
complete a demographics presurvey, five pic-
ture surveys (with distinct pictures), and a post-
survey about the participant’s general opinions
about dealing with multiuser scenarios. The
picture survey scenarios were randomized to
counter ordering bias. Our study was approved
by an institutional review board (IRB).

Quality Control
We required participants to complete at least
50 tasks on MTurk and to have a success rate
of at least 90 percent. We included an atten-
tion check question6 in the ratings section of
each picture survey, asking how many people
were present in the picture, because respond-
ing requires counting from the picture. If a
participant incorrectly answered the atten-
tion check question in a picture survey, we
excluded that survey from analysis (but paid
the participant, anyway).

Datasets
We built three training datasets, one for each
round of SoSharP (see Figure 1), from the MTurk
study data.

Table 1. Shortened example of a picture survey.2

Picture

Description Maria, Bonita, and Felipe, three junior employees in a company, attend a
business lunch in which they meet their seniors.

Rating Identify the relationship between Maria, Bonita, and Felipe and rate the
sensitivity and sentiment of the picture.

Context (Q1) Consider that Maria wants to upload this picture to her social media
account. What sharing policy should she apply for this picture?

Preferences (Q2) Next, consider users’ preferences as follows:
Bonita share among ourselves
Felipe share among ourselves
Maria share with all
Considering the context and users’ preferences, what sharing policy
should Maria apply for this picture?

SoSharP: Recommending Sharing Policies in Multiuser Privacy Scenarios

NOVEMBER/DECEMBER 2017 33

• The Round 1 training dataset uses partici-
pants’ responses to Q1. Each response is an
observation, whose features are the ratings
of contextual factors and the characteristics
of the participant providing that response.

• The Round 2 training dataset uses partici-
pants’ responses to Q2. Each observation
includes features analogous to those in
Round 1 and features computed from the
preferences presented in the corresponding
Q2 scenario. For example, if the scenario of
a given response presented two users prefer-
ring share with all and one preferring share
with themselves, the feature majority policy
would be share with all.

• The Round 3 training dataset employs each
possible triplet of responses provided for Q2.
To form a triplet, the three responses must
share the contextual and preference features.
We consider each triplet as an observation
with the following features: contextual,
preferences, and group characteristics.

The class (target) variable’s value for each
observation in the Rounds 1 and 2 datasets is
the sharing policy chosen by the correspond-
ing participant. For the Round 3 dataset, it’s the
majority policy in the response triplet or share
with common friends in case of a tie. For exam-
ple, if a triplet is formed by two responses that
chose share with all and one that chose share
with common friends, the class of the triplet is
share with all.

Classifiers
From each of the datasets, we train a three-
class (each sharing policy is a class) machine
learning classifier.

In each round, SoSharP employs the classi-
fier for the corresponding round to recommend
a sharing policy.

We choose specific classifiers and tune their
parameters based on empirical evaluations over
data. Specifically, for Round 1, we train a ran-
dom forest classifier with 150 trees; for Round
2, we train a logistic regression classifier; and
for Round 3, we train a random forest classifier
with 200 trees.

Evaluation
We gathered 3,767 valid picture survey
responses, of which we use 70 percent (2,637)
to build training datasets, and the other 30

percent (1,130) for testing. We form triplets from
the 1,130 responses. All responses in a triplet
must share the same contextual and preference
features.

To calculate the accuracy of SoSharP’s rec-
ommendations, we run each testing triplet
through SoSharP as if it was an actual multiuser
scenario. After each round, if a recommenda-
tion is generated, we compare the recommended
sharing policy with the actual sharing policy
of each response in the triplet. If both are
equal, SoSharP recommended a sharing policy
correctly; otherwise, it failed.

Recommendations
First, we compare SoSharP with three baselines:
Always Self, Always Common, and Always All,
each of which always recommends the policy
corresponding to its name; and second, we com-
pare it with two recommenders based on prefer-
ence aggregation (adapted from other work7,8):
Veto recommends the most restrictive policy
among users’ preferred policies and Major-
ity recommends the policy that the majority of
users prefer.

Figure 2a shows the accuracies of SoSharP
and the baseline recommenders over 510 trip-
lets we form from 1,130 observations in the
testing set.

The main goal of our study was to col-
lect data for bootstrapping SoSharP. Thus, we
didn’t evaluate user interface questions such
as how users could accommodate SoSharP’s

Figure 2. Accuracy comparisons between SoSharP, baseline,
and preference-aggregation recommenders. (a) Baseline (all
scenarios). (b) Baselines (scenarios with nonconflicting ground
truth). (c) Preference-aggregation recommenders (all scenarios).
(d) Preference-aggregation recommenders (scenarios with
nonconflicting ground truth).

0 50 100

SoSharP
Always self

Always common
Always all

Average % accuracy(a)
0 50 100

SoSharP
Always self

Always common
Always all

Average % accuracy(b)

0 50 100

SoSharP

Veto

Majority

Average % accuracy(c)
0 50 100

SoSharP

Veto

Majority

Average % accuracy(d)

Agents for Social Media

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

recommendations or reach an agreement about
the optimal sharing policy. Instead, we identified
scenarios where the ground truth is in conflict —
for example, a scenario where two participants
chose share with all and the third chose share
with common friends. From the test data, we
generated 71 triplets with a nonconflicting
ground truth (that is, all participants chose the
same sharing policy). Figure 2b shows the accu-
racies of SoSharP and baseline recommenders
for these 71 triplets. SoSharP yields an accuracy
close to 1, indicating that, nearly all of the time
if all users agree on a sharing policy, SoSharP
recommends that policy.

Because Veto and Majority depend on users’
preferences, they can’t provide any recommen-
dation in the first round of SoSharP. To com-
pare SoSharP with these two recommenders,
we employ a modified version of SoSharP that
never provides a recommendation in Round 1.
Figure 2c shows the results of this comparison.
As with the baseline recommenders, Figure 2d
shows the results considering only scenarios
with a nonconflicting ground truth.

In Figure 2, all differences are statistically
significant (p , 0.05), except for the Always Self
versus Always Common comparison in Figure 2b;
both yield low accuracy with high variance.

Incremental Improvement
To evaluate whether adding features as SoSharP
proceeds from one round to the next increases
its accuracy, we measure the accuracy in
each round separately. That is, when SoSharP
generates a recommendation, we credit that
accuracy score to the round that created the
recommendation.

SoSharP provides recommendations even
when some contextual features are unspecified.

For example, a personal agent might infer the
relationship among the parties but fail to infer
sentiment and sensitivity. In that case, SoSharP
would provide a recommendation employing a
relationship as the sole contextual feature.

Figure 3 shows the average accuracy
achieved at each round. Further, to simulate
the effects of unknown contextual features,
in this evaluation, SoSharP also generates rec-
ommendations employing only one contextual
feature at a time. Round 2 is the most accu-
rate overall. Although the accuracy in Round 1
reduces if only one contextual feature is speci-
fied, accuracy in Rounds 2 and 3 is affected
only slightly. All the differences are statisti-
cally significant (p , 0.05) except for the Only
Sentiment versus Only Relationship compari-
son in Round 3; both have medians that aren’t
statistically different.

Discussion
SoSharP focuses on multiuser scenarios. How-
ever, a variety of techniques seek to reduce the
burden of privacy management on SNSs from an
individual user’s perspective. Özgür Kafalı and
colleagues9 detect privacy violations on SNSs.
Nadin Kökciyan and Pınar Yolum10 expand on
that approach and employ an agent-based rep-
resentation of an SNS, reasoning about commit-
ments between agents. Lujun Fang11 proposes
a tool that recommends sharing policies based
on contact similarity. Anna Cinzia Squicciarini
and colleagues5 propose A3P, which suggests a
photo-sharing policy based on context, content,
and metadata.

A few works focus on multiuser privacy.
For instance, Anna Cinzia Squicciarini and
colleagues12 propose an auction-based frame-
work to help users reach an agreement. Other
approaches elicit sharing policies based on
fixed8 or variable7 preference aggregation
methods. Hongxin Hu and colleagues13 describe
a game-theoretic mechanism for multiparty
access control. These works base their recom-
mendations on the users’ sharing preferences
and require users to specify all the information.
SoSharP, instead, takes into account elements
such as the context, users’ characteristics, and
the relationship among them, and can generate
a recommendation even when some information
is unknown.

Other works focus on applying individual
privacy settings to specific elements in a

Figure 3. Average accuracy per round.

0 50 100

All features

Only sensitivity

Only sentiment

Only relationship

Average % accuracy

Round 1

Round 2

Round 3

SoSharP: Recommending Sharing Policies in Multiuser Privacy Scenarios

NOVEMBER/DECEMBER 2017 35

photo. Jun Yu and colleagues14 present iPri-
vacy, an approach that automatically identi-
fies privacy-sensitive elements in a photo
and blurs them to protect the user’s privacy.
Similarly, Panagiotis Ilia and colleagues15
suggest blurring users’ faces depicted in a pic-
ture based on each user’s preference. These
approaches can, however, limit the value
derived from the information.

S oSharP aims to enhance the user’s expe-
rience by recommending an appropriate

sharing policy and respecting all parties’ pref-
erences. Because SoSharP can work even when
some of the scenario information is unknown,
it can proactively recommend sharing policies
without user input.

Our evaluation demonstrates the validity of
bootstrapping SoSharP and shows that SoSharP
performs better than other baseline methods. A
limitation of our approach is that participants
provided responses to scenarios where they
weren’t directly involved. Thus, our method-
ology doesn’t support dynamic feedback and
whether users would concede ground regarding
their preferences. For example, a user prefer-
ring share with all could consider the share with
common friends recommendation as accept-
able.1 Data collected from users employing
SoSharP for a long period of time would enable
us to evaluate the acceptability of SoSharP’s
suggestions.

SoSharP doesn’t address all the informa-
tion inferences that might occur in a multiuser
scenario. Suppose Alice knows that Bob and
Charlie were together last Friday, but she doesn’t
know where. Bob doesn’t want Alice to know
that he was at a party that day. Charlie wants
to share a cool picture (in which Bob doesn’t
appear) from the party. SoSharP doesn’t con-
sider Bob’s preference and recommends sharing
with all. However, this violates Bob’s privacy
because if Alice sees Charlie’s picture, she can
infer that Bob was at the party.

Additional directions for future work
include engineering additional features during
recommendation — for example, incorporating
personality traits as user-based features (Round
1); adaptive agents that learn how flexible their
users’ preferences are; and agents that negoti-
ate and persuade each other to identify policies
acceptable to all users.

Acknowledgments
We thank the US Department of Defense (the Sci-

ence of Security Lablet), Engineering and Physical Sci-

ences Research Council (EP/M027805/1), Ministerio de

Economía y Competitividad (TIN2014-55206-R), and the

North Carolina State University College of Engineering for

partial support.

References
 1. P. Wisniewski, H. Lipford, and D. Wilson, “Fighting

for My Space: Coping Mechanisms for SNS Boundary

Regulation,” Proc. Computer-Human Interaction, 2012,

pp. 609–618.

 2. R. Fogues et al., “Understanding Sharing Policies in

Multiparty Scenarios: Incorporating Context, Pref-

erences, and Arguments into Decision Making,”

ACM Trans. Computer-Human Interaction, vol. 24,

no. 1, 2017, pp. 1–29.

 3. C. Dong, H. Jin, and B. Knijnenburg, “Predicting Pri-

vacy Behavior on Online Social Networks,” Proc.

9th Int’l AAAI Conf. Web and Social Media, 2015,

pp. 91–100.

 4. F. Stutzman and J. Kramer-Duffield, “Friends Only:

Examining a Privacy-Enhancing Behavior in Face-

book,” Proc. Computer-Human Interaction, 2010,

pp. 1553–1562.

 5. A. Squicciarini et al., “Privacy Policy Inference of

User-Uploaded Images on Content Sharing Sites,” IEEE

Trans. Knowledge and Data Eng., vol. 27, no. 1, 2015,

pp. 193–206.

 6. U. Gadiraju et al., “Understanding Malicious Behavior in

Crowdsourcing Platforms: The Case of Online Surveys,”

Proc. Computer-Human Interaction, 2015, pp. 1631–1640.

 7. H. Hu, G. Ahn, and J. Jorgensen, “Multiparty Access

Control for Online Social Networks: Model and Mecha-

nisms,” IEEE Trans. Knowledge and Data Eng., vol. 25,

no. 7, 2013, pp. 1614–1627.

 8. K. Thomas, C. Grier, and D. Nicol, “unFriendly: Multi-

Party Privacy Risks in Social Networks,” Proc. Privacy

Enhancing Technology Symp. 2010, pp. 236–252.

 9. Ö. Kafalı, A. Günay, and P. Yolum, “PROTOSS: A Run

Time Tool for Detecting Privacy Violations in Online

Social Networks,” Proc. Advances in Social Networks

Analysis and Mining, 2012, pp. 429–433.

 10. N. Kökciyan and P. Yolum. “PriGuard: A Semantic

Approach to Detect Privacy Violations in Online Social

Networks,” IEEE Trans. Knowledge and Data Eng.,

vol. 28, no. 10, 2016, pp. 2724–2737.

 11. L. Fang and K. LeFevre, “Privacy Wizards for Social Net-

working Sites,” Proc. World Wide Web, 2010, pp. 351–360.

 12. A. Squicciarini, M. Shehab, and F. Paci, “Collective

Privacy Management in Social Networks,” Proc. World

Wide Web, 2009, pp. 521–530.

Agents for Social Media

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

 13. H. Hu et al., “Game Theoretic Analysis of Multiparty

Access Control in Online Social Networks,” Proc.

Symp. Access Control Models and Technologies, 2014,

pp. 93–102.

 14. J. Yu et al., “iPrivacy: Image Privacy Protection by

Identifying Sensitive Objects via Deep Multi-Task

Learning,” IEEE Trans. Information Forensics and

Security, vol. 12, no. 5, 2017, pp. 1005–1016.

 15. P. Ilia et al., “Face/Off: Preventing Privacy Leakage

from Photos in Social Networks,” Proc. Sigsac Conf.

Computer and Comm. Security, 2015, pp. 781–792.

Ricard L. Fogues has a PhD in computer science from

Universitat Politecnica de Valencia. His research

interests include social media with an emphasis on

artificial intelligence, human-computer interaction,

and interpersonal privacy. Contact him at rilopez@

dsic.upv.es.

Pradeep K. Murukannaiah is an assistant professor in

software engineering at the Rochester Institute of

Technology. His research interests include engineer-

ing socially intelligent and privacy-aware personal

agents. Murukannaiah has a PhD in computer science

from North Carolina State University. Contact him at

pkmvse@rit.edu.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

Jose M. Such is a senior lecturer (associate professor)

in computer science at King’s College London. His

research interests are at the intersection between

cybersecurity, artificial intelligence, and human-

computer interaction, with a strong focus on privacy,

intelligent access control, and co-owned data in socio-

technical and cyber-physical systems. Such has a PhD

in computer science from the Universitat Politecnica de

Valencia. Contact him at jose.such@kcl.ac.uk.

Munindar P. Singh is a computer science professor and

the co-director of the Science of Security Lablet at

North Carolina State University. His research interests

include the governance of sociotechnical systems, with

an emphasis on security and privacy. Singh is a Fel-

low of IEEE and the AAAI, a former Editor-in-Chief

of IEEE Internet Computing, and the current Editor-

in-Chief of ACM Transactions on Internet Technology.

Contact him at mpsingh@ncsu.edu.

IEEE Software seeks practical,

readable articles that will appeal

to experts and nonexperts alike.

The magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Author guidelines:

www.computer.org/software/author

Further details: software@computer.org

www.computer.org/software

Call for Articles

