A Modular Action Description Language for Protocol Composition*

Nirmit Desai and Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA
{nvdesai, singh}@ncsu.edu

Abstract

Protocols are modular abstractions that capture patterns of in-
teraction among agents. The compelling vision behind pro-
tocols is to enable creating customized interactions by refin-
ing and composing existing protocols. Realizing this vision
presupposes (1) maintaining repositories of protocols and (2)
refining and composing selected protocols. To this end, this
paper synthesizes recent advances on protocols and on the
knowledge representation of actions. This paper presents
MAD-P, a modular action description language tailored for
protocols. MAD-P enables building an aggregation hierar-
chy of protocols via composition. This paper demonstrates
the value of such compositions via a simplified, but realistic,
business scenario.

Introduction

Business protocols are widely used to enable superior engi-
neering of business processes (Desai et al. 2005; Fu, Bultan,
& Su 2004; Krazit 2002; Winikoff, Liu, & Harland 2005).
Protocols characterize the interactions among business part-
ners. For example, RosettaNet (1998) defines over 100 pro-
tocols for various aspects of e-business, e.g., purchase order
processing. Traditionally, protocols are either not described
formally or are described merely in terms of message order
without regard to the meanings of the messages. It is now
recognized that traditional approaches lead to rigid enact-
ments and an equally rigid notion of compliance. Recent
approaches describe the meanings of the messages in terms
of the commitments of the participants (Desai et al. 2005;
Winikoff, Liu, & Harland 2005). Such approaches give a
formal basis involving reasoning about commitments, but
do not address the fundamental knowledge engineering chal-
lenge of reuse and composition at the level of protocols.
Specifically, because protocols address different business
goals, they often need to be composed to be put to good use.
For example, a process for purchasing goods may involve
protocols for ordering, shipping, and paying for goods. A
commitment-based semantics enables such composition by
clearly specifying the states of the interaction as they evolve

*With partial support from the US National Science Foundation
under grant 11S-0139037.
Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

through the messages exchanged by the participants. How-
ever, a commitment-based semantics by itself does not ad-
dress how to specify the protocols so they can be reused, or
how to specify how the protocols are to be used.

We would like to treat protocols as reusable components,
potentially composed into additional protocols, and applied
in a variety of business processes. By maintaining one or
more repositories of commonly used, generic, and modular
protocols, we can facilitate the reuse of a variety of well-
defined, well-understood, validated, modular protocols. For
example, a payment protocol can be used in a process for
purchasing goods as well as in a process for registering for
classes at a university. Further, the repository would expand
as newly composed protocols are inserted into it.

How should protocols be formally represented so as to
be included in a repository? How can existing protocols be
composed in a manner that does not require hacking the pro-
tocols at a low level? In the spirit of Lifschitz and Ren’s
(2006) Modular Action Description (MAD) language, this
paper addresses the above challenges by developing a lan-
guage MAD-P that is geared toward protocols. Like MAD,
MAD-P is layered over the causal logic C+ (Giunchiglia et
al. 2004).

Chopra and Singh (2006) show how to express protocols
in C+. MAD-P enhances Chopra and Singh’s approach for
representing individual protocols in C+. More importantly,
MAD-P includes axiom schemas by which desired proto-
col compositions can be specified. These schemas formalize
some of the intuitive, but semantically informal constructs
described by Desai et al. (2005). This paper shows how
MAD-P schemas can be rewritten as C+ axioms. Thus, pro-
tocols composed using MAD-P are also C+ protocols.

Like MAD, MAD-P involves importing predefined mod-
ules (here protocols). However, the meaning and purpose of
importing in the two approaches is quite different. Whereas
MAD imports modules to be specialized and extended,
MAD-P imports protocols to be aggregated. Thus, the im-
porting protocol is defined as an aggregation of the imported
protocols, and can be further imported by other protocols.

Below, we first present an ontology for protocols and a
protocol specification in C+ followed by the syntax and se-
mantics of MAD-P. We illustrate the technique of protocol
composition via MAD-P using a purchase process example.

Protocols in C+

A protocol specifies a set of rules from a global viewpoint
that govern the interaction among roles. These rules typi-
cally specify a choreography, i.e., constraints on the order-
ing of the messages to be exchanged in a protocol. The
meaning of a message is given primarily by its effects on
the agents’ commitments. The general concepts relating to
protocols are specified in C+ as an ontology (Listing 1), to
be included with specifications of individual protocols.

Messages are modeled as exogenous actions (line 9) re-
flecting the autonomy of the agents. Inertial fluents (line 8)
record the history of all message occurrences (line 24). A
static fluent initial ensures that the start state of a protocol is
void of any fluents or commitments (lines 14, 20-22).

A commitment CC(p1, p2, p, q) denotes a directed obli-
gation from role p; to ps to bring about ¢ if p holds. Here,
p1 is called the debtor, po the creditor, p the precondition
and ¢ the condition of the commitment. If the precondition
p is T, the commitment is termed a base and otherwise a
conditional commitment. Commitments are modeled as in-
ertial fluents (line 11) and their preconditions and conditions
are objects wrapped within action constants cond (line 10).
Condition actions are disabled by default (line 26). Condi-
tion T denotes a condition that always holds (line 17).

Commitments can be created (create), discharged
(discharge) , delegated, assigned, canceled, released. Ad-
ditionally, when a conditional commitment’s precondition is
met, it yields a base commitment: this is treated as an ac-
tion toBase. For simplicity, Listing 1 only describes create,
discharge, and toBase (lines 12—13). Desai et al. present a
more thorough treatment of commitments (2007).

Causing the conditions and preconditions of a commit-
ment simultaneously causes appropriate operations: dis-
charge and toBase, respectively, provided the commitment
is active or being created simultaneously (lines 28-32). If a
commitment is discharged it is deemed satisfied and ceases
to hold (line 34). If toBase is caused, the original commit-
ment ceases to exist, and a base level commitment is created
provided the original commitment is not being discharged
simultaneously (lines 36—39). A commitment is asserted if
create is caused and that commitment is not being simulta-
neously discharged or converted to base, and the commit-
ment does not already exist (lines 41-42). All commitment
operations are disabled by default (lines 44-46). These laws
collectively ensure correct behavior of commitment opera-
tions in the face of concurrent actions.

Listing 1: Protocols ontology in C+ (ontology)

1 [:— sorts Role; Slot; Message; Commitment; Condition.
3 |:— wvariables

4 msg Message; p,q :: Condition;

5 cc Commitment; db,cr :: Role.

7 |:— constants

8 fl1(Message) inertialFluent;

9 act(Message) exogenousAction ;

10 cond (Condition) :: action;

11 comm(Commitment) inertialFluent;

12 create (Commitment), discharge (Commitment),

13 toBase (Commitment) :: action;
14 initial sdFluent.

16 |[:— objects

17 T :: Condition;

18 CC(Role ,Role, Condition ,Condition) Commitment .

20 | caused initial if initial.

21 caused —initial if comm(cc).
22 | caused —initial if fl(msg).
24 | act(msg) causes fl(msg).

26 |—cond(p) causes —cond(p).

28 | caused discharge (CC(db,cr,p,q)) if cond(q) &
29 | (comm(CC(db,cr,p,q)) ++ create(CC(db,cr,p,q))).

31 caused toBase (CC(db,cr,p,q)) if cond(p) &
32 | (comm(CC(db,cr,p,q)) ++create (CC(db,cr,p,q))) & pT.

34 | discharge (cc) causes —comm(cc).

36 | toBase(cc) & —discharge(cc) causes —comm(cc).

38 | toBase (CC(db,cr,p,q)) & —discharge (CC(db,cr,p,q))
39 | causes comm(CC(db,cr,T,q)).

41 | caused comm(cc) if true after create(cc) &

42 | —(discharge (cc) ++ toBase(cc)) & —comm(cc).
44 | —create(cc) causes —create(cc).

45 | —toBase(cc) causes —toBase(cc).

46 | —discharge(cc) causes —discharge(cc).

Payment Protocol (Pay) Order Protocol (Ord)
‘ Payer(Pr) ‘ ‘ Payee(Pe)‘ ‘ Gateway(Gi‘ ‘ Buyer(B) ‘ ‘ Seller(S) ‘

paymentinfo(cardNO, expDate) | reqForQuote(itemID)
— 9
| autﬁkeq(card NO, expDate, ambunt) | |

| |
qqote(itemlD, itemF‘rige)

€C(S, B, payment, deliver)
I I

|

! I authOK(token, amount) !

} CC(G,}Pe, reqFund(token), fund(pmount))
| receipt(amount) ! !
[ttt e S|
I

|

|

|

|

I I
I captureReq(token) i acceptQuote(itemID, itemPrice)
I —————
| captured(amount) | CC(B, §, payment, deliver)|
| |
Shipping Protocol (Sh
Receiver(R) Sender(Se) Shipper(Sh)
I shipInfo(shipAddress) N |

I
reqForShipOptions(shipAddress, iterp)

shippérOptionQuote(shipOption, shipperQuote)

, CC(Sh, Se, payShipping, shipping(item))
sénderOptionQuote(shipOption, senderQuoté) i

" CC(Se, R, payShippingCharge, shippirig(item)) |

| chooseOption(shipOption, senderQuote) | |

CC(R, Se, shipping(item), payShippingCharge) | |
| shi[‘yOrder(item, shipOption, shipperQubte)

CC(Se, Sih, shipping(item), payShipping) N}

|

|

shipment(itém)

|
I
I
|
|
K

Figure 1: Scenarios from protocols Ord, Shp, and Pay

Now, let us consider a purchase process that is widely
used in the business process modeling literature (e.g., (De-
sai et al. 2005)). A buyer and a seller interact to decide

the items to be purchased and the price. The seller then ar-
ranges for shipment of these items via a shipper. The cus-
tomer pays via a payment gateway. Figure 1 shows how
we disaggregate this process in terms of modular protocols.
For simplicity, Figure 1 depicts only one scenario per pro-
tocol (although nontrivial protocols include multiple scenar-
ios). Consider the Ord interaction by which the Buyer and
Seller roles achieve a deal. The Buyer requests a quote for
an item. The Seller responds by quoting a price for the item.
The meaning of quoting a price is given by the creation of
a commitment from the Seller to the Buyer that when the
price is paid for, the goods would be delivered. The Buyer
can then either accept or reject the quote. The rejection sce-
nario is omitted here but is posted online (MAS Lab 2007).
The meaning of acceptance is that the Buyer commits to
paying for the delivered goods. Listing 2 describes Ord.

Listing 2: Ord protocol in C+

1 |:— protocol Ord.

3 | :— include ’protocol—ontology ’.

5 |:— sorts

6 Slot >> ItemID; Slot >> ItemPrice;

7 Role >> Buyer; Role >> Seller.

9 |[:— objects

10 reqForQuote (Buyer, Seller ,ItemID) :: Message;

11 quote (Seller ,Buyer,ItemID ,ItemPrice) :: Message;
12 accept(Buyer, Seller ,ItemID , ItemPrice) :: Message;
13 deliver Condition; payment :: Condition;

14 b :: Buyer; s :: Seller;

15 myltem :: ItemID; myPrice ItemPrice .

17 | :— variables

18 itemID :: ItemID; itemPrice ItemPrice .

20 | nonexecutable act(reqForQuote (b,s,itemID)) if
21 fl (reqForQuote (b,s,itemID)).

23 | nonexecutable act(quote(s,b,itemID,itemPrice)) if
24 |—fl(reqForQuote (b,s,itemID)) ++
25 fl (quote(s,b,itemID ,itemPrice)).

27 | nonexecutable act(accept(b,s,itemID,itemPrice)) if
28 |—fl(quote(s,b,itemID ,itemPrice)) ++
29 fl (accept(b,s,itemID,itemPrice)).

31 act(quote(s,b,itemID,itemPrice)) causes
32 | create (CC(s,b,payment, deliver)).

34 | act(accept(b,s,itemID,itemPrice)) causes create (
35 [CC(b,s,deliver ,payment)).

37 |:— query
38 label :: 5;
39 | maxstep: fl(accept(b,s,itemID,itemPrice)).

maxstep :: 4; 0: initial;

The expression m(ps, pr, V1, ..., Uy) denotes a mes-
sage of type m sent from p; to p,, and with contents v;.
Lines 20-29 of Listing 2 restrict sending the messages such
that they respect the desired choreography, and are not re-
peated. Lines 31-35 model the contractual meanings of the

quote and accept messages, respectively. As the conditions
of the commitments are not caused within the protocol, their
content slots are unknown and configurable via composition
(next section). The query (lines 37-39) yields all paths (if
any) from the initial state to a state where accept has already
happened. Having messages, commitments, and conditions
as objects enables wrapping of them within other fluents and
actions.

At enactment, the roles would be adopted by agents who
ground the protocols with their policies. For example, the
protocol would specify that a quote be presented when a re-
quest for quotes is received. The specific price used in the
quote message, however, is determined by the policy of the
agent adopting the Seller role. Thus, in a protocol specifica-
tion, a rule may have free variables in its head. Enactment is
not discussed further in this paper.

Protocol Composition in MAD-P

Any realistic business process, e.g., purchase, would com-
pose multiple protocols, e.g., order, shipping, and payment.
Usually, each protocol is designed and maintained indepen-
dently without assuming the existence of other protocols. As
aresult, protocols may use identical names for different con-
cepts or distinct names for identical concepts. Therefore,
MAD-P associates with each protocol a unique namespace
to which all names of the protocol belong. MAD-P sup-
ports axiom schemas for stating which parameters of differ-
ent protocols are identified, for example, that itemID in Ord
and item in Shp refer to the same piece of information.

Whereas exogenous actions can happen freely and need
not be caused explicitly, endogenous actions must be caused
explicitly. Modeling messaging actions as exogenous has a
significant impact on composition. Let us consider the pro-
tocols P and Q having exogenous actions whose “standard”
models are shown in Figure 2 (these models are C+ transi-
tion systems with null and self-loop transitions removed as
in (Chopra & Singh 2006)).

If S is the union of P and Q, it should allow all possible
interleavings of actions from P and Q, as shown in Figure 2
(far right). This is due to the fact that the only constraints
specified by P and Q are that a must precede b and ¢ must
precede d. If no additional constraints are specified, S is the
composite protocol constructed from P and Q.

o a S=Pp+Q S=p+Q
(endogenous) (exogenous)
a [a, c
b d b, d

Figure 2: Exogenous vs. endogenous protocol actions

Let P’ and Q’ be protocols that have the same models as
P and Q, respectively, but which involve endogenous instead
of exogenous actions. Figure 2 shows that S°, the union of

P’ and Q’, allows only one interleaving of the actions. This
is due to the fact that for endogenous actions, their cause
must be explicitly specified. If the specified cause is present,
then the action must occur immediately. Thus, endogenous
actions reduce the flexibility of agents by preventing some
legitimate choices.

To meaningfully compose protocols, simply unioning
their descriptions would generally not be enough. The
desired interdependencies among the component protocols
would need to be specified. For example, a slot of a protocol
may get its value from a slot in another protocol, or the mes-
sages of different protocols may need to respect a temporal
ordering. A protocol designer specifies composition axioms
to capture such dependencies.

Let us illustrate protocol composition by composing a
protocol Pur from the protocols Shp, Ord, and Pay. Listing 2
describes Ord. The specifications for Shp, Pay, and the com-
posite protocol Pur are posted (MAS Lab 2007). Listing 3
describes Pur in terms of Ord, Shp, and Pay.

Listing 3: Pur protocol in MAD-P

1 |:— protocol Pur.

3 | :— import Ord; Shp; Pay.

:— role—identification

Pur. Customer is Ord.Customer, Shp.Receiver, Pay.Payer;
Pur.Merchant is Ord.Merchant, Shp.Sender, Pay.Payee;
Pur. Shipper is Shp. Shipper;

O 00 2 N W

Pur.Gateway is Pay.Gateway.

11 | :— data—flow
12 | Shp.reqForshipOptions.Item uses Ord.accept.ItemID if T;
13 | Pay.authOK.Amount uses Ord.accept.ItemPrice if T.

15 | :— commitment—condition
16 | Shp.shipment(item) means Ord. deliver (item);
17 | Shp.authOK(-, amount) means Ord.payment(amount).

19 | :— event—order
20 | Pay.authOK before Shp.shipOrder.

Syntax and Semantics of MAD-P

MAD-P supports five composition axiom schemas, whose
formal syntax is given by Equations (1), (2), (4), (5), (7),
and (9) below along with applicable restrictions. The role
identification axioms are mandatory in each composition;
the other axioms are not. The semantics of MAD-P is given
by rewriting each of the axioms in C+. The C+ axioms of
Equations (3), (6), (8), and (10) are added to the theories
as a result of rewriting the corresponding composition ax-
iom schemas. Pur of Listing 3, rewritten in C+, is posted
(MAS Lab 2007). The procedure of rewriting is performed
in sequential steps. Each step rewrites a set of composition
axioms of a kind (e.g., role identification axioms) as C+ ax-
ioms and as a result adds rules and other language elements
to the theory of the composite protocol being constructed.
In the following, a protocol specification IP is a tuple (pp,
Vo, My, Ry, Cond,, Comm,,), where p, is the set of par-
ticipant roles in IP, V, is the set of message slots in P, M, is

the set of messages in IP, I?,, is the set of causal rules of PP,
Cond, is the set of commitment conditions, and Comm,, is
the set of commitments in P. The formula ¢ is an arbitrary
logical expression over the constants of protocol ontology.
Constants with trailing ‘A’ are actions whereas those with
trailing ‘F’ are fluents.

The following rewriting process considers different axiom
schemas in a specific order, which ensures that the rewriting
of axioms does not create inconsistent names and axioms.
The basic idea is

e Put the composed protocols into a “scratch” protocol by
rewriting their roles based on the role identification ax-
ioms.

e Create additional axioms in the scratch protocol to capture
the other composition axioms.

e Modify some of the other components in the scratch pro-
tocol.

e Return the newly minted scratch protocol as the result of
the composition.

More than two protocols may be composed similarly.

Role Identification Axioms A role identification axiom
defines a new role (named on the left) by identifying it with
the roles named on the right (Lines 6-9). Thus, it specifies
a constraint that an agent adopting the role on the left must
adopt the roles on the right. Informally, the effect of these
axioms is the substitution of the roles on the right by the role
on the left in the commitments and messages of the imported
protocols.

Formally, say two protocols P=(py,, V,,, My, Ry, Cond,,
Commy) and Q=(p,, V,, My, Ry, Condy, Commyg) hav-
ing |pp| and |p4| roles, respectively, are composed to obtain
Sri=(pri> Vei» Myi, Ryi, Commy;, Cond,), vian (n > 2)
role definition axioms of the form:

plis pl, pk 4))

where, 0 < i <n,0 < j < |pp|, 0 <k < |pyl|. Each p’, p
and p’; appears in exactly one such axiom.

Then, in the resulting composite protocol S,;, the set
of roles p,;=p, therefore |p,;|=n. Also, V,;=V,, UV, and
R,;=R, U R,. Where (a/b)E substitutes the name b inside
entity E by the name a, M,;=(p"/p3) M, U (p'/p¥) M, and
Comm.i=(p'/ p3)Commy, U (p/ pk)Commy.

Data Flow Axioms Lines 12-13 specify the data flow
from the slots on the right to the slots on the left provided
the if condition holds. In general, a data flow axiom specifies
that the value of a slot on the left must equal the value of the
slot on the right during enactments of the composite protocol
where the specified condition holds. Indirectly, data flow ax-
ioms impose a temporal order on the messages—a message
that uses a slot cannot precede the message that provides the
slot. Data flow composition is performed after the role defi-
nitions. Formally, data flow axioms are of the form:

Mgq.Vq USES My,.Vp if P 2)

where m,, € M,, mg € M, and v can include constants
from both protocols. Then, for the resulting composite pro-
tocol Sgf, vq is renamed to v, and a new rule rgy

nonexecutable m,A if (—myA & —myF) ++ —¢ (3)

is added to R4, meaning that m, cannot happen unless
my has already happened or is happening concurrently and
1) holds. Conditionalization via ¢ enables alternative data
flows for a slot depending on the protocol state. Thus,
when 1 holds, v, of m, would be bound to v, of m,,.
Hence, Ry=R,; U {rqs} and Vyr=(v,/v,)V;;. The remain-
ing entities are carried forward from the role definitions, i.e.,
Eg=E,;, where E is p, M, Comm, or Cond.

Commitment Condition Axioms Lines 16-17 are com-
mitment condition axioms defining the causation of commit-
ment conditions across protocols. In the individual proto-
cols, these conditions may not be caused locally and hence
their precise meaning and parameters may not be known.
For example, deliver is not caused in Ord. Commitment con-
dition composition has two flavors: abstract and concrete.
In the abstract flavor, the cause for the condition is itself a
condition and the precise meaning and parameters of both
conditions are unknown. It is known, however, that their
meaning, whatever it may be, is identical. In the concrete
flavor, the cause is an arbitrary formula that provides the
meaning and parameters of the condition. Condition com-
position is performed after data flow composition, and ab-
stract condition composition is performed before concrete
condition composition. Lines 16-17 are concrete commit-
ment condition axioms. An abstract condition axiom is of
the form (where cond, € Cond,, and cond, € Condy):

cond, means cond, “)

As this axiom identifies the meaning of cond, with cond,,
cond, is simply renamed as cond, to effect this constraint.
Such axioms are generally accompanied by the concrete fla-
vor where the cause for cond, would be provided. Thus,
for the resulting composite protocol Sgps, Condgps =
(cond,/condy)Cond,q. The remaining entities are carried
forward from Sy, i.e., Eqps=Fqr, where E is p, V, M, R,
or Comm. A concrete condition axiom is of the form:

1p means condg(v1, V2, ..., Vp) (5)

where 1), is a formula of the atoms in P, cond, € Condy,
and each v; is bound by the atoms in 1)), expressing that
if 1), holds then the commitment condition cond, is met.
Then, for the resulting composite protocol S¢o;,¢, a rule 7eop.c

caused condg(...) if ¥, (6)

is added. Thus, Reonc=Rabs U {rconc}- The declaration
of cond, is changed to have the slots v; as parameters.
The remaining entities are carried forward from S, i.e.,
E.onc=Fqps, where E'is p, V, M, Cond, or Comm.

The above axiom schemas can be thought of as provid-
ing knowledge about various “counts as” relationships in the
sense of Searle (1995). In essence, a commitment condition
axiom states that a certain condition counts as another condi-
tion in the intended context of usage. For example, shipping

the goods may count as satisfying a commitment of deliver-
ing the goods, even though these are not necessarily identi-
cal (some shipments can potentially be lost). Such operating
procedures are common in business settings.

Commitment Operation Axioms These specify causa-
tion of commitment operations across protocols. An action
or a state in a protocol may cause an operation on a commit-
ment in another protocol. The purchase example does not
exhibit this type of axiom, which is of the form:

1, causes op;(commy) @)

where 1, is a formula of the atoms in [P, the commitment
commg € Commyg. The operation op; can be delegate,
assign, release, or cancel. Such an axiom specifies that if
1), holds, then the operation op; is performed on commy.
Then, for the resulting composite protocol S,,, a rule 7,

caused op; (commy) if ¥y)

is added. Thus, R,p, = Reonc U {7op}. The remaining enti-
ties are carried forward from Scope, i.€., Eop=FEcone, Where
FEisp, V, M, Cond, or Comm.

Event Order Axioms Line 20 is an event order axiom. It
constrains the temporal ordering among the events by speci-
fying that a payment authorization must be received before a
shipping request is placed. Event order composition is per-
formed after commitment operations. Event order axioms
explicitly impose a temporal ordering regardless of other de-
pendencies. Formally, an event order axiom is of the form:

m,, before m,)

where m, € M, and m, € M,. To effect the constraint, a
new rule .,

nonexecutable mgA if —m,F (10)

is added. Hence, for the resulting protocol S¢,, Reo=Rop U
{reo}. The remaining entities are carried forward from S,,,
i.e., Eeo=E,p, where E is p, V', M, Comm, and C'ond.

Listing 4 shows some of the causal axioms added to Pur
as result of rewriting the axioms of Listing 3.

Listing 4: Pur rewritten in C+

...

2 | nonexecutable act(reqForShipOptions (itemID)) if
3 |—act(accept(itemID, itemPrice)) &

4 |—fl(accept(itemID, itemPrice)).

6 | nonexecutable act(authOK(token, itemPrice)) if

7 | —act(accept(itemID, itemPrice)) &
—fl(accept(itemID, itemPrice)).

10 | caused cond(deliver (itemID)) if act(shipment (itemID)).

12 | caused cond(payment(itemPrice)) if
13 | act(authOK(token , itemPrice)).

15 | nonexecutable act(shipOrder(...)) if
16 | —fl (authOK(token , itemPrice)).

In MAD-P, unlike in MAD, new axioms for the compos-
ite protocol need not be specified. Instead, the composite
protocol is derived from the imported protocols. The com-
position axioms described in this paper express typical re-
quirements in composing protocols. They act as configu-
ration parameters reflecting a policy for composition. For
special purposes, further axioms capturing additional “pat-
terns of composition” might be readily constructed by com-
bining features of the above. Composite protocols such as
Pur can be treated and enacted like other protocols. Also,
as the composite protocols can be rewritten as C+ theories,
they can be imported and composed further.

Given a correct specification of a protocol composition,
the C+ theory generated by the above would also be cor-
rect. The proofis by inspection that the intuitions underlying
the composition axioms are met by the proposed translation.
Placing composed protocols in C+ opens up the possibility
of verifying the specifications with respect to various desired
properties. A useful future task is extending the causal cal-
culator CCALC to handle MAD-P descriptions and rewrite
them as C+ descriptions.

Discussion

This paper synthesizes the intuitions previously developed
in the studies of agent protocols and theories of action. To
the area of agents, this paper contributes a rigorous approach
for modeling and reusing protocols. To the area of reasoning
about action, it contributes an application domain of consid-
erable business value (Krazit 2002) as well as the general
and important themes of reasoning about commitments and
about communications.

A driving theme in our research program is to build a for-
mally robust repository of protocols, whose components can
be readily composed with others and to which new protocols
can be contributed. This paper lays the groundwork for such
a repository. It would be interesting to develop the notions
of protocol refinement in the setting of such a repository.

Most existing approaches for composing protocols are
based on low-level representations such as finite au-
tomata (Fu, Bultan, & Su 2004) or Petri Nets (Mazouzi,
Seghrouchni, & Haddad 2002). Such formalisms do not
support flexible execution and, because they are low level,
do not support modeling in terms of high-level user re-
quirements. Al-based approaches have a distinct advantage
of flexibility in modeling and enactment. However, cur-
rent such approaches are not sufficiently rigorously devel-
oped. Notable such approaches include (Desai et al. 2005;
Winikoff, Liu, & Harland 2005), which lack a formal treat-
ment of actions and constraints as developed here.

Vitteau and Huget (2004), driven by the motivation for
reuse of interaction protocols, propose the notion of modular
microprotocols to be composed with a Communication Pro-
tocol Description Language. Although formal, their compo-
sition is procedural and does not allow arbitrary interleaving
of protocols like in MAD-P.

Previous work has studied procedural composition of di-
alogues. Reed (1998) discusses a typology of dialogues. He
supports composing dialogues via nesting or functional em-
bedding. McBurney and Parsons (2002) extend Reed’s work

and support composing dialogues via operators for sequen-
tial, parallel, and iterative execution. By contrast, the present
paper composes protocols in a declarative manner wherein
constraints are stated as composition axioms that capture the
essential dependencies among protocols, and all executions
are allowed that satisfy those axioms.

Whereas this paper emphasizes engineering business pro-
cesses via reuse and composition of modular protocols, the
work on dialogues emphasizes classifying dialogues broadly
into a small number of categories, e.g., information seeking,
persuasive, and so on. Its emphasis is on deliberation by
agents. Only two-party interactions are studied and there is
no support for interposing new roles, which is common in
business settings, e.g., when a bank is introduced to achieve
payment. It would be interesting to explore how dialogue
typologies can help agents classify messages and enact dif-
ferent protocols.

References
Chopra, A. K., and Singh, M. P. 2006. Contextualizing
commitment protocols. In AAMAS, 1345-1352.
Desai, N.; Mallya, A. U.; Chopra, A. K.; and Singh, M. P.
2005. Interaction protocols as design abstractions for busi-
ness processes. IEEE T. Soft. Engg. 31(12):1015-1027.

Desai, N.; Chopra, A. K.; and Singh, M. P. 2007. Repre-
senting and reasoning about commitments in business pro-
cesses. In AAAI. To appear.

Fu, X.; Bultan, T.; and Su, J. 2004. Conversation protocols:
A formalism for specification and verification of reactive
electronic services. Theoret. Comp. Sci. 328(1-2):19-37.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49-104.

Krazit, T. 2002. Intel conducts $5b in transactions via
RosettaNet. http://tinyurl.com/344ah6.

Lifschitz, V., and Ren, W. 2006. A modular action descrip-
tion language. In AAAI, 853-859.

MAS Lab. 2007. MAD-P purchase examples in C+.
http://research.csc.ncsu.edu/mas/code/causal/.

Mazouzi, H.; Seghrouchni, A. E. F.; and Haddad, S. 2002.
Open protocol design for complex interactions in multi-
agent systems. In AAMAS, 517-526.

McBurney, P., and Parsons, S. 2002. Games that agents
play: A formal framework for dialogues between au-
tonomous agents. J. Logic, Lang., & Info. 11(3):315-334.

Reed, C. 1998. Dialogue frames in agent communications.
In ICMAS, 246-253.

RosettaNet. 1998. Home page. www.rosettanet.org.
Searle, J. 1995. Construction of Social Reality. Free Press.

Vitteau, B., and Huget, M.-P. 2004. Modularity in interac-
tion protocols. Advances in Agent Communication, LNCS
2922, 291-309.

Winikoff, M.; Liu, W.; and Harland, J. 2005. Enhancing
commitment machines. Proc. DALT Workshop, LNAI 3476.

