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Abstract

We present Pixie, a manually annotated dataset
for preference classification comprising 8,890
sentences drawn from app reviews. Unlike
previous studies on preference classification,
Pixie contains implicit (omitting an entity be-
ing compared) and indirect (lacking compar-
ative linguistic cues) comparisons. We find
that transformer-based pretrained models, fine-
tuned on Pixie, achieve a weighted average F1
score of 83.34% and outperform the existing
state-of-the-art preference classification model
(73.99%).

1 Introduction

Online user reviews contain a cornucopia of in-
formation on user expectations about a product.
Users often express their opinions on a product
by comparing it against competitors. Understand-
ing preferences in natural language is crucial in
capturing user’s opinions and expectations. Pre-
vious studies show that app reviews include rich
insights about user expectations and problems of
mobile apps that are valuable for app developers
(Palomba et al., 2015; Maalej and Nabil, 2015; Guo
and Singh, 2020). We found that app reviews often
include comparative sentences, from which we can
determine a reviewer’s preferences.

Identifying the preferred entity from an app re-
view involves (1) Comparative Sentence Identifica-
tion (CSI) (Jindal and Liu, 2006), i.e., identifying
sentences that contain a comparison, and (2) Com-
parative Preference Classification (CPC) (Ganap-
athibhotla and Liu, 2008; Panchenko et al., 2019),
i.e., identifying the preferred entity in a compara-
tive sentence. We focus on the second task.

Prior work on CPC focuses on explicit compar-
isons, where all compared entities are explicitly
mentioned. Extracting comparative sentences by
matching keywords or patterns (Jindal and Liu,
2006; Li et al., 2017; Feldman et al., 2007) over-

Sentence App

S1 Bye Uber , hello Lyft . Uber
S2 Does this app really need to be 260

MB when the Marriott app is only
47 MB?

Hilton Honors

S3 Beats the pants off pandora . Spotify
S4 I think that it’s a lot more fun than

temple Run .
Subway Surfers

Table 1: Example comparative sentences from reviews.

looks indirect comparisons which lack comparative
quantifiers and adjectives.

Staab and Hahn (1997) identify omitted comple-
ment as a comparative sentence type that has been
overlooked by prior research. An omitted comple-
ment refers to one of the entities under comparison
that is omitted but can be inferred based on the
context. We have found that comparative sentences
in user-generated text such as reviews sometimes
imply instead of explicitly mentioning the target
entity being reviewed (e.g., S3 in Table 1). Compar-
isons in reviews often lack comparative linguistic
cues, such as comparative quantifiers, adjectives, or
structures (i.e., indirect, e.g., S1 in Table 1). Such
sentences are comparative by virtue of expressing
a preference and are common in reviews but have
been understudied by prior research.

We present Pixie (Preference in Implicit and Ex-
plicit Comparisons), a dataset for preference clas-
sification, created from online user reviews. As
shown in Table 1, Pixie includes indirect compar-
isons (i.e., sentences lacking comparative linguistic
cues, e.g., S1) and implicit comparisons (omitting
compliments, i.e., mentioning only one entity being
compared, e.g., S3) in addition to direct compar-
isons (comparing entities with a direct comparative
structure, e.g., S4) and explicit comparisons (men-
tioning both entities being compared, e.g., S2).

We experiment with traditional machine learn-
ing methods and transformer-based models on
Pixie. We use segment embeddings to demar-



cate the compared entities before fine-tuning the
transformer-based models. We also compare our
results with ED-GAT (Ma et al., 2020), a state-
of-the-art model for preference classification. We
find that transformer-based pretrained language
models, fine-tuned on Pixie, achieve a higher F1-
score (83.34%) than the state-of-the-art (F1-score
73.99%) or traditional machine learning models
(F1-score 71.86%) trained on Pixie. Further er-
ror analysis of misclassifications reveals substan-
tial differences between ED-GAT and transformer-
based pretrained language models’ performance.

Current research on preference classification is
lacking and far from practical use. Real world com-
parisons can present characteristics that complicate
the task, such as indirect comparisons, implicit
comparisons, and ambiguous statements. The low
F1-score of the existing state-of-the-art and notice-
able differences in misclassifications across differ-
ent models call for a more thorough research effort
on preference classification in text.

2 Related work

Comparative sentence structures have been a sub-
ject of syntactic and semantic theories (Bresnan,
1973; Stechow, 1984; van Rooij, 2011). Early stud-
ies in computational linguistics include syntactic
and semantic handling of comparative construc-
tions (Rayner and Banks, 1988, 1990), comparative
structures in question answering (Ballard, 1988),
using quantifiers to identify comparisons (Fried-
man, 1989), and semantic interpretation of compar-
atives (Staab and Hahn, 1997).

Jindal and Liu (2006) present a binary classi-
fication dataset containing comparative and non-
comparative sentences. They present a classifier
based on Class Sequential Rules (CSR) and lever-
age comparative keywords to identify comparative
sentences. Ganapathibhotla and Liu (2008) extend
this work by annotating comparative sentences with
the preferred entity.

Kessler and Kuhn (2014) annotate comparative
sentences by identifying comparison predicates, en-
tities being compared, aspect of comparison, and
comparison type (gradable or non-gradable). How-
ever, they focus on reviews of only one product
type (digital cameras) to create their dataset. Hence,
their dataset lacks diversity in topics.

Panchenko et al. (2019) create CompSent-19,
a cross-domain dataset for comparative argument
mining. They propose a gradient boosting model

based on pretrained sentence embeddings to iden-
tify the preferred entity. Ma et al. (2020) propose
a model called Entity-aware Dependency-based
Deep Graph Attention Network (ED-GAT) that
consists of a multihop graph attention network with
dependency relations to identify the preferred en-
tity. The ED-GAT model achieves a micro F1-score
of 87.43% on the CompSent-19 dataset.

Previous work on preference classification has
overlooked implicit and indirect comparisons com-
mon in user-generated text such as app reviews.
Further, existing datasets are either too small with
a few comparative sentences or have a skewed dis-
tribution. For example, Ganapathibhotla and Liu’s
dataset contains only 837 comparative sentences,
84% of which have the first mentioned entity in the
text as preferred. Only 15% of Kessler and Kuhn’s
dataset constitutes comparative sentences. Only
27% of the sentences in CompSent-19 (Panchenko
et al., 2019) contain a preference, 70% of which
prefer the first mentioned entity in the sentence.

Further, existing datasets consider the order of
the appearance of compared entities in a sentence
to annotate the preferred entity. For instance, anno-
tations for CompSent-19 (Panchenko et al., 2019)
and Ganapathibhotla and Liu’s dataset are both de-
termined based on the order of appearance of the
entity in a sentence (i.e., is the first appearing entity
in the sentence preferred or the second).

3 Method

We introduce the essential concepts below.

Comparative sentence : A sentence that contains
information on similarity, dissimilarity, or
preference between two entities.

Pixie includes (1) comparative sentences that
lack comparative quantifiers, adjectives, or key-
words, i.e., indirect comparisons, (2) implicit com-
parisons where only one of the compared entities
is mentioned, and (3) explicit comparisons which
mention both (including pronominal references).

Preferred entity : an entity that is chosen over an-
other based on a stated or implied preference.

A preferred entity can be the CURRENT app (e.g.,
S1p in Table 2), OTHER app (e.g., S2p in Table 2),
or NONE (i.e., ambiguous or no preference, e.g.,
S4p in Table 2 or where non-gradable comparatives
(such as like, as . . . , and similar to) link the entities,
e.g., S3p in Table 2).



Sentence Review

S1p This app is better than Discover’s app . Chase Mobile
S2p I prefer the BBC app. USA Today
S3p Just as good as Uber app. Lyft
S4p Makes me want to switch back to Pan-

dora, but it’s just as bad.
Spotify

Table 2: Example sentences showing preference.

3.1 Dataset

We selected 179 popular apps on Apple App Store
and collected their reviews. After some prelimi-
nary investigation, we excluded widely mentioned
brand names such as Google, Microsoft, and Face-
book, because they often appear in broader contexts
than as a product. We removed app names synony-
mous with or formed of common words, such as
Box (cloud storage) and Line (communication app)
for higher precision in extracting comparative sen-
tences. We were left with 141 apps, which we
manually grouped into 23 genres, including bank-
ing, airline, and communication. Apps in the same
genre are direct competitors. For example, airline
apps include Delta, American, and United.

We extracted sentences that mention a com-
petitor from each review and labeled each ex-
tracted sentence for comparison and preferred en-
tity. When identifying mentions, we included com-
mon aliases or abbreviations on our name list, e.g.,
Insta for Instagram, BA for Bank of America, and
AA for American Airlines to improve recall. Fo-
cusing on mentions of competitors ensures that
Pixie includes indirect comparisons because such
sentences are more likely to contain comparisons.

The dataset was annotated in three phases. In
Phase 1, the authors annotated a sample dataset of
300 sentences based on an initial set of definitions
and resolved any disagreements via discussions.
We repeated this process for three iterations and
produced annotation instructions for Phase 2. In
Phase 2, each author annotated an equal number
of sentences, and the disagreements were resolved
by the first author, producing 4,793 annotated sen-
tences. The interrater agreement (Krippendorff
alpha) was 0.74 and 0.82 between the two anno-
tators for comparison and preferred entity, respec-
tively. Phase 3 involved crowdsourcing with 42
annotators, students in Natural Language Process-
ing (NLP) course, each annotating around 400 sen-
tences. 5,559 data points were labeled in Phase 3
with an interrater agreement (Krippendorff alpha)
between the three annotators of 0.51 and 0.74 for

comparison and preferred entity, respectively. We
obtained the Institutional Review Board (IRB) ap-
proval for this task.

Once we removed duplicate and noncomparative
sentences, we were left with 8,890 comparative sen-
tences annotated for comparison type (IMPLICIT or
EXPLICIT) and preferred entity (CURRENT, OTHER,
or NONE). Table 3 shows the distribution of labels
for each class in Pixie.

Comparison Type

Preferred Entity Implicit Explicit Total

CURRENT 1,910 2,097 4,007
OTHER 2,199 1,069 3,268
NONE 758 857 1,615

Total 4,867 4,023 8,890

Table 3: Pixie Dataset Distribution.

To ensure that the dataset can be used to train
a general-purpose preference classification model,
we mask app mentions in each sentence. With
no masking, the model may learn to differentiate
between classes based on what users prefer more
(app A or app B) in our dataset. Masking app men-
tions ensures that the model learns comparative
and preference revealing linguistic structures and
semantics instead of simply learning to differenti-
ate between preferred entities in an exhaustive list
of compared entities. We defined two tags for mask-
ing, current_app for the apps being reviewed and
other_app for the competitor apps. App mentions
are identified using the competitor app list for apps
referred to by name, and pronoun references are
substituted manually. Treating pronoun references
as an explicit reference to app mentions ensures
consistent based on our definitions, i.e., all explicit
comparisons have two mentioned entities being
compared, while all implicit comparisons have one.
A portion of the dataset, ≈2,100 (∼23.62%) sen-
tences, had pronoun references that were resolved.
Table 4 shows sentences masked for app mentions.

For a quick sanity check, whether Pixie contains
indirect comparative sentences, we examine how
many of the sentences in Pixie contain a compara-
tive word. For this, we combine the list of opinion
words from (Hu and Liu, 2004) and the list of com-
parative cue words from (Panchenko et al., 2019).
Only 3,781 sentences (42.5% of Pixie) contain a
comparative or opinion word showing that most of
the sentences in Pixie lack comparative cues (i.e.,



are indirect comparisons).
Unlike prior datasets on preference classification

(Ganapathibhotla and Liu, 2008; Panchenko et al.,
2019), Pixie does not consider the order of appear-
ance of compared entities for annotations. Pixie
also offers a more balanced dataset than the existing
ones for the task. For explicit comparisons (when
both entities are present), 1909 sentences (47.45%)
prefer entity that appears first, 1257 (31.25%) sen-
tences prefer entity that appears later, and 857 sen-
tences (21.30%) reveal no or mixed preference.
Implicit comparisons mention only one entity so
the order of appearance is irrelevant.

Pixie is publicly available1 and contains original
and masked sentences.

3.2 Experiments

Among traditional machine learning approaches,
we experiment with AdaBoost (Hastie et al., 2009),
Random Forest (Breiman, 2001) and Support Vec-
tor Machine (SVM) (Chang and Lin, 2011). We use
SBERT (SentenceBERT) (Reimers and Gurevych,
2019) to obtain sentence embeddings for each
masked sentence.

For transformer-based language models, we fine-
tune variations of BERT (Bidirectional Encoder
Representations from Transformers) (Devlin et al.,
2019) and XLNet (Yang et al., 2019). We experi-
ment with BERT (Devlin et al., 2019), ALBERT
(A Lite BERT) (Lan et al., 2019), and DeBERTa
(Decoding-enhanced BERT with disentangled at-
tention) (He et al., 2020). We fine-tune each model
for 20 epochs using AdamW Optimizer with a
learning rate of 5e-5 and a weight decay of 0.01.
We use the train-test-validation split of 60-20-20.

We use segment embeddings to improve the per-
formance of the transformer-based models. We
assign different segment token ids to the competi-
tor app (other_app) and the rest of the sentence to
separate the entities being compared. We fine-tune
pretrained models with segment embeddings along
with token embeddings and attention masks.

To compare our results with ED-GAT, we con-
vert the sentences in Pixie to follow the CompSent-
19 format. Specifically, we add a token ([THIS])
for the current app in the front of each implicit sen-
tence and map the labels CURRENT and OTHER

to BETTER and WORSE, as applicable. NONE la-
bels stay the same. We implemented ED-GAT with
BERT embeddings and used eight GAT layers. We

1https://github.com/ahaque2/Pixie.git

use the Hugging Face (Wolf et al., 2020) library for
all transformer-based experiments.

To test the quality of Pixie, we run some cross-
dataset experiments as well. We train a DeBERTa
model on Pixie and test on CompSent-19 and vice-
versa. Since the CompSent-19 dataset is highly
skewed, we balanced both datasets to have the same
train and test data split across all three classes via
random oversampling with replacement. We keep
all other model parameters and configurations the
same and leverage the same number of samples for
training and testing.

4 Results

Table 5 contains results for models trained and
tested on Pixie. SVM achieves the highest
weighted F1-score of 71.86% (among the tra-
ditional approaches), and DeBERTa (F1-score
83.34%), among transformer-based models.

Segment embeddings enhanced BERT and XL-
Net model’s performance in terms of weighted av-
erage F1-scores, but a slight decline for DeBERTa’s
and ALBERT’s performance.

The NONE and CURRENT classes consistently
achieve the lowest and the highest F1-scores, re-
spectively, for all models. The NONE class was also
the most ambiguous class to annotate manually. Re-
call for the NONE class is lower than precision for
all models except ED-GAT. All transformer-based
models achieve a higher recall than precision for
the CURRENT class except for ALBERT (without
segment embeddings) and ED-GAT.

ED-GAT (Ma et al., 2020) trained on Pixie
achieves a weighted average F1-score of 73.99%,
with the highest F1-score (80.57%) for the CUR-
RENT class and lowest (51.54%) for NONE.

Upon further analysis, we found that most of the
incorrect classifications in transformer-based mod-
els are for the NONE class (71.64%), whereas, for
ED-GAT, only 8.77% of the misclassified sentences
belong to the NONE class. ED-GAT yielded most
misclassifications for the CURRENT class (55.27%
of misclassified instances) while only 14.93% of
misclassifications for the transformer-based models
belong to the CURRENT class.

Table 6 shows the results for the cross-dataset
experiments. The weighted average F1-score im-
proves by 4.08% with plain vanilla fine-tuning and
6.30% with segment embeddings when trained on
Pixie and tested on CompSent-19. While the ac-
curacy improves by 5.11% for plain vanilla fine-

https://github.com/ahaque2/Pixie.git


Original sentence Masked sentence

1 CNN should leave journalism to the pros at Fox news. <current_app> should leave journalism to the pros at <other_app> news.
2 way better than Pandora by a long shot!!!! way better than <other_app> by a long shot!!!!
3 This is a great game just like Temple run <current_app> is a great game just like <other_app>

Table 4: Original and masked comparative sentences.

Approach Model CURRENT NONE OTHER WEIGHTED AVERAGE

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Prior Work ED-GAT 83.24 78.05 80.57 48.89 54.49 51.54 76.28 77.79 77.03 74.44 73.68 73.99

Traditional
ML

AdaBoost 71.57 73.44 72.49 45.06 35.29 39.58 63.53 68.30 71.57 63.80 64.62 64.07
Random Forest 71.27 80.42 75.57 71.31 26.93 39.10 64.98 74.73 69.52 68.97 68.62 66.72
SVM 76.99 82.17 79.49 62.63 36.84 46.39 71.04 79.63 75.09 72.19 73.00 71.86

Transformer-
Based

BERT 82.83 89.03 85.82 62.68 55.11 58.65 83.07 80.40 81.71 79.26 79.70 79.37
DeBERTa 88.34 90.65 89.48 64.56 56.97 60.53 85.97 88.21 87.07 83.15 83.63 83.34
ALBERT 87.83 87.28 87.55 61.37 60.99 61.18 84.70 85.60 85.15 81.87 81.89 81.88
XLNet 83.45 90.52 86.84 67.06 52.32 58.78 83.99 84.38 84.19 80.67 81.33 80.77

Transformer-
Based

with Segment
Embeddings

BERT 83.43 88.53 85.90 66.67 52.63 58.82 81.25 83.61 82.42 79.58 80.20 79.70
DeBERT 88.31 91.40 89.83 64.34 56.97 60.43 85.35 86.52 85.93 82.87 83.35 83.06
ALBERT 86.26 87.66 86.95 65.92 54.49 59.66 81.90 87.29 84.51 80.96 81.50 81.10
XLNet 85.68 90.27 87.92 61.86 55.73 58.63 85.51 84.07 84.79 81.29 81.72 81.45

Table 5: Results (in %) for preference classification on Pixie. Bold indicates highest F1-scores for each category.

Approach Fine-tuning Testing Prec Recall F1 Accuracy

Plain vanilla CompSent-19 Pixie 65.46 59.89 59.23 59.89
Plain vanilla Pixie CompSent-19 65.19 65.00 63.31 65.00
With segment embeddings CompSent-19 Pixie 67.84 59.44 57.70 59.44
With segment embeddings Pixie CompSent-19 66.07 65.72 64.00 65.72

Table 6: Results for cross-dataset experiments. The values are in %.

tuning and 6.28% with segment embeddings. The
improvement primarily is in the recall, demonstrat-
ing that Pixie includes more diverse comparative
sentences than CompSent-19.

5 Conclusion

Masking compared entities ensure that Pixie can
be used to train a general-purpose preference clas-
sification model. Additional analysis is needed to
claim the domain generality of our dataset—that is,
whether a model trained on Pixie can identify the
preferred entity in texts from other domains such as
scientific papers and news. Comparative sentences
in Pixie are limited to user-generated text and may
not generalize well over more formal texts.

Both BERT and XLNet show improvements with
segment embeddings, suggesting that the demarca-
tion of the other app helps the model identify the
preferred entity. The traditional machine learning
models perform worst and the transformer-based
pretrained models fine-tuned on Pixie achieve a

substantially better performance than the state-of-
the-art approaches for preference classification.

Identifying preferences in user reviews can
aid developers in understanding user expectations
about mobile apps. Users often express their likes
and dislikes about an app or feature by comparing
it with alternative apps and features. Understand-
ing user preferences can be particularly valuable
in enhancing the functionality as well as security
and privacy features of apps. A user’s preferences
regarding apps would depend not only on how well
the app is constructed relative to its competitors
but also on how easily the app is used by end-users.
For example, security concerns may be signaled by
descriptions of steps to access sensitive financial or
medical data (Guo and Singh, 2020) expressed in
association with comparisons. A follow-on direc-
tion is to extract and prioritize user expectations by
identifying the specific features of an app of great-
est influence on the indirect or direct comparisons
in a review.
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