
Business Modeling via Commitments

Pankaj R. Telang and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

prtelang@ncsu.edu, singh@ncsu.edu

Abstract. Existing computer science approaches to business modeling offer low-
level abstractions such as data and control flows, which fail to capture the business
intent underlying the interactions that are central to real-life business models. In
contrast, existing management science approaches are high-level but not only are
these semiformal, they are also focused exclusively on managerial concerns such
as valuations and profitability.
This paper proposes a novel business metamodel based on commitments that
considers additional agent-oriented concepts, specifically, goals and tasks. It pro-
poses a set of business patterns and algorithms for checking model completeness
and verification of agent interactions. Unlike traditional models, our approach
marries rigor and flexibility, providing a crisp notion of correctness and compli-
ance independent of specific executions.

1 Introduction

Real-life service engagements generally involve long-lived, complex interactions among
two or more autonomous business partners. We define a business model as a specifica-
tion of a way in which a service engagement is carried out. We address the problem
of creating, enacting, and verifying business models from a high-level, yet rigorous
standpoint.

Service organizations form complex business relationships with other organizations
to exchange value. Competition continually forces organizations to improve their op-
erations. Such improvements include outsourcing or insourcing business tasks based
on appropriate strategic considerations. Mergers, acquisitions, and alliances change the
partners of a value network. The business processes needed to support such dynamic
interactions tend to be complex.

Existing techniques for modeling, operationalizing, and evolving such processes
are inadequate, because they are based on low-level abstractions at the level of data and
control flows, expressed in orchestrations or choreographies. These specifications do
not capture the business intent of the interactions. They tend to over-constrain business
behavior by mandating the exchange of a predetermined set of messages usually in an
unnecessarily restrictive temporal order.

This paper proposes a commitment-based business metamodel, which captures value
exchanges among business partners in terms of their commitments. Further, this paper
defines patterns based on the above metamodel as well as algorithms to verify the cor-
rectness of service engagements with respect to their designs. The main benefits of



this approach are to meld rigor and flexibility thereby improving the quality of service
engagement specifications and their instantiations.

Contributions. The main contributions of this paper are (1) a commitment-based meta-
model that describes value exchanges among business partners, (2) a set of business
modeling patterns, and (3) algorithms for verifying (a) implemented agent interactions
with respect to a business model and (b) the completeness of a business model.

Organization. Section 2 presents the business metamodel and a set of business patterns.
Section 3 applies the patterns to create a model for an insurance claim processing sce-
nario. Sections 4 and 5 introduce notions of compliance and completeness respectively,
and provide algorithms for checking them. Section 6 compares our approach with re-
lated work.

2 Metamodel and Patterns

A business model seeks to capture value exchanges and the evolution of commitments
among business partners. Figure 1 illustrates our metamodel.

executes

requires

refers 

Agent

Commitment

debtor/creditor

Role

plays

desires

Goal

Task
Business 

Relationship
contains

Fig. 1. Metamodel for commitment-based business
models

We characterize a busi-
ness model via a set of busi-
ness relationships, the partici-
pants of which we term (busi-
ness) partners. The partners
execute tasks for each other
that enable achieving their re-
spective goals. Importantly,
our approach defines relation-
ships in terms of the creation
and manipulation of commit-
ments among the partners. To
enter into a business relation-
ship, each partner takes on
the commitments that the re-
lationship specifies. The part-
ner presumably possesses the
capabilities that the relation-
ship requires—these are pre-
sumably required to perform
the tasks that would discharge
the specified commitments.

We associate interaction
protocols with business rela-

tionships in two main ways. Interaction protocols are crucial both to (1) creating or
modifying a business relationship, such as via negotiation and (2) to enacting a business
relationship. The following paragraphs describe the key concepts of this metamodel.



Agent: a computational representation of a business partner. An agent captures the
autonomy and heterogeneity of a real-world business. An agent has goals and pos-
sesses a set of capabilities that enable it to execute business tasks. For each business
relationship in which an agent participates, it enacts one or more roles in that rela-
tionship.

Role: an abstraction over agents that helps specify a business relationship. Each role
specifies the commitments expected of the agents who play that role along with the
capabilities they must possess to function in that role.

Goal: a state of the world that an agent desires to be brought about [3]. In simple terms,
an agent’s goals are its ends. An agent achieves a goal by executing appropriate
tasks.

Task: a business activity viewed from the perspective of an agent. Value transfers be-
tween the agents when they execute tasks for one another.

Capability: an abstraction of the tasks that an agent can perform.
Commitment: A commitment C(DEBTOR, CREDITOR, antecedent, consequent) de-

notes that the DEBTOR is obliged to the CREDITOR for bringing about consequent
if antecedent holds [8]. A commitment C(BUYER, SELLER, goods, pay) means that
buyer commits to paying the seller if goods are delivered. When the seller delivers
goods, the buyer becomes unconditionally committed to paying. In the event that
the buyer makes the specified payment, this commitment is discharged.

Business relationship: a set of interrelated commitments among two or more roles that
describe the value to be exchanged among the roles. In simple terms, each agent’s
main motivation behind forming a business relationship is to access the capabilities
of others.

At run-time, commitments arise between agents, but at design-time we specify them
between roles. Being able to manipulate commitments yields the flexibility needed in
open interactions. A commitment may be created. When its consequent is brought
about, regardless of whether antecedent holds or not, it is discharged, i.e., satisfied.
If its antecedent is brought about then it is detached. The creditor may assign a com-
mitment to another agent. Conversely, a debtor may delegate a commitment to another
agent. A debtor may also cancel a commitment and a creditor may release the debtor
from the commitment. Further, a commitment moves among four main states: active
(when it is created and (presumably) being worked upon), pending (when it has been
delegated and is not being worked upon), satisfied, and violated.

2.1 Running Example

We evaluate the proposed metamodel and patterns via a real-world insurance claim pro-
cessing use case involving AGFIL, an insurance company in Ireland [4]. AGFIL under-
writes automobile insurance policies. Fig. 2 shows the parties and processes involved
in the business service of (emergency) claim processing that AGFIL provides.

To provide this service, AGFIL must provide claim reception and vehicle repair
to the policy holders. Additionally, it needs to assess claims to protect against fraud.
AGFIL depends on its partners, Europ Assist (EA), Lee Consulting Services (CS), and
repairers, for executing these tasks. EA provides a 24-hour helpline for customers to



Notify 

Lee 

C.S.

Obtain

claim

form

Check

claim

form Amend

estimate

Reconcile

info
Finalize

claim

Gather

info

Validate

info

Assign 

garage

Notify 

AGFIL

Receive

car

Estimate

repair 

cost
Inspect 

car

Repair 

car
Invoice

Obtain 

details

Contact 

garage

Assign 

adjustor

Agree 

repair

Check 

invoice

Estimate 

< 500

E

u

r

o

p

A

s

s

i

s

t

AGFIL

Lee C. S.

Repairer

Fig. 2. Insurance claim processing [4]

report a claim and provides an approved repairer garage. CS assesses and presents in-
voices to AGFIL on behalf of the repairers. A network of approved repairers provide
repair services. AGFIL retains the authority for issuing final claim approvals.

2.2 Patterns

A pattern, in the present setting, is a recipe for modeling recurring business scenarios.
This section describes a key set of such patterns, which could seed a potential business
model pattern library. Section 3 demonstrates the effectiveness of this simple set of
patterns on an existing use-case based on a real-life scenario.

Of the 13 attributes in the classical template for object-oriented design patterns [6],
we use name, intent, motivation, implementation, and consequences to describe our
patterns. Here the consequences of a pattern allude to the practical consequences of ap-
plying the pattern, i.e., the assumptions underlying the model. The pattern figures use
the notation of Fig. 1, and additionally show two directed edges for each commitment:
from the debtor to the commitment and from the commitment to the creditor. The sub-
script on a commitment indicates its state: A for active, D for detached, S for satisfied,
and P for pending. The patterns are expressed in terms of roles and would be instanti-
ated by the agents who adopt the specified roles. Each role of a pattern must be adopted
by some agent in order for the resulting business relationship to be executed.

2.3 Unilateral Commitment

Intent: A performer commits to a beneficiary for value transfer. There is no “converse”
commitment from the beneficiary.

Motivation: For example, a conference committee member commits to a program
chair to review a paper that the program chair asks the member to review. The
chair makes no converse commitment.



R1 R2 R1 R2

C1A

Create C1

C1 = C(R1, R2, p, q)

Fig. 3. Unilateral commitment

Implementation: A commitment is created from the performer (R1) to the beneficiary
(R2) for a value transfer. Figure 3 shows this pattern.

Consequences: This presumes a side benefit to the performer (debtor) from the an-
tecedent of the commitment.

2.4 Commercial Transaction

R1 R2 R1 R2

C1A

Create C1

Create C2

C1 = C(R1, R2, p, q)

C2 = C(R2, R1, q, p)

C2A

Fig. 4. Commercial transaction

Intent: This pattern expresses a value exchange between two trading partners. The
trading partners negotiate and, upon agreeing, commit to each other for the speci-
fied value transfers.

Motivation: A typical barter motivates this pattern. For example, a seller and a buyer
agree to exchange goods for payment. A more conventional barter would be when
the parties exchange goods and services rather than money for goods or services.

Implementation: A pair of reciprocal commitments between the trading partners (R1

and R2, treated symmetrically) specify the pattern. Figure 4 shows this pattern.
Consequences: In general, the antecedents and consequents of the commitments are

both composite expressions. Importantly, we need a mechanism to ensure progress
by in essence breaking the symmetry, e.g., via a form of concession [10].

2.5 Outsourcing

Intent: An outsourcer delegates a task to a subcontractor, typically because the out-
sourcer lacks the necessary capabilities or expects some other benefit such as a
more efficient solution or a lower risk of failure.



R1 R2 R1 R2

C3ACreate C3

Create C4

C1 = C(R1, R3, r, s)

C2 = delegate(C1, R2) = C(R2, R3, r, s)

C3 = C(R1, R2, delegate(C1, R2), p)

C4 = C(R2, R1, p, delegate(C1, R2)

C4A

R3

C1A

R3

C1A

p

Create C2

R1 R2

C3S

C4S

R3

C1P
C2A

Fig. 5. Outsourcing

Motivation: Many business organizations outsource noncore activities. As an exam-
ple, consider a customer who signs up for cable television service. The cable oper-
ator commits to the customer for installation. Instead of staffing its entire service
area directly, the cable operator outsources the installation task in several regions
to its local partners in those regions.

Implementation: The outsourcer is the current debtor (R1). The current debtor and the
new debtor (R2) create a relationship, following which the current debtor delegates
the commitment to the new debtor. The existing commitment becomes pending; the
new commitment becomes active. The creditor is unchanged. Figure 5 shows this
pattern.

Consequences: The business relationship between the new and the previous debtors
would be a standing arrangement, which must have a scope and lifetime no smaller
than that of the delegated commitment. The commitment from the previous debtor
is pending and must either be considered discharged or reactivated depending on
how the new debtor performs.

2.6 Standing Service Contract

Intent: A service provider negotiates with a consumer for providing service over a
specified duration, and creates a pair of commitments. The consumer’s request for
a service instance detaches the standing commitment. The provider then creates
one or more commitments for providing the service instance.

Motivation: A business service such as plumbing maintenance or a line of credit from
a bank refers to (potentially) numerous service instances. Whenever the faucet leaks



R1 R2 R1 R2

C1A

C2A

Create C1

Create C2

p

Create C3

Create C4

R1 R2

C1S

C2S

C3A

C4A

C1 = C(R1, R2, Create(C3) ^ Create (C4), p)

C2 = C(R2, R1, p, Create(C3) ^ Create (C4))

C3 = C(R2, R1, r, s)

C4 = C(R2, R1, t, u)

Fig. 6. Standing service contract

(within specified limitations), the plumber will fix it. Whenever the customer sub-
mits a check for an amount up to the specified credit limit, the bank will disburse
funds.

Implementation: The service provider (R1) and consumer (R2) enter into the follow-
ing commitments. Here, C1 and C2 are reciprocal commitments (as in the commer-
cial transactions pattern) that describe the standing service contract. C3 and C4 arise
from the consumer exercising the service contract. Figure 6 shows this pattern.

Consequences: The standing contract must be of sufficiently large scope to cover the
cases of interest but should generally be bounded in the effort it requires. This
pattern can be applied multiple times as when a consumer pays a subscription every
month to obtain a continuing plumbing warranty.

3 AGFIL Business Model

This section applies the patterns to the AGFIL scenario and describes the resulting
business model. AGFIL, an insurer (I), has the goal of providing emergency service,
which requires the capabilities for claim reception, claim assessment, claim finalization,
and vehicle repair. Except claim finalization, which it possesses locally, AGFIL acquires
the remaining capabilities from its business partners.

The insurer delegates to the call center its claim reception commitment to the pol-
icy holder. Although the commitment from the insurer to the policy holder for claim
reception is not created yet, the insurer chooses to set up the delegation earlier. The out-
sourcing pattern models this scenario. The insurer selects EA as a call center provider
(C). The selection process is out of our present scope. Figure 7 shows how the outsourc-
ing pattern applies.



C1. C(C, I, payCallcenter, create(C3))
C2. C(I, C, create(C3), payCallcenter)
C3. C(C, P, reportAccident, receiveClaim)

C I C I

C1A

C2A

C I

C1D

C2S

C I

C1S

C2S

C3A

P

Create C1

Create C2

payCallcenter

Create C3

Fig. 7. Claim reception: Outsourcing

The insurer and the call center create commitments C1 and C2 when they agree upon
the payment that the insurer makes to the call center, for providing claim reception to
the policy holder. The commitment C1 means the call center commits to the insurer for
creating commitment C3, which is to receive claims from the policy holder, provided
the insurer pays the call center. The commitment C2 means the insurer commits to the
call center for payment if the call center creates C3. The insurer pays the call center, and
therefore discharges C2 and detaches C1. Later, the call center creates C3 and discharges
C1.

The insurer outsources the claim assessment capability to Lee CS, an assessor. In
this case, the outsourcing pattern does not apply since the insurer is not delegating
a commitment. That is, the insurer requires claim assessment for itself. Instead, the
commercial transaction pattern models this scenario.

C4. C(A, I, payAssessor ∧ reqAssessment, agreeToRepair)
C5. C(I, A, agreeToRepair, payAssessor)

The commitment C4 means the assessor commits to the insurer, for negotiating
repair cost and to bring about the agreement to repair with the repairer, provided the
insurer pays the assessor and makes a request for assessment. The commitment C5
means the insurer commits to the assessor for the payment provided the assessor brings
about agreement to repair.

The assessor outsources the vehicle inspection to an adjuster (D). The commercial
transaction pattern models this scenario. Since this scenario is similar to the claim
assessment scenario, to save space, we do not describe it in detail.



A policy holder (P) desires to get insurance. Through a directory service, the policy
holder locates AGFIL, the insurer. The policy holder and the insurer interact to setup the
insurance service contract. The service contract pattern models this scenario. Figure 8
shows how the service contract pattern applies.

C8. C(P, I, insurance, payInsurer)
C9. C(I, P, payInsurer, insurance)
C10. C(I, P, reportAccident, receiveClaim)
C11. C(I, P, requestService, repairVehicle)

P I P I

C8A

C9A

Create C8

Create C9

payInsurer

P I

C8S

C9D

Create C10

Create C11

P I

C8S

C9S

C10P

C11A

Fig. 8. Insurance purchase: Service contract

Commitment C8 means the policy holder commits to the insurer for payment if in-
surance is provided, and commitment C9 means the insurer commits to the policy holder
for insurance if the policy holder pays the insurer. To provide insurance, the insurer cre-
ates the commitments C10 and C11, that is, insurance = create(C10) ∧ create(C11).
Commitment C10 means the insurer commits to receiving claim if the policy holder
reports an accident, and in commitment C11, the insurer commits to repairing the (in-
sured) vehicle if the policy holder requests repair service for it. The insurer changes the
status of commitment C10 to pending, since it has delegated that commitment to the call
center. Recall that C3 results from the delegation of C10. That is, C3 = delegate(C10,
C).

To assess a claim, the assessor has the adjuster inspect the vehicle. The assessor
negotiates with the repairer. By bringing about an agreement to repair, the assessor
satisfies its commitment to the insurer C4. Figure 9 shows how the outsourcing pattern
now applies between the insurer, the repairer, and the policy holder.

C12. C(I, R, delegate(C11, R) ∧ agreeToRepair, payRepairer)
C13. C(R, I, payRepairer, delegate(C11, R))



agreeToRepair

Create C12

Create C13

R

A I

C4A

P

C11A

R

A I

C4S

P

C11A

C12A C13A

Create C14

payRepairer

R

A I

C4S

P

C11P

C12A C13S

C14A

R

A I

C4S

P

C11P

C12S C13S

C14A

Fig. 9. Vehicle repair: Outsourcing

C14. delegate(C11, R) = C(R, P, requestService, repairVehicle)

Commitment C12 means the insurer commits to the repairer for paying the repair
charges, if the repairer accepts the delegation of C11 and creates C14. Commitment
C13 means the repairer commits to accepting the delegation of commitment C11 if
the insurer pays. In the delegated commitment C14, the repairer commits to the policy
holder for vehicle repair when the policy holder requests for repair. The repairer satisfies
the commitment C13 by creating C14, and detaches C12. Later the insurer discharges
C12 by paying the repairer. Note that it is not necessary for the insurer to pay the repairer
at this time, and other evolutions are possible. For example, the repairer may repair the
vehicle, that is, satisfy the commitment C14, before the insurer pays. We describe one
possible model evolution above.

4 Verifying Agent Interactions

This section presents an algorithm for verifying if each partner complies with a business
model. An agent complies with a business model if it discharges each detached com-
mitment of which it is the debtor. We consider a UML sequence diagram as a low-level
model for agent interactions. The agents may exchange multiple messages for executing
one task. For example, the policy holder may report an accident by sending a message
to the insurer; the insurer may request additional information, leading to further mes-
sages. In the interaction model (based on a sequence diagram), we assume that upon
completing a task, the executor of the task sends a message asserting its completion.

Given a business model and an interaction model, Algorithm 1 returns a set of vi-
olated commitments. We assume that the interaction model captures all agent interac-
tions. The algorithm iterates over the commitments from the business model and eval-



Algorithm 1: verifyInteractions(m, i): Verify agent interaction model i with
respect to business model m

C = m.C; // Model Commitments1
CS = (); // Satisfied commitments2
CV = (); // Violated commitments3
T = i.T ; // Tasks completed in the interaction model4
foreach c ∈ C do5

if (eval(c.consequent, T) = true) then6
CS.add(c);7

foreach ((c ∈ C) ∧ (c /∈ CS)) do8
if (eval(c.antecedent, T) = true) then9

CV.add(c)10

return CV ;11

uates the antecedent and consequent of each using the tasks asserted in the interaction
model. The antecedent and consequent of a commitment are formulae, each containing
a disjunction of tasks. The eval procedure evaluates these based on the tasks asserted
in the interaction model. The commitments whose consequent evaluates to true are sat-
isfied, whereas the commitments whose antecedent evaluates to true, but whose conse-
quent evaluates to false, are detached commitments that are violated. The debtors of the
violated commitments are the agents that do not comply with the given business model
(within the scope of the given interaction model).

Policy Holder Call Center

reportAccident

receiveClaim

(a) (b)

Policy Holder Call Center

receiveClaim

(c)

Policy Holder Call Center

reportAccident

Fig. 10. Verifying agent interactions

For example, in the AGFIL business model, consider the commitment C10 = C(C,
P, reportAccident, receiveClaim). An interaction model in which neither of the tasks,
reportAccident and receiveClaim, are asserted, is a trivial case where both agents, the
policy holder (P) and the call center (C), comply with the business model. In Fig. 10(a),



the policy holder reports an accident, and detaches the commitment C10. The call center
receives the claim and, therefore, satisfies the detached commitment C10. In this case,
both the agents comply with the business model. In Fig. 10(b), the call center receives
the claim and satisfies the commitment C10. This is another case where both the agents
comply with the business model. In Fig. 10(c), the policy holder reports an accident,
but the call center does not receive the claim. The call center violates the detached
commitment C10, and lacks compliance with the business model.

5 Completeness

Agents enter into a business relationship for achieving their respective goals. A business
model in which all agents achieve their goals is complete. It is important to check for
model completeness, since in its absence, some agents will not achieve their goals and
therefore desire to leave the relationship. That is, the business model will not be stable.

Algorithm 2: verifyCompleteness(m): Verify completeness of business model
m

C = m.C; // Model Commitments1
A = m.A; // Agents2
foreach (a ∈ A) do3

G = a.G; // Agent goals4
foreach (g ∈ G) do5

GT = g.T ; // Tasks for goal6
AT = a.T ; // Agent tasks7
task: foreach ((t ∈ GT ) ∧ (t /∈ AT )) do8

foreach (c ∈ C) do9
if ((c.creditor = a)∧10
(t ∈ tasks(c.consequent)) ∧ (tasks(c.antecedent) ⊂ AT )) then

next task;11

return false;12

return true;13

The Algorithm 2 checks a business model for completeness. For each agent, the
algorithm checks if the agent can achieve all of its goals. An agent a can achieve a goal
g, if it can execute all the tasks required for that goal. In case where the agent cannot
execute all the tasks required for its goal, the model must contain commitments from
other agents to execute the remaining tasks. Additionally, the agent a should be able to
execute the tasks specified in the antecedents of those commitments. In the model, if
there is an agent who cannot achieve a goal, then the algorithm returns false indicating
that the model lacks completeness. Otherwise, the algorithm returns true.

For example, consider the AGFIL business model. The assessor has the goal of
claim assessment. To assess a claim, the assessor needs to inspectVehicle and agree-
ToRepair. The assessor has the capability of bringing about agreeToRepair, but it lacks



the capability to inspectVehicle. In this case, for completeness, the model must contain
commitment from some other agent to inspectVehicle. Additionally, the assessor should
be able to bring about the antecedent of that commitment. For example, C(D, A, payAd-
juster, inspectVehicle) is a commitment required for model completeness, assuming the
assessor can perform payAdjuster.

6 Discussion

This section compares our approach with some existing approaches. Existing high-level
approaches capture business organizations and value exchanges among them [1]. Many
of these approaches are informal or semiformal and are developed for valuation and
profitability analysis. They lack a rigorous treatment of business relationships (as via
commitments) and lack a corresponding business-level notion of compliance.

Gordijn and Wieringa [7] propose the e3-value approach, which captures a business
organization as an actor. This is similar to the notion of an agent from our model. Ac-
tors execute value activities similar to the tasks in our model. In e3, a value interface
aggregates related in and out value ports of an actor to represent economic reciprocity.
This concept is close to our concept of commitment, but it lacks formal semantics and
doesn’t yield equivalent flexibility. For example, unlike value interfaces, commitments
can be delegated. Due to this, an e3 model may capture value exchange among two
actors, but during execution, the exchange and interaction may take place between two
different actors.

Tropos [2] is an agent-oriented software methodology based on concepts of ac-
tor, goal, plan, and actor dependencies. The concepts of role, goal, and task from our
model are similar to the Tropos concepts of actor, goal, and plan, respectively. A key
difference between our model and Tropos is the concept of commitment. In Tropos, a
dependency means that a depender actor depends on a dependee actor, for executing a
plan or achieving a goal. This concept of dependency does not model what is required
of the depender, and the dependee unconditionally adopts the dependency. Our debtor,
creditor, and consequent are similar to the Tropos dependee, depender, and dependum,
respectively. Unlike a dependency, a commitment includes an antecedent that brings
it into full force. This allows modeling of reciprocal relationships between economic
entities, which is lacking in the concept of dependency.

Opera is a framework for modeling multiagent societies [9], though from the per-
spective of a single designer or economic entity. In contrast, we model interactions
among multiple entities. Opera’s concepts of landmark, scene, and contract are close
to our concepts of task, protocol, and commitment, respectively. However, Opera uses
traditional obligations, which lack the flexibility of commitments.

Amoeba [5] is a process modeling methodology based on commitment protocols.
This methodology creates model in terms of fine-grained messages and commitments.
In contrast, our approach lies at a higher level of abstraction containing business goals,
tasks, and commitments.

Conclusions. The main contributions of this paper are a business metamodel, a set of
modeling patterns, and algorithms for verifying compliance and completeness of ser-
vice engagements to business models. Our set of business model patterns is clearly not



exhaustive; nor do we expect any set of patterns to be exhaustive—hundreds of patterns
exist for programming and for software architecture, and the domain of business mod-
els is at least as complex as those. However, our core set of patterns shows how we may
construct additional patterns. Future work includes development of a methodology for
business modeling, model formalization and complexity analysis, and graphical tools
for creating business models.

References

1. Birger Andersson, Maria Bergholtz, Ananda Edirisuriya, Tharaka Ilayperuma, Paul Johan-
nesson, Jaap Gordijn, Bertrand Grégoire, Michael Schmitt, Eric Dubois, Sven Abels, Axel
Hahn, Benkt Wangler, and Hans Weigand. Towards a reference ontology for business mod-
els. In David W. Embley, Antoni Olivé, and Sudha Ram, editors, Conceptual Modeling - ER
2006, 25th International Conference on Conceptual Modeling, Tucson, AZ, USA, November
6-9, 2006, Proceedings, volume 4215 of Lecture Notes in Computer Science, pages 482–496.
Springer, 2006.

2. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

3. BRG. The business motivation model, 2007.
4. Sinead Browne and Michael Kellett. Insurance (motor damage claims) scenario. Document

Identifier D1.a, CrossFlow Consortium, 1999.
5. Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A methodology for model-

ing and evolution of cross-organizational business processes. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2009. In press.

6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley,
Reading, MA, 1995.

7. Jaap Gordijn and Roel Wieringa. A value-oriented approach to E-business process design.
In Johann Eder and Michele Missikoff, editors, Advanced Information Systems Engineering,
15th International Conference, CAiSE 2003, Klagenfurt, Austria, June 16-18, 2003, Pro-
ceedings, volume 2681 of Lecture Notes in Computer Science, pages 390–403. Springer,
2003.

8. Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a unifica-
tion of normative concepts. Artificial Intelligence and Law, 7:97–113, 1999.

9. Hans Weigand, Virginia Dignum, John-Jules Ch. Meyer, and Frank Dignum. Specification
by refinement and agreement: Designing agent interaction using landmarks and contracts.
In Paolo Petta, Robert Tolksdorf, and Franco Zambonelli, editors, ESAW, volume 2577 of
Lecture Notes in Computer Science, pages 257–269. Springer, 2002.

10. Pınar Yolum and Munindar P. Singh. Enacting protocols by commitment concession. In Pro-
ceedings of the 6th International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), pages 116–123, May 2007.


