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Abstract—User location is crucial in understanding the dy-
namics of user activities, especially in relating their online and
offline aspects. However, users’ social media activities, such as
tweets sent, do not always reveal their location. We consider the
problem of estimating geo-tags for tweets and develop a compre-
hensive approach that incorporates textual content, the user’s
personalized behavior, and the user’s social relationships. Our
approach, Percimo, considers the two major kinds of communal
attachment, which have distinct computational ramifications.

We evaluate Percimo via three geo-social graphs based on the
mutual-follow relationships of Twitter users, their geographical
distance (computed from their geo-tagged tweets), and their
preferences for location categories (collected from Foursquare).
We find that Percimo yields a smaller prediction error than the
two state-of-the-art approaches we compare with.

I. INTRODUCTION

With the increasing prevalence of location sharing services
on social media, understanding the location from which online
content originates is valuable. It helps in characterizing the
interplay between a user’s online and offline activities [1].
We define a geo-tag as a representation of location, e.g., city,
neighborhood, or latitude-longitude (lat-lon) coordinate. Geo-
tagged messages provide meaningful real-time information for
monitoring regional health [2], detecting local emergencies [3],
observing linguistic differences across regions [4], and so on.

We address the problem of location estimation of user
messages. We focus on tweets because of their prominence
in social media and popularity over mobile devices: thus, our
problem is one of determining a tweet’s location or geo-tag.
Although a GPS-enabled phone can geo-tag outgoing tweets,
only about 2% of tweets are geo-tagged [5]. Thus, a vast
majority of tweets can be geo-tagged via location estimation.

Most approaches for location estimation focus on identify-
ing spatial usage of words or phrases in content [6], [7], [8]
(content-based techniques). They assume that tweets encode
location via place names or other location words and rely on
word distributions over geo-tags. Although these approaches
can identify words that are associated with a certain location
from a global perspective (e.g., “rockets” is used frequently
near Houston, the home of NASA), they do not consider
that some words may be related to some locations from an
individual’s perspective. For example, if a user likes reading
political news and tweeting them at home, then words related
to political news are associated with her home location,

although these words are not location related from the broader
perspectives of meaning or usage.

Individualized techniques infer geo-tags by assuming that a
user’s textual content is correlated to her locations. Chen et al.
[9] map a tweet’s content to its sender’s interests and associate
interests with locations: a user who tweets from one museum
may tweet similar content from another museum. However,
their approach fails for users having insufficient historical geo-
tagged tweets. Most users have sparse geo-tagged histories and
some have no geo-tagged messages at all.

We are interested in solving the location estimation problem
by exploiting the correlation between content and locations,
not only from an individual perspective, but also from multiple
users’ perspectives. Grabovitch-Zuyev et al. [10] examine
the correlation between users’ tweets and their locations via
statistical tests, and find that users who send tweets from
nearby locations are correlated with users who are similar
in textual content. Further, motivated by a basic assumption
in recommender systems—friends share more interests than
non-friends [11]—we posit that users who are friends are also
similar in content (interests). In addition to the importance
of friends in estimating a user’s location [12], we posit
that the user’s content is also correlated with her friends’
locations. Therefore, the challenge lies in (1) how to select
other users that might be geographically or socially related to
a user? (2) how to exploit the correlation between content and
locations to estimate the location of a user’s tweet? That is,
how are one’s interests related to another’s locations?

We propose Percimo—Personalized Community Model—for
solving the location estimation problem. Percimo contrasts
with prior work in two ways. First, Percimo considers not only
content and individual interests, but also how users’ interests
are correlated with locations of geo-socially related users.
Second, inspired from social psychology regarding attachment
to a community, Percimo employs geo-social communities to
estimate locations of tweets.

Prentice et al.’s theory [13] posits that a user may attach to a
community via a combination of common bonds—attachment
to specific members of the community and common identity—
attachment to the identity of the community, independently of
its members. Sassenberg [14] validates Prentice et al.’s theory
empirically for online behavior by associating participation in
“on-topic” and “off-topic” chats, respectively, with common
identity and bonding. A topic serves as a seed for communal
identity independent of who else is interested in that topic.IEEE/ACM ASONAM 2016, August 18-21, 2016, San Francisco, CA, USA

978-1-5090-2846-7/16/$31.00 c© 2015 IEEE



2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

When there is no fixed topic, the participants relate more to
the other participants: the communal identity is weak but the
bonds are strong. Grabowicz et al. [15] find that communities
based on interpersonal connections emphasize bonding over
identity, which corroborates Sassenberg’s idea.

To address the first challenge, we lift Sassenberg’s distinc-
tion to the geo-social setting. Participation in a physical space
(being near each other) indicates common identity. For exam-
ple, people living in Manhattan have a common identity. In
contrast, social linkages with others indicate common bonds.
Percimo synthesizes the effect of both kinds of attachment in
location estimation. To address the second challenge, Percimo
assumes that users in a geo-social community have similar
communal interests, and it modulates the communal interests
with a user’s personal interests. Percimo assigns the most
likely geo-tag to a tweet by balancing historical (user’s prior
geo-tags, suited to a tweet about personal interests) and social
(geo-tags of others in the user’s community, suited to a tweet
about community interests) effects.

We exploit the correlation between users’ tweets and loca-
tions of geo-socially related users via a simple technique—
mapping a user’s tweets to her locations [9]. However, as
more advanced techniques for relating a user’s tweets to her
locations become available, we believe that our approach
would yield a better accuracy. Nonetheless, investigating the
correlation between content and locations of geo-socially
related users will benefit location estimation as well as location
recommendation applications.

Contributions: Percimo’s novelty lies in, first, how it
exploits the correlation between users’ textual content and their
locations for location estimation. Percimo is the first approach
to solve the problem by incorporating correlation between
users. Second, Percimo models the correlation in location
estimation by integrating a user’s personal and community
interests. Third, it employs communities and investigates the
effect of different geo-social relationships in location estima-
tion with inspiration from sociology, specifically, the common-
bond and common-identity theory.

Main Findings: We evaluate Percimo via a dataset con-
sisting of geo-tagged tweets collected over two months from
two US states. By exploiting the correlation between multiple
users’ interests and locations, Percimo reduces prediction error
over baseline models that rely purely on personal history, and
predicts geo-tags even for users without historical geo-tags. By
reducing the size of location-candidate sets through commu-
nities, Percimo greatly reduces the prediction error compared
to a purely content-based state-of-the-art technique, and the
synthesized geo-social attachment reduces the prediction error
compared geo and social attachments, considered separately.

II. DATA, PROBLEM, FRAMEWORK

We evaluate our approach based on data from Twitter and
Foursquare. This data includes all tweets with geo-tags in
bounding boxes approximating two US states: Maryland (MD)
and North Carolina (NC) from August 5 to October 8, 2013.
Considering two states helps ensure geographical dispersal

of users. We removed users with fewer than five tweets and
tweets whose geo-tag was not lat-lon coordinates (some geo-
tags are a city or neighborhood). This yielded 1,066,327 tweets
from 23,897 distinct users (accounts). Using the Twitter API,
we created a mutual-follow graph of users: an edge connects
two users who follow each other, and we treated the mutual-
follow graph as a social graph.

To mitigate sensing errors, we discretized locations into
30m × 30m cells on a spatial grid, generating 106,927
nonempty cells. We removed cells that were visited fewer
than five times, yielding a total of 23,858 cells, each with
an assigned ID. We treat each cell as a location.

We posit that point of interest (POI) information provides a
conceptual meaning of a location, and helps in relating a user’s
tweets to her locations. Thus, we collected POI information
from Foursquare [16]. For each tweet, we collected POIs (and
each POI’s top-level venue category) within a 500m radius
[9], and labeled the tweet with the closest POI.

Our final dataset contains 23,858 unique locations, 54,062
representative POIs, and 695,636 tweets from 12,500 users
(6,824 in MD, 4,984 in NC, and 692 elsewhere).

A. Problem and the Percimo Framework

Let U = {u}Nu=1 be a set of N users and L = {l}Ml=1 a
set of M locations. Given a time T , each user has a tweet
log XT

u = {xtu}Tt=1, where xtu represents user u’s tweet at
time t. A tweet xtu may optionally be tagged with location ltu
representing where the tweet originated. Let LTu = {ltu} be
the set of all such locations for user u until T . And, G(U,E)
be a social graph, where E is the set of bonds (friendships).

Now, our research task is: Given the tweet and location log
of all users until time T , social graph G, and a user u’s tweet
xT+1
u , determine its associated location lT+1

u ∈ L.

lT+1
u = argmax

l∈L
P (l|XT , LT , G, xT+1

u ) (1)

Figure 1 shows Percimo’s major steps: the first two involve
offline and the third step involves online processing.

Geo-social community detection

Location estimation

Personal-community interest detection

Geo-social 
community

Online 
friendships

Geographical 
attributes

Tweets within 
a geo-social 
community

Personal 
interests

Community 
interests

Interests to 
locations 

mapping func.

New tweet

Location

Fig. 1: The Percimo framework.

Geo-social community detection involves detecting commu-
nities of users with similar location-visiting behavior. This
step exploits both kinds of attachment (bond and identity).
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Communities help overcome location data sparsity by limiting
geo-tags to those of related, as opposed to all, users.

Personal-community interest detection learns the interests
relationship between users within a geo-social community
from the contents of their tweets. The output is a personal-
interests distribution and a community-interests distribution for
each user. We assume that users in a geo-social community
have similar community interests.

Location estimation involves constructing a mapping LTc =
f(XT

u ) from user u’s interests to location candidates, which
include historical locations of u and of other users in u’s
geo-social community. A user’s interests are correlated to her
historical locations [9], [17]. Percimo models the correlation
between users by relating one user’s communal interests to
other users’ locations.

III. PERCIMO: PROPOSED APPROACH

We now describe the three major steps of Percimo.

A. Geo-Social Community Detection

We explore three kinds of geo-social graphs to investigate
the three corresponding geo-social attachments.
• Social (GS): an edge between users indicates a common

bond.
• Local (GL): an edge between users indicates common

identity (geographical distance is below a certain threshold).
• Local-social (GLS): an edge between users indicates a

common bond as well as a common identity.
We first assign to each user a representative (likeliest)

location mu. We divide users into two sets: users with a
history (at least one prior geo-tagged tweet) and users without
a history (all other users). For each user with a history,
we compute the latitude and longitude of mu as the mean
values of the latitudes and longitudes of her historical geo-
coordinates LTu , respectively. For each user without a history,
we infer her mu via Jurgens’ spatial label propagation [18]
algorithm. This algorithm proceeds iteratively, where in each
round, a user’s location is the geometric median of all her
friends’ locations. No closed form solution exists for Jurgens’
algorithm, but the experiment results show that propagation
usually converges after four iterations. Next, we compute the
distance between each pair of users to decide whether the two
users live locally based on a threshold (Section V varies the
threshold to investigate Percimo’s prediction error).

Prentice et al. [13] describe that people form communities
spontaneously. Since acquiring ground truth on user-formed
communities is not feasible, we apply a community-detection
technique. We adopt the Clauset-Newman-Moore [19] algo-
rithm, which works by greedily optimizing the modularity and
runs faster than many competing algorithms on large networks.
However, Percimo is not restricted to this algorithm.

B. Personal-Community Interest Detection

For each geo-social graph, we learn the interests of each
user in the same community. We assume a tweet’s content
captures (some of) a user’s interests. The main idea is to mimic

a user’s decision making, for example, in deciding the location
she wants to visit, and the set of words she wants to include
in a tweet depending on her current location.

We make three assumptions about user behavior. First, a
user’s location visiting behavior is driven by her interests.
For example, a user interested in socializing would go to a
bar whereas a user interested in classical music would visit a
concert hall. Second, users in a community might have similar
interests (community interests). Third, a user’s interest is based
either on her personal interest or her community’s interest. A
user’s interests may differ from her community’s, especially
when a community is not formed of common interests. For
example, a student’s interest in shopping malls may be higher
than her residential hall community’s, which presumably isn’t
based on a common interest in shopping.

Our interest detection model is based on Latent Dirichlet
Allocation (LDA) [20]. We run our model once for each
community, providing the set of tweets of all members of the
community as input. We assume that each tweet has only one
hidden interest label—generated by either a user’s personal or
her community’s interests, similar to having a single label for
each message [9], [21].

Figure 2 shows a graphical representation of our interest
detection model and Table I shows important notations. The
generative process is as follows. A user u first decides whether
to go to a location from her community interests or personal
interests. If she chooses the former, she selects an interest from
ϕc; otherwise, she selects an interest according to ηu. With
the chosen interest, words in the tweet are generated from her
interest-word distribution φu. A Bernoulli distribution governs
whether a user will choose her community interests or her
personal interests.

|U ||U |
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Fig. 2: Percimo’s interest-detection model.

The following steps describe the generative process:
1) For a community c, draw ϕc ∼ Dirichlet(λ).
2) For each user u in community c,

a. Draw ηu ∼ Dirichlet(λ);
b. For each interest, draw φu ∼ Dirichlet(β);
c. Draw πu ∼ Beta(α).

3) For each tweet of a user u,
a. Sample an indicator r ∼ Bernoulli(πu);
b. Sample an interest i: if r = 1, i ∼
Multinomial(ϕc), else i ∼Multinomial(ηu).

4) For each word, sample w ∼Multinomial(φu).
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TABLE I: Important notations

α, β, λ Priors of Dirichlet distributions

U , L, X , Set of users, locations, tweets, indicators,
R, I , W interests, and words, respectively

u, l, x, Instance of a user, location, tweet, indicator,
r, i, w, c interest, word, community, respectively

ϕ Community-interest distribution
η Personal-interest distribution
π Bernoulli distribution over indicators
φ Multinomial distribution over words

n−x The counter calculated by excluding tweet x
nr,u Number of times r is observed in u’s tweets
ni,u (ni,c) Number of tweets by u (any user in c)

that are assigned to i
nw,i,u Number of times that w is generated by i for u

Yw,x Count of word w in tweet x
Yx Total number of words in tweet x

µ Parameter that controls the weight of historical effect
A Category of a location

The posterior probability of the latent variables in the model,
given the observed data, can be factorized as follows:

P (w, r, i|α,β,λ) = P (r|α)P (i|r,λ)P (w|i,β) (2)

We adopt collapsed Gibbs sampling [22] to approximate the
latent variables. For a tweet x, we know it is from user u. The
Gibbs sampler jointly samples rx and ix based on the values
of all other hidden variables. Here, ix represents u’s interest
for the tweet x; i−x denotes all i except ix; Wx denotes the
set of words in tweet x (other variables have similar symbols).
For each user u, the Gibbs update equation is:

P (rx, ix|r−x, i−x,w) ∝ n−xr,u + αr∑
r∈R (n−xr,u + αr)

·
n−xi,k + λi∑

i∈I (n
−x
i,k + λi)

·
∏
w∈Wx

∏Yw,x−1
y=0 (n−xw,i,u + βw + y)∏Yx−1

y=0

(∑
w∈W (n−xw,i,u + βw) + y

) ,
(3)

where k = u when rx = 0, and k = c when rx = 1.

C. Location Estimation

Given a geo-social community, we now estimate the loca-
tion of a new tweet by building the mapping function from
users’ interests to their historical locations LTc . We model
the correlation between users’ interests and their historical
locations by balancing historical and social effects [23]. When
a user’s tweet is about her personal interests, we posit that her
location is unrelated to locations of others in her community:
the candidates are her historical locations (historical effect).
When the user tweets about her community interests, based
on the assumption that users who send similar textual content
are correlated with the locations of geo-social related users, we
posit that her location may be the same as another user’s. In
this way, historical locations of all other users are candidates
(social effect). For example, colleagues sharing the interest
pizza might go to a pizzeria for lunch on the weekdays.

The probability of selecting a candidate l ∈ LTc is:

P (l|XT , LT , G, xT+1
u ) = P (l, ix|ηu, ϕc, πu)

= µ× P (l, ix|ηu) + (1− µ)× P (l, ix|ϕc), (4)

where µ ∈ [0, 1] is a parameter that controls the weight
between historical and social effects. We set µ = P (rx = 0|u),
where P (rx = 0|u) is learned from πu.
P (l, ix|ηu) is the probability of selecting location l from

user u’s historical locations. Following Chen et al. [9], we
posit that a user would visit locations of a category A driven
by the same interest, even if the locations are distinct. For
example, for a user u, if we detected that two of her tweets
are labeled with the interest eating, it is likely that both tweets
are sent from locations belonging to the food category.

P (l, ix|ηu) = P (ix|u)P (A|ix, u)P (l|A, u), (5)

For a user without a history, her representative location mu

(computed from label propagation) is the only candidate for
the historical effect, and P (mu, ix|ηu) is always 1.
P (l, ix|ϕc) is the probability of selecting location l from

user u’s community’s historical locations. We posit that users
with the same interests and in the same community tend to visit
locations with the same category, although their probabilities
of visiting a location may differ.

P (l, ix|ϕc) = P (ix|c)P (l|ix, c)

= P (ix|c)
∑
v∈c s(u, v)× P (A|ix, v)× P (l|A, v)∑

v∈c s(u, v)
, (6)

where s(u, v) is the similarity between users u and v. We
consider only a user having history as user v.

We compute s(u, v) as follows. If u has a history, we set
s(u, v) to be her check-in similarity, defined as the cosine of
their check-in vectors, whose i-th component is the number
of times the user visited location i [23]. If u does not have
a history, we compute s(u, v) based on the distance between
the representative geo-tags of the two users. Specifically, we
set s(u, v) to sdist(u, v) = a × distance(mu,mv)

b [24],
where a = 0.0414 and b = −0.508 are parameters values
as determined by Ye et al. [11].

IV. EVALUATION

Our objectives are to compare Percimo’s prediction error
(1) to that of the baseline models, (2) for three kinds of
geo-social attachment, and (3) for different parameter settings.

A. Evaluation Strategy

We investigate the prediction error of Percimo on each
geo-social graph. We vary the threshold defining local users
from 5 km to 40 km. Table II summarizes the statistics of
the geo-social graphs we study. The subscript indicates the
threshold, e.g., GLS 5 represents the local-social graph with
the threshold 5 km. In each graph, we ignore isolated users.
Since the number of users varies across graphs, to compare
Percimo’s prediction error across graphs, we employ the 5,623
users appearing in GLS 5 because these users also appear in
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the other graphs. We construct local-social graph with the
threshold 5 km on the state-level sub-datasets.

TABLE II: Statistics of the geo-social graphs

Graph Users Edges Mean Clustering
degree coefficient

GS 8,483 23,163 5.46 0.14
GL 5 8,485 1,202,908 283.54 0.81
GLS 5 5,623 9,350 3.33 0.19
GLS 10 6,508 13,827 4.25 0.18
GLS 20 7,106 16,523 4.65 0.18
GLS 40 7,541 18,487 4.90 0.17

GLS 5 (MD) 2,930 5,441 3.71 0.17
GLS 5 (NC) 2,242 3,375 3.01 0.27

Parameters of Percimo. We set the total number of inter-
ests |I| to 20, λ to 10

|I| , and β to 0.01. We set these parameters
based on guidance from previous studies [9], [25] and our
preliminary experiments. A simple way to set α is to choose
symmetric priors (i.e., α1 = α0 = 0.5) for each user, meaning
that the user’s historical locations and the locations of her
community have equal influence in inferring a new location
for the user. However, this may not be the case. Cho et al. [26]
found that, on Brightkite (a location-based social network),
there is a 53% chance that a user will check in at a location
where she previously checked in, whereas only a 10% chance
that she will check in at a location where a friend previously
checked in. We set a user’s α1 as the user’s betweenness
centrality [27] in the subgraph of a geo-social graph induced
by the user’s community (and α0 = 1−α1). Thus, the higher
the user’s betweenness centrality the greater the community’s
influence. We compute Percimo’s interest-detection model for
each geo-social graph via 500 iterations of Gibbs sampling.
We take 25 samples with a gap of five iterations in the last
125 iterations to compute the values of all hidden variables.

We infer the representative geo-tag of a user without history
via Jurgens’ geometric median select method [18] with seven
iterations.

Evaluation Metric. We temporally order each user’s geo-
tagged tweets, and take the first six weeks of data (05 August
2013 to 21 September 2013) as the training set, and test on
the last two weeks of data (22 September 2013 to 08 October
2013). For each user, we predict the location of every tweet in
the test set. We compare Percimo and the baseline models via
average error distance (AED) [9]. For a tweet, error distance
(ErrDist) is the geographical distance between the tweet’s
actual location and its predicted location, and the error distance
of a user (ErrDist(u)) is the average error distance (AED) over
all of her test tweets:

AED =

∑
u∈U ErrDist(u)

|U | (7)

B. Baseline Models

PIM (Personal Interest Model) [9] is most similar to
Percimo among the existing works. PIM maps a user’s interests
detected from tweets to her historical locations and predicts
the user’s next location from her historical locations, not

considering the social effect. We implement PIM and choose
the parameters as Chen et al. do.

CM (Content-Based Model) Cheng et al. [6] predict a
user’s location purely based on her tweets’ content. We adapt
this approach to consider all tweets from a given location
l: P (l|Swords(Xl)) =

∑
w∈Swords(Xl)

P (l|w)P (w), where
Swords(Xl) is the set of words in all tweets from location l.
We compute P (l|w) via maximum likelihood estimation and
P (w) as count(w)

|W | , where count(w) is the number of occur-
rences of w. We implement two enhancements Cheng et al.
suggested: (1) discarding nonlocal words, and (2) performing
lattice-based neighborhood smoothing.

CommPIM combines PIM and communities in geo-social
graphs. We apply Chen et al.’s [9] model to detect each
user’s interests distribution and hidden interest label. Similar
to Percimo, the location candidates are LTc . Whereas Percimo
learns ηu from the interest detection model, CommPIM learns
it from PIM: P (l|XT , LT , G, xT+1

u ) = µ·P (l, ix|ηu)+(1−µ)·∑
v∈c s(u,v)P (l,ix|ηv)∑

v∈c s(u,v)
, where P (l, ix|ηu) is computed according

to Equation 5.
URLM (User Representative Location Model) always uses

the representative location of a user as the prediction.
CRLM (Community Representative Location Model) al-

ways uses the representative location of a user’s community
mc as the prediction. We compute mc by averaging the
latitude and longitude of the community’s users’ representative
locations (geo-coordinates).

V. RESULTS

Assumption Validation: We first validate the assumption
that a user’s interests are correlated with categories of her
visited locations. For each user and each category, we compute
P (ix|A, u) from all her tweets based our detected interests
labels. If the probability is high for a certain interest k, it
indicates that when the user visits locations belonging to
category A, she tends to have the same interest k. We choose
three thresholds (30%, 50%, 80%). For each category, if there
is one interest k that makes a user’s P (ix = k|A, u) exceed
the threshold, we call the user a valid user. Figure 3 reports the
percentage of valid users for each category (number of valid
users divided by the number of users who send tweets from
the category). In comparison, we randomly select the interest
label for each tweet, and report the percentage. We observe
that (1) the percentage from detected interests is always higher
than that from the random labels for each threshold, (2) when
the threshold is 80%, the percentage from detected interests
is above 50% or slightly below 50% for all categories. For
each threshold, we conduct a paired t-test: each value in the
first sample is the percentage of valid users from detected
interests; each value in the second sample is the percentage
from random interests. The p-value is 0.0001 for each of
the three thresholds. Therefore, we claim that interests and
location category are strongly correlated.

Percimo and Baseline Models: Table III shows AEDs for
all models for users with and without a history, except PIM,
which works only for users with a history. The type of a model



2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Outdoor

Tran
sport

Enter
tai

nmen
t
Even

t

Resi
den

ce

Nightlif
e

Profes
sio

nal

Unive
rsi

ty
Shop

Food

40%

60%

80%

100%
Pe

rc
en

ta
ge

of
va

lid
us

er
s

30% 50% 80%
30% (Random) 50% (Random) 80% (Random)

Fig. 3: Valid users based on detected and random interests.

indicates its main aspects: I and B for common identity and
common bond, respectively and H for historical effect only
(neither bond nor identity). In our dataset, 16.68% users have
no history (no geo-tagged tweets in the training set). We set
5 km as the threshold defining local users (other thresholds
below). On the local-social graph (GLS 5), Percimo yields the
least prediction error among the models compared.

TABLE III: AEDs (km) of Percimo and baseline models

Model Type Users with Users with All usersa history no history

Percimo (GL 5) I 8.74 45.94 14.94
Percimo (GS ) B 8.47 52.90 15.88
Percimo (GLS 5) I+B 6.77 45.02 13.15
PIM H 8.28 – –
URLM H 8.32 52.35 15.41
CRLM (GL 5) I 12.36 46.94 18.13
CRLM (GS ) B 63.39 79.94 66.15
CRLM (GLS 5) I+B 8.90 46.37 15.15
CommPIM I+B 7.21 46.06 13.69
CM I 269.87 268.48 269.64

First, Percimo yields better results than PIM, suggesting
that a community-based approach yields lower prediction error
than individual-based approaches. Second, although Percimo
and CommPIM both set µ as 1 minus a user’s betweenness
centrality, Percimo learns ηu via the interest-detection model.
Thus, the lower prediction error of Percimo can be attributed
to its interest-detection model, which effectively models the
interests relationship between users, and effectively maps
users’ interests to their historical locations.

Among the models compared, CM’s AED is the worst,
supporting our claim that a large candidate pool increases the
probability of a tweet’s predicted geo-tag to be far from the
actual. Also, CM’s AEDs do not differ much for the two kinds
of users as CM does not consider the historical effect.

Although URLM and CRLM baselines seem naı̈ve, their
AEDs are not bad (except CRLM (GS)), suggesting that ge-
ographical influence is a crucial factor in location estimation.
Percimo and CRLM both yield their best results on GLS

among the three geo-social graphs. However, the common-
bond attachment performs much better in Percimo. These
suggest (1) the synthesized attachment performs best and
(2) common-bond attachment can play an important role if
we properly relate one’s interests to another’s locations.

Finally, we observe that Percimo on GLS 5 yields the least
prediction error for sub-datasets for each state (NC and MD).
The other models follow a pattern similar to the entire dataset.
We omit a detailed state-level analysis for brevity.

Threshold of Defining Local Users: We vary the threshold
defining local users between 5 km and 40 km to study its effect
on Percimo. We restrict our analyses to the local-social graph,
which has the lowest AED for both kinds of users. Figure 4
shows that the lower the threshold the lower the AED, in
general. The AED of GLS 20 is higher than that of GLS 40

for users with a history and the reverse for users without a
history. A similar pattern arises for Percimo on GL 5 and GS
(Table III). That is, at higher thresholds, the identity effect
(locality) fades, and the bonding effect (sociality) dominates.
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Fig. 4: Percimo’s AEDs for four local-social graphs.

Social and Historical Effects: Percimo balances social and
historical effects by learning µ (Equation 4). Setting µ = 1
and µ = 0 forces Percimo to consider historical and social
effect only, respectively. Figure 5 compares Percimo’s AEDs
for the three settings of µ. The AED for µ = 1 is less than
that for µ = 0: the historical effect is more important than
the social effect for location estimation. However, Percimo’s
AED is least for learned µ, suggesting that both the historical
and social effects contribute to reducing the AED.
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Fig. 5: Percimo’s AEDs for µ = 0 (social effect), µ = 1
(historical effect), and learned µ (historical and social effects).
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Symmetric Prior vs. Betweenness Centrality: Figure 6
compares Percimo’s AED when α1 is set as users’ between-
ness centrality or 0.5. The AED is higher for α1 = 0.5 on
both graphs, whether a user has a history or not. Thus, we
conjecture that setting α1 as users’ betweenness centrality is
a better choice in Percimo than setting it to 0.5 (symmetric
priors). Importantly, we are not suggesting that α1 necessarily
be bound to betweenness centrality; other metrics that estimate
user’s attachment to her community could also be good
choices. We defer this analysis to future work.
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Fig. 6: Percimo’s AEDs for different α1 settings.

VI. RELATED WORK

Works on location estimation estimate locations either of
messages or of users. Percimo falls into the first category,
which is based on the assumption that messages encode
location-related information: either specific location names
or words that are associated with the location. Cheng et al.
[6] build a classifier for automatically identifying words in
tweets with a strong geo-scope to estimate a user’s city-level
location. Chang et al. [28] estimate a user’s home location via
a Gaussian Mixture Model by assuming that each word has
several centers where users tweet it more frequently. Besides
messages, some researchers employ users’ tweeting behaviors
(volume of tweets per time unit, reply-tweet relationships) [7],
[29]. Percimo differs from these works in that it estimates
location in a fine-grained manner—at the level of every tweet.

For estimating locations at the fine-grained level, Kinsella
et al. [30] estimate the location of every tweet by sampling
the word distribution for that location. Instead of assuming
the independence between words, some researchers [31], [8]
model the location distributions of phrases (n-grams) and
assign a location to a tweet by identifying n-grams associ-
ated with hyper-local regions. Schulz et al. [17] propose a
multi-indicator approach with dedicated location entries and
user profiles. Some researchers focus on recognizing textual
references to geographical locations [32], [33]. In contrast
to these approaches relying on spatial aspects of words in
unstructured texts, Percimo exploits the correlation between
users’ textual content and their locations. Chen et al. [9]
estimate location of a tweet by assuming that a user’s interests
are related to her locations. Their techniques apply to each user
individually. Percimo is novel in that it exploits not only the

correlation between a user’s content and her locations, but also
the correlation between a user’s content and others’ locations.

Approaches in the second category seek to predict the
location of a user, not a message. Some works claim that
the locations of a user’s friends are helpful in predicting the
user’s location [12], [23]. Jurgens [18] infers users’ locations
by spatially propagating location through social network, given
a small number of labeled locations. Sadilek et al. [34] propose
a probabilistic model to infer a user’s fine-grained location
from her friends’ locations. Some works estimate user location
by mining mobility patterns from GPS trajectories [35], [36].
Song et al. [37] build a model that captures an individual
moving to a new location and returning to a visited location.
Murukannaiah and Singh [38] learn places of interest to a user
from smartphone sensor data and user-provided labels. They
also show that the places a user visits influences her social
relationships [39]. In contrast, Percimo focuses on the content
analysis of messages and the relationship between a message
and its associated location. Content analysis is a rich source of
knowledge for estimating locations [40] and inferring potential
social relationships [41].

Some researchers build models to detect communities
wherein users talk about similar topics, [42], [43], [25].
Percimo has a different motivation: it detects interests of users
from communities for location estimation.

VII. CONCLUSIONS AND FUTURE WORK

We estimate locations of user-generated messages such
as tweets, made challenging by the sparsity of geo-tagged
messages. Our approach, Percimo, addresses location estima-
tion by exploiting (1) correlation between users’ locations
and their textual content, and (2) communities and different
geo-social attachments. Percimo balances a user’s personal and
community interests to outperform a state-of-the-art technique
that considers only personal interests. And, by reducing the
pool of candidate locations, Percimo outperforms a state-of-
the-art approach that relies solely on content information.

Percimo’s parameters affect prediction error. We find that
the synthesized attachment (bond and identity) yields least
AED in location estimation, and a lower threshold of defining
local users could reduce the prediction error. Percimo’s effec-
tiveness is limited when a user has neither geo-tagged tweets
nor social relationships though it is better than traditional
approaches in this respect. We defer modeling users’ participa-
tion in overlapping and multiple communities to future work.
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