
Foureye: Defensive Deception Against
Advanced Persistent Threats via Hypergame

Theory
Zelin Wan, Jin-Hee Cho, Senior Member, IEEE , Mu Zhu, Ahmed H. Anwar, Charles Kamhoua, Senior

Member, IEEE , and Munindar P. Singh, IEEE Fellow

F

Abstract—Defensive deception techniques have emerged as a promis-
ing proactive defense mechanism to mislead an attacker and thereby
achieve attack failure. However, most game-theoretic defensive decep-
tion approaches have assumed that players maintain consistent views
under uncertainty. They do not consider players’ possible, subjective
beliefs formed due to asymmetric information given to them. In this
work, we formulate a hypergame between an attacker and a defender
where they can interpret the same game differently and accordingly
choose their best strategy based on their respective beliefs. This gives
a chance for defensive deception strategies to manipulate an attacker’s
belief, which is the key to the attacker’s decision-making. We consider
advanced persistent threat (APT) attacks, which perform multiple attacks
in the stages of the cyber kill chain (CKC) where both the attacker
and the defender aim to select optimal strategies based on their be-
liefs. Through extensive simulation experiments, we demonstrated how
effectively the defender can leverage defensive deception techniques
while dealing with multi-staged APT attacks in a hypergame in which
the imperfect information is reflected based on perceived uncertainty,
cost, and expected utilities of both the attacker and defender, the system
lifetime (i.e., mean time to security failure), and improved false-positive
rates of intrusion detection.

Index Terms—Defensive deception, hypergame theory, uncertainty, at-
tacker, defender, advanced persistent threat

1 INTRODUCTION

The key purpose of a defensive deception technique is to
mislead an attacker’s view and make it choose a suboptimal
or poor action for the attack failure [1]. When both the
attacker and defender are constrained in their resources,
strategic interactions can be the key to beat an opponent.
In this sense, non-game-theoretic defense approaches have
inherent limitations due to the lack of efficient and effective
strategic tactics. Forms of deception techniques have been
discussed based on certain classifications, such as hiding the

• Zelin Wan and Jin-Hee Cho are with the Department of Computer
Science, Virginia Tech, Falls Church, VA 22043, USA. Email: {zelin,
jicho}@vt.edu. Mu Zhu and Munindar P. Singh are with the Depart-
ment of Computer Science, North Carolina State University, Raleigh,
NC 27695, USA. Email: {mzhu5, mpsingh}@ncsu.edu. Ahmed H. An-
war and Charles A. Kamhoua are with the US Army Research Lab-
oratory, Adelphi, MD 20783, USA. Email: a.h.anwar@knights.ucf.edu;
charles.a.kamhoua.civ@mail.mil.

truth vs. providing false information or passive vs. active for
increasing attackers’ ambiguity or confusion [2, 3].

Game theory has been substantially used for dynamic
decision-making under uncertainty, assuming that players
have consistent views. However, this assumption fails as
players may often subjectively process asymmetric informa-
tion available to them [4]. Hypergame theory [5] is a variant
of game theory that provides a form of analysis considering
each player’s subjective belief, misbelief, and perceived
uncertainty and accordingly their effect on decision making
in choosing the best strategy [4].

This paper leverages hypergame theory to resolve con-
flicts of views of multiple players as a robust decision-
making mechanism under uncertainty where the players
may have different beliefs towards the same game. Hyper-
game theory models players, such as attackers and defend-
ers in cybersecurity to deal with advanced persistent threat
(APT) attacks. We dub this effort Foureye after the Foureye
butterflyfish, demonstrating deceptive defense in nature [6].

We identify the following nontrivial challenges in obtain-
ing a solution. First of all, it is not trivial to derive realistic
game scenarios and develop defensive deception techniques
to deal with APT attacks beyond the reconnaissance stage.
This aspect has not been explored in the state-of-the-art.
Second, quantifying the degree of uncertainty in the views
of attackers and defenders is challenging, although they
are critical because how each player frames a game signif-
icantly affects its strategies to take. Third, given a number
of possible choices under dynamic situations, dealing with
a large number of solution spaces is not trivial whereas
the deployment and maintenance of defensive deception
techniques are costly in contested environments. We partly
addressed these challenges in our prior work [7]. In [7],
we mainly considered a small-scale network with only
four different strategies for each player, only one defensive
deception strategy (i.e., fake patch), only three CKC stages,
an attacker’s deception detectability, limited modeling of
strategy effects on attackers and systems, static utility func-
tions (i.e., constants), no Hyper Nash Equilibrium (HNE)
analysis, using Stochastic Petri Nets (SPNs) with simplified
designs, limited performance metrics, and no comparative
performance analysis. We summarized the detailed key

1



TABLE 1
THE KEY DIFFERENCES BETWEEN [7] AND THIS PAPER.

Design feature Cho et al. [7] This paper

Attack/defense
strategies

4 strategies each 8 strategies each

# of defensive
deception strategies

1 4

Attacker’s deception
detectability

No Yes

# of CKC stages 3 6
Validation method Stochastic Petri Nets

(SPNs)
Extensive simulation

Strategy effects System states in SPNs
(implicit)

Explicit modeling in
terms of vulnerability
and system changes

Utility calculation Static with constants Dynamic utility
functions

Analysis of HNE No Yes
# of metrics for

evaluation
4 6

Comparative
performance analysis

No Yes (4 schemes)

differences between [7] and this paper in Table 1.
This paper has been substantially extended [7] with

the additional contributions. We made the following key
contributions in this work:
• We are the first that considers hypergame theory to model

an attack-defense cybergame in order to reflect players’
perceived uncertainty towards a given game more realisti-
cally. No prior work has considered uncertainty estimated
by the dynamic interactions between an attacker and a
defender in a cyber deception game.

• We consider an advanced persistent threat (APT) by
modeling an attacker that can perform multiple attack
strategies in the different stages of the cyber kill chain
(CKC). Most existing approaches are limited to consider-
ing scanning attacks in the reconnaissance stage.

• We consider multiple, diverse defense strategies, includ-
ing both conventional defense and defensive deception
(DD) strategies, to investigate the key benefits of using
DD strategies.

• We conduct extensive simulation experiments to compare
the performance and security of a system under four
different games, such as the games of perfect vs. imperfect
information and the games of using DD vs. non-DD.

• We also investigate Hyper Nash Equilibrium (HNE) [8, 9,
10, 11] to study how players’ NE solutions based on their
perceived games can be different from the NE solutions
based on a ground truth game.

2 RELATED WORK

Garg and Grosu [12] proposed a game-theoretic decep-
tion framework in honeynets with imperfect information
to find optimal actions of an attacker and a defender and
investigated the mixed strategy equilibrium. Carroll and
Grosu [13] used deception in attacker-defender interactions
in a signaling game based on perfect Bayesian equilibria
and hybrid equilibria. They considered defensive deception
techniques, such as honeypots, camouflaged systems, or
normal systems. Yin et al. [14] considered a Stackelberg
attack-defense game where both players make decisions
based on their perceived observations and identified an
optimal level of deceptive protection using fake resources.
Casey et al. [15] examined how to discover Sybil attacks
based on an evolutionary signaling game where a defender

can use a fake identity to lure the attacker to facilitate
cooperation. Schlenker et al. [16] studied a sophisticated and
naı̈ve APT attacker in the reconnaissance stage to identify an
optimal defensive deception strategy in a zero-sum Stackel-
berg game by solving a mixed-integer linear program.

Xiao et al. [17] studied the APT attacks by proposing a
detection game under uncertainty. They used the cumula-
tive prospect theory for an attacker and defender to make
subjective decisions on ’whether to attack or not’ or what
interval to use for performing scanning attacks. Fang et al.
[18] introduced a game model to predict an APT attacker’s
move. They designed the attacker’s strategies based on the
APT attack path. Specifically, they separated the attacker’s
actions in terms of the means and the aim of an attack. The
authors designed a game model to predict the optimal APT
attack path so that the defender can effectively deal with
the APT attackers. Pawlick et al. [19] proposed a framework
by considering APT attackers within cloud-based systems.
Specifically, they considered a three-player game with a
cloud defender, an attacker, and a device. They employed
a signaling game to model the interactions between the
device and the cloud which may be compromised with a
certain probability. However, the works above [17, 18, 19]
assumed that all players play the same game with a single
view, which is not realistic in practice.

Bakker et al. [20] applied a repeated hypergame to model
interactions between an APT attacker and the defender
within a cyber-physical system. The authors considered
that the attacker can manipulate the control system, while
the defender can sweep the system based on its monitor-
ing scheme. The authors extended [20] in [21] by apply-
ing metagames and minimax hypergames in their hyper-
games and APT attacks. Hutchins et al. [22] proposed an
intelligence-driven, threat-focused approach to assist the de-
fender to mitigate intrusions by APT attackers. The authors
modeled the APT attacks based on their cyber kill chain
(CKC) and illustrated the stages in the CKC with several
actual cases. Zhang and Thing [23] surveyed honeypots,
honey tokens, and moving target defense techniques from
the late 1980s to 2021. The authors first described the CKC
and illustrated how the different deception technologies can
disturb APT attacks following the CKC.

As similar proactive mechanisms to defensive deception
in terms of their goal and effect of confusing attackers and
mislead them to fail by changing attack surfaces, moving
target defense (MTD) has been discussed in the literature.
We extensively surveyed MTD in our prior work [24] and
clarified the difference between MTD and DD. Although
they are common in their goals and effects, DD uses false
information (e.g., fake keys or honey information) or objects
(e.g., decoys or honeypots) to mislead the attacker’s beliefs
and manipulate the attacker’s perception. In addition, ob-
fuscation has been used to deceive attackers. Ye et al. [25]
proposed a cyber deception game where a defender uses
differential privacy and obfuscation techniques aiming to
strategically change the number of systems and the con-
figurations of systems, respectively. In addition, they mod-
eled powerful attackers that can infer real configurations of
systems based on a Bayesian inference algorithm. However,
this work did not consider players’ perceived uncertainty
which can affect their views towards the given game and

2



the moves of the opponent.
Unlike the above works [12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 24, 25], our work used hypergame theory which
offers the powerful capability to model uncertainty, differ-
ent views, and bounded rationality by different players.
This way reflects more realistic scenarios between the at-
tacker and defender. Hypergame theory has emerged to
better reflect real-world scenarios by capturing players’
subjective and imperfect beliefs, aiming to mislead them
to adopt uncertain or non-optimized strategies. Although
other game theories, aiming to derive Nash Equilibrium
solutions, deal with uncertainty by considering probabilistic
choices of strategies (e.g., mixed strategies) and probabilistic
occurrences of events (e.g., the probability distribution of a
player’s type), they assume that all players play the same
game [26] where the probability distribution of players’
actions are known and their beliefs towards the moves of
the players are correct. However, in a hypergame, these
assumptions do not hold.

Hypergame theory has been used to solve decision-
making problems in military and adversarial environ-
ments [27, 28, 29]. Vane and Lehner [27] explained how a
decision-maker chooses actions when it has a belief context
about another players’ probable play. The authors claimed
several insights and findings. For example, if the row player
only knows little about the column player, the solution
is close to the Nash Equilibrium Mixed Strategy for the
entire game. To quickly protect the valuable targets and first
responders, Vane [28] leveraged a hypergame by assisting
the defender to plan purposes. The authors designed a
defender who needs to dynamically plan countermeasures
after immediate threats, such as mall fire or the correspond-
ing additional threats. House and Cybenko [29] used a
hypergame to mimic the interaction between the attacker
and the defender. The attacker can compromise or infiltrate
a computer network with three different attack methods,
and the defender can decide to monitor the network with a
junior sysadmin (who is less effective) or senior sysadmin.
The defender can also deploy a decoy computer that lures
the attacker and collects the attack evidence. The authors
presented a hidden Markov model and maximum entropy
for learning the unknown subgame probabilities.

Several studies [30, 31] investigated how players’ be-
liefs evolve based on hypergame theory by developing
a misbelief function measuring the differences between a
player’s belief and the ground truth payoff of other players’
strategies. Kanazawa et al. [8] studied an individual’s belief
in an evolutionary hypergame and how this belief can
be modeled by interpreter functions. Sasaki [32] discussed
the concept of subjective rationalizability where an agent
believes that its action is the best response to the other
agent’s choices based on its perceived game. Putro et al. [33]
proposed an adaptive, genetic learning algorithm to derive
optimal strategies by players in a hypergame. The authors
used hypergame and genetic algorithm (GA) to support a
group of decision-makers to understand the nature. They
developed three different learning procedures about nature.
Ferguson-Walter et al. [34] studied the placement of decoys
based on a hypergame. This work developed a game tree
and investigated an optimal move for both an attacker and
defender in an adaptive game. Aljefri et al. [35] designed

a new model to analyze a first-level hypergame within the
paradigm of graph model for conflict resolution (GMCR).
Specifically, the authors developed a first-level hypergame
in a graph form to analyze two decision-makers or n
decision-makers conflicts. The authors categorized the first-
level hypergame equilibrium into eight classes to under-
stand the types of misperception involved in the dispute.
Bakker et al. [20, 36] modeled a repeated hypergame in
dynamic stochastic setting against APT attacks primarily
in cyber-physical systems. One of their game moves was
a ‘sweep’ where a defender had the capability to clear all
malicious actors from the system for one time. They found
that an advanced attacker can negate the effect of a higher
frequency of sweep. In addition, the results showed that the
worst-case cost (i.e., energy expenditure) for the defender is
disproportionately higher than the average case.

Unlike the works using hypergame theory above [8, 17,
20, 27, 28, 29, 30, 31, 32, 33, 34, 35], our work considered
an APT attacker performing multi-staged attacks where
attack-defense interactions are modeled based on repeated
hypergames. In addition, we show the effectiveness of de-
fensive deception techniques by increasing the attacker’s
uncertainty leading to choosing non-optimal actions and
increasing the quality of the intrusion detection (i.e., a
network-based intrusion detection system, NIDS) through
the collection of attack intelligence using defensive decep-
tion strategies.

3 HYPERGAME THEORY

We leverage the hypergame theory [37] in order to consider
more realistic conditions of real-world applications where
players’ beliefs are not necessarily correct and the players
may play differently depending on their perception about a
game they play. In this section, we provide the background
knowledge for readers to easily understand the key con-
cepts of the hypergame theory. Hypergame theory offers
two levels of hypergames that allow the analysis of games
differently perceived by multiple players [37]. Although
hypergame theory applies to multiple players, in this work,
we consider a two-player game with a party of attackers and
a defender system and adopt first-level hypergames.

A cyber deception game can be formulated as a regular,
sequential game, (G,GA,GD), where G is an original game
and GA and GD are games perceived by an attacker and a
defender, respectively [38]. When G = GA = GD, we obtain
a conventional game as both players play the same game
G. But when G 6= GA 6= GD or GA 6= GD, the two players
view the game differently and move according to their
beliefs about the strategies taken by the opponent. Although
the hypergame theory (HT) has been considered in the
cybersecurity domain [38, 39], no prior work has studied HT
with respect to a defender dealing with advanced persistent
threat (APT) attackers.

3.1 First-Level Hypergame

Given two players, p and q, vectors of their preferences,
denoted by Vp and Vq , define game G that can be repre-
sented by G = {Vp, Vq} [37]. Note that Vp and Vq are player
p’s and player q’s actual preferences (i.e., ground truth),
respectively. If all players exactly know all other players’

3



preferences, all players are playing the same game because
their view of the game is the same. However, in reality,
the assumption may fail. Player p can perceive player q’s
preferences differently from what they are, leading to dif-
ferences between p’s view and q’s view. A game perceived
by player p based on its perceived preferences about q’s
preferences, Vqp, and the game perceived by player q based
on its perceived preferences about p’s preferences, Vpq , can
be given by:

Gp = {Vqp}, Gq = {Vpq} (1)

Hence, the first-level hypergameH perceived by each player
is written by H1 = {Gp, Gq}. In a first-level hypergame,
analysis is performed at the level of each player’s perceived
game because each player plays the game based on its belief.
Even if the player does not know all outcomes of the game,
the outcome can be stable for the player because the player
may not unilaterally change its belief. If a game includes
an unknown outcome, the unknown outcome is caused by
uncertainty. The stability of an outcome about a game is
determined by each player’s reaction to the action by the
opponent. An outcome is stable for p’s game if the outcome
is stable in each of p’s perceived preference vectors, i.e., in
each Vqp. The equilibrium of p’s game is determined by the
outcome that p believes to resolve the conflict [37].

3.2 Hypergame Normal Form (HNF)
Vane [40] provides a hypergame normal form (HNF) that
can succinctly model hypergames based on players’ beliefs
and possible strategies of their opponents. HNF is formu-
lated, similar to the normal strategic form in game theory.
HNF consists of the following four key aspects: (1) full
game; (2) row-mixed strategies (RMSs); (3) column-mixed
strategies (CMSs); and (4) belief contexts.

The full game is the grid form consisting of row and
column strategies, which are associated with the utilities,
ru11, · · · , rumn and cu11, · · · , cumn where m is the number
of the row player’s strategies and n is the number of the
column player’s strategies. The full game’s grid form U can
be represented by an m×n matrix with an element ruij , cuij
for i = 1, · · · ,m and j = 1, · · · , n.

U =

 (ru11, cu11) · · · (ru1n, cu1n)
· · · · · · · · ·

(rum1, cum1) · · · (rumn, cumn)

 , (2)

where R0 and C0 denote the full-game strategies by the row
and column players, respectively.
Row-mixed strategies (RMSs) are m strategies the row
player considers based on its belief of the column player’s
strategies. A player’s subgame is defined as a subset of the
full game (i.e., a set of all possible strategies by all players)
because the player may limit the number of strategies it
wants to consider based on its belief. For example, if a
defender perceives attacks by outside attackers, such as
reconnaissance (e.g., scanning) attacks, it will not use a
defense strategy using fake keys, which is mostly applicable
to deal with inside attackers. Therefore, depending on the
situation, the player can choose a subgame to play. RMSs
for the κ-th subgame a player perceives are given by:

RMSκ = [rκ1, · · · , rκm], where
m∑
i=1

rκi = 1, (3)

where each probability that a particular strategy i is chosen
is estimated by player p’s belief based on learning from past
experience. Since a subgame consists of a subset of strategies
in a full game, if a particular strategy i is not in the subgame
κ, the probability for the row player to take strategy i at
subgame κ is zero, i.e., rκi = 0.
Column-mixed strategies (CMSs) are a column player’s n
strategies, believed by a row player for a κ-th subgame,
which are denoted by:

CMSκ = [cκ1, · · · , cκn], where
n∑
j=1

cκj = 1, (4)

where the probability that strategy j be chosen is obtained
by player p’s observations (or learning) towards q’s strate-
gies. Similar to the row-mixed strategies, if strategy j is not
in subgame κ, we set cκj = 0.
Belief contexts are the row player’s belief probabilities that
each subgame κ will be played and are represented by:

P = [P0, · · · , PK ], where
K∑
κ=0

Pκ = 1. (5)

Here P0 is the probability that the full game is played
where the full game considers all possible strategies of a
player based on the ground truth view of a situation. If
the row player is not sure of what subgame κ to play due
to perceived uncertainty, the unknown belief probability is
treated simply for the probability that a full game is played,
denoted by P0 = 1−

∑K
κ=1 Pκ.

The row player’s belief towards the column player’s
strategy j, denoted by Sj , is computed by:

Sj =
K∑
κ=0

Pκcκj where
n∑
j=1

Sj = 1. (6)

The summary of the row player’s belief on the col-
umn player’s n strategies is represented by C∑ =
[S1, S2, · · · , Sn].

3.3 Hypergame Expected Utility
The hypergame expected utility (HEU) can be calculated
based on EU(·) (see Eqs. (8) and (9)), and the uncertainty
probability perceived by the row player, denoted by g,
representing the level of uncertainty about what is guessed
about a given game. The g affects the degree of the EU(·) of a
given hyperstrategy (i.e., RMS in Eq. (3)) by the row player.
The HEU for the given row player’s strategy rsi with the
row player’s perceived uncertainty g in a given context is
given by [41]:

HEU(rsi, g) = (7)
(1− g) · EU(rsi, C∑) + g · EU(rsi,CMSw),

where g = 0 means complete confidence (i.e., complete
certainty) perceived by the row player while g = 1 implies
complete uncertainty perceived by the row player [40].
EU(rsi, C∑) refers to the row player’s expected utility in
choosing strategy i when the column player can take a
strategy among all available strategies n. EU(rsi,CMSw)
indicates the row player’s expected utility when choosing
strategy i when the column player chooses strategy w which

4



gives the minimum utility to the row player. EU(rsi, C∑)
and EU(rsi,CMSw) are computed by:

EU(rsi, C∑) =
n∑
j=1

Sj · uij , (8)

EU(rsi,CMSw) = n · Sw · uiw. (9)

The calculation of EU(rsi,CMSw) is based on a pessimistic
perspective in that when a player is uncertain, it estimates
utility based on the worst scenario.

In our work, we consider a realistic scenario that, when
the player is uncertain, it will simply choose a random strat-
egy among strategies in a given subgame. If the defender
is not sure of what subgame the attacker played, it will
simply play a full game. When players making a decision
based on the probability distribution of HEU, the values of
HEU will be normalized using the min-max normalization
method [42].

4 SYSTEM MODEL

In this section, we describe the network model, node model,
and the assumptions made in this work.

4.1 Network Model

This work concerns a software-defined network (SDN)-
based Internet-of-Things (IoT) environment characterized
by servers and/or IoT devices, such as an SDN-based
smart environment [43]. The key benefit of using the SDN
technology is decoupling the network control plane from
the data plane (e.g., packet forwarding) for higher flexi-
bility, robust security/performance, and programmability
for a networked system in which an SDN controller can
efficiently and effectively manage security and performance
mechanisms. We use the SDN controller to involve packet
forwarding decisions and to deploy defense mechanisms,
such as firewalls or NIDS. SDN-enabled switches handle for-
warding packets, where they encapsulate packets following
flow rules in flow tables in which the encapsulated packets,
‘OFPT PACKET IN’ packets in OpenFlow (OF) protocol (i.e.,
a standard communication protocol between SDN-enabled
switches and the SDN controller), are provided to the SDN
controller handling the flow.

In a given network, the nodes collect data and perform
a periodic delivery of those collected data to the servers
via multi-hop communications to process further to provide
queried services. The nodes may be highly heterogeneous in
their types and functionalities and spread over different Vir-
tual Local Area Networks (VLANs) of the IoT environment.
Each VLAN may have one or more servers and is assigned
with a set of nodes based on the common characteristics
of their functionalities. We leverage the advanced SDN
technology [44] for the effective and efficient management
of IoT nodes with the help of an SDN controller.

We assumed our network is an SDN-based IoT environ-
ment to leverage easy deployment of various defense strate-
gies, particularly defensive deception techniques. However,
our proposed attack-defense framework can be deployed
in various network environments which have infrastructure
playing the role of the centralized defender.

4.2 Node Model

A node, including web servers, databases, honeypots, and
IoT devices, is characterized by the following set of features:
• Criticality: This metric, ci, indicates how critical node i is

in terms of its given role for security and reachability (i.e.,
influence) in a network to maintain network connectivity,
and given by:

ci = importancei × reachabilityi, (10)

where importancei is given as an integer ranged in [0, 10]
during the network deployment phase. reachabilityi is
computed based on the faster betweenness centrality
metric [45] by the SDN controller. Unlike the traditional
betweenness centrality finding the shortest paths between
each pair of nodes with the Floyd-Warshall algorithm,
Brandes [45] proposed the faster betweenness (FB) cen-
trality metric to reduce the complexity of betweenness.
FB discovers minimum paths using breadth-first search
(BFS) for unweighted graphs or Dijkstra’s algorithm for
weighted graphs to find all shortest paths starting from
node s. In this process, the predecessor set of node v
on the shortest paths starting from node s, denoted by
Ps(v), is discovered where Ps(v) = {u ∈ V : {u, v} ∈
E, dG(s, u) + ω(u, v)}. Given the shortest path from s to
u counted by σsv =

∑
u∈Ps(v) σsu, faster betweenness of

node v is calculated by C(v) =
∑
s6=v 6=t∈V

σst(v)
σst

, where the
σst(v) is the number of shortest paths from s to t passes v.
The running time for the faster betweenness is O(|V ||E|)
for an unweighted graph and O(|V ||E| + |V |2 log |V |) for
a weighted graph, which is much faster than betweenness
centrality metric. Note that the algorithmic complexity of
the faster betweenness in this work is O(|V |2) as a given
network follows Erdös–Rényi (ER) network model [46].
The reachabilityi is estimated in the range of [0, 1] as a
real number. In [47], we conducted an extensive survey
on centrality metrics and investigated how betweenness
has been used in various networks. As shown in Ta-
ble 10 of [47], betweenness has been commonly used
in communication networks to select critical nodes for
preventing or mitigating the spread of computer viruses
or malware, or choose targeted attackers. To estimate a
node’s reachability, other types of centrality metrics can be
used, as our prior work in [47] surveyed a rich volume of
centrality metrics and their impact on network resilience.
However, testing with multiple centrality metrics is out of
the scope of this work.

• Security vulnerability: A node’s vulnerabilities to various
types of attacks are considered based on three types of
vulnerabilities: (1) vulnerabilities associated with software
installed in each node, denoted by svi; (2) vulnerabilities
associated with encryption keys (e.g., secret or private
keys), denoted by evi. As a longer-term key exposes
higher security vulnerability, the attacker can exploit en-
cryption vulnerability over time with êvi = evi · e−1/Trekey

and Trekey is the time elapsed since the attacker has
investigated a given key; and (3) an unknown vulnera-
bility, denoted by uvi, representing the average unknown
vulnerability. We assume that all the vulnerabilities are
computed based on the Common Vulnerability Scoring
System (CVSS) [48] with the severity value in [0, 10] as an

5



TABLE 2
EXAMPLE NODE CHARACTERISTICS.

Importance Software Vul. Encryption
Vul.

Web servers [8, 10] [3, 7] [1, 3]
Datbases [8, 10] [3, 7] [1, 3]

Honeypots 0 [7, 10] [9, 10]
IoT devices [1, 5] [1, 5] [5, 10]

integer. We measure the average vulnerability associated
with node i being vulnerable by:

vulnerabilityi =

∑
vj∈Vi vj

|Vi|
, (11)

where Vi is a set of vulnerabilities associated with node
i (e.g., {sv0, sv1, sv2, ev0, ev1, ev2,uv0}) and vj refers to
one of vulnerabilities, associated with node i where vj
is measured as an integer ranged in [0, 10] following the
CVSS. We denote P vi = vulnerabilityi/10 as a normalized
vulnerability probability. The P vi is used as the probability
to exploit (i.e., compromise) node i by an attacker.

• Network topology changes caused by node mobility: We model
the mobility rate of node i by considering a rewiring
probability P ri only for IoT devices where node i can be
connected with a new IoT node with P ri . For rewiring
connections, node iwill select one of its neighbors with P ri
to disconnect and then select a new node to be connected
to maintain the same number of neighbors (nodes being
directly connected).

Table 2 shows an example set of node characteristics show-
ing the ranges of each node type’s attributes and the shown
values used as default settings for our experiments in
Section 7. We select each attribute value at random based
on the uniform distribution in a given range. Notice that
we consider zero importance for honeypots, implying no
performance degradation and security damage upon its
compromise. In addition, we put a fairly high range of the
number of vulnerabilities in the honeypots in order to lure
attackers with high attack utility. Since a legitimate user
can be compromised by the attacker, cp refers to the status
of a node’s compromise (i.e., cpi = 1 for compromise; 0
otherwise). We assume that attackers may know the vulner-
abilities of adjacent nodes with limited observability (i.e., no
perfect knowledge is assumed), but do not know the vul-
nerabilities of non-adjacent nodes. However, the defender
is aware of vulnerabilities and the importance of nodes in
Table 2.

4.3 Assumptions

We assume that the SDN controller and control channel are
trusted. Scott-Hayward [49] designed secure, robust, and
resilient SDN controllers, which consist of secure controller
design, secure controller interfaces, and controller security
services. Raghunath and Krishnan [50] also analyzed sev-
eral types of research about SDN control plane security.
They introduced existing works on protecting SDN from
different attacks, such as DDoS, TCP SYN, and packet injec-
tion attacks. To achieve the security of the SDN controller
and control channel, we assumed to use the SDN security
services provided by [49, 50]. Since each SDN controller
should be well informed of basic network information un-
der its control and other SDN controllers’ control, each SDN

controller periodically updates the network topology and
security vulnerabilities (see Section 4.2) of nodes under its
control to other SDN controllers. Via this process, each SDN
controller can periodically check an overall system security
state and take actions accordingly.

We also assume that a network-based IDS (NIDS) is
deployed in the SDN controller and is characterized by
the probabilities of false positives (Pfp) and false negatives
(Pfn). The NIDS runs throughout the system lifetime. The
NIDS’s Pfp and Pfn will be dynamically updated as it
receives more attack intelligence from the defensive de-
ception techniques used in this work. We assume that the
collected signatures from the deception-based monitoring
mechanisms can decrease Pfn due to an increased volume
of additional signatures. We simply use Beta distribution
to derive Beta(Pfn;α, β) where α refers to false negatives
(FN) and β is true positives (TP) and the expected value
(mean) [51] E[Pfn] would be: E[Pfn] = FN/(TP + FN).
Similarly, as more attack intelligence is forwarded to NIDS
via defensive deception-based monitoring, β (TP) incre-
ments by 1 per monitoring interval. Similarly, false positives
will be reduced as defensive deception techniques are more
frequently used where E[Pfp] = FP/(TN + FP ) and TN
increments by 1.

We assume that legitimate users use a secret key for
secure group communications among internal, legitimate
users while prohibiting outsiders from accessing secured
network resources. If an outsider wants to access a target
network and becomes an inside attacker with legitimate
credentials, it needs to be authenticated and given the secret
key to access the target network. In addition, network re-
sources are accessed according to the privilege of each user.
Therefore, to compromise a legitimate node, the attacker
should obtain appropriate privileges to access them through
passing authentication process and providing a secret key or
using the private key of a legitimate user.

4.4 Attack Model

We consider APT attackers performing multi-staged attacks
following the cyber kill chain (CKC) for compromising
a target node and exfiltrating confidential information to
outside [52]. We consider the APT attacks as follows.

APT Attack Procedure to Achieve Data Exfiltration:
We define an APT attacker’s goal in that the attacker has
reached and compromised a target node and successfully
exfiltrated its confidential data. We assume that nodes with
higher importance (i.e., having more important, credential
information) are more likely to be targeted.

To reach a target node, the attacker needs to compromise
other intermediate nodes along the way. We often call the
path to the target node ‘an attack path.’ In reality, the
attacker may not have an exact, complete view of network
topology. We assume that the attacker only knows its adja-
cent nodes (i.e., nodes being directly connected) and needs
to choose which node to compromise next. An attacker will
first select strategy k based on the probability distribution of
strategies derived from the HEU of its attack strategies, then
it will select target node i among adjacent nodes according
to the normalized vulnerability probability, P vi , and attack
cost metric of selected strategy, ack, as described in Eq. (12).

6



Moreover, if the attacker finds an adjacent node already
compromised by the previous attacker, it can leverage the
compromised nodes, which does not require additional
effort. That is, the attacker will aim to select a node with the
least cost with the highest vulnerability. We estimate this by
the so-called Attack Path Vulnerability (APV), denoted by
APV (i, j, k), which refers to the value of intermediate node
i in an attack path to reach target node j where k refers to
attack strategy ID. Highest APV (i, j, k) will be added to the
attacker’s attack path to the target node j. The APV (i, j, k)
is given by:

APV (i, j, k) =


(3− ack) · P vi if cpi == 0 ∧ path(i, j) > 0,

3 if cpi == 1 ∧ path(i, j) > 0,

0 otherwise.
(12)

Here ack is a predefined attack cost ranged in [1, 3] as an
integer (see ‘Attack Strategy Attributes’ below). The P vi is
estimated by P vi = vulnerabilityi/10 where vulnerabilityi
is estimated in Eq. (11). The path(i, j) returns 1 when
there exists a path between nodes i and j; 0 otherwise. If
cpi == 1 ∧ path(i, j) > 0 (i.e., node i is compromised and a
path exists between i and j), the attacker may add it to the
attack path at no cost with APV (i, j, k) = 3. The attacker
may need to compromise more than one intermediate node
before reaching a target node.

Attack Strategy Attributes: An APT attacker can per-
form multiple attacks through the stages of the CKC. Each
attack strategy k can be characterized by: (1) attack cost, ack,
indicating how much time/effort is needed to launch the
attack; and (2) the expected impact (i.e., attack effectiveness)
upon attack success, aik. ack is a predefined constant as
an integer in [0, 3] reflecting no, low, medium, and high
cost, respectively. aik is obtained by victim j’s criticality,
cj (see Eq. (10)). This implies the attack benefit through
compromising a set of exploitable nodes. If there have been
multiple nodes being compromised by taking given attack
k, aik captures the criticalities of the compromised nodes by:

aik =

∑
j∈Ck cj

N
, (13)

where Ck is a set of compromised nodes by given attack k
and N is the total number of nodes. If node j is already
compromised, then there is no additional attack impact,
aik = 0, introduced by attack strategy k. Compromising
more important nodes with highly confidential information
leads to early system failure (see Eq. (16)).

Attack Strategies: Attackers in IoT environments have
their characteristics. We consider several types of attacks at
the different stages of the CKC by an APT attacker. The
CKC consists of six stages denoted by (R, D, E, C2, M, and
DE) (see Table 3). Each attack strategy is characterized by
(1) in which CKC stage the attacker is in; (2) what attack
cost ack and attack impact aik are associated with each
attack strategy k; (3) whether the attacker will compromise
other nodes in an attack path to reach a target (e.g., ‘AS3

- Botnet-based attack’ does not consider APV); and (4)
what vulnerability an attacker can exploit to perform a
given attack strategy (ASk). For simplicity, when an attacker
exploits more than one vulnerability, the average security

TABLE 3
CHARACTERISTICS OF APT ATTACK STRATEGIES

AS CKC
stage

Attack
cost (ac)

Node com-
promise

Exploited
vulnerability

AS1 R – DE 1 No UV
AS2 D – DE 3 Yes (SN) SV + EV
AS3 E – DE 3 Yes (MN) SV
AS4 E – DE 3 Yes (SN) SV + UV
AS5 E – DE 1 Yes (SN) UV
AS6 C2 – DE 3 Yes (SN) EV
AS7 E – DE 2 Yes (SN) EV
AS8 DE 3 Yes (SN) S + EV

Note: Each CKC stage is indicated by Reconnaissance (R), Delivery
(D), Exploitation (E), Command and Control (C2), Lateral Movement
(M), and Data Exfiltration (DE). Attack cost is ranged in [1, 3] as an
integer, representing low, medium, and high, respectively. Node
compromise may involve a single node compromise (SN) or multiple
nodes compromise (MN). Exploited vulnerability is indicated by
Overall (O: Average vulnerability across all three types of
vulnerabilities), Software (SV: software vulnerability), Encryption (EV:
vulnerability by compromising encryption key(s)); and Unknown (UV:
unknown vulnerability).

vulnerability is used to compute the normalized vulnerabil-
ity, P vi . In addition, each attack strategy k’s attack impact,
aik, is obtained based on Eq. (13). Note that an attacker can
select a non-compromised adjacent victim with the highest
APV value (see Eq. (12)) to maximize the attack success
probability while minimizing the attack cost. We describe
each attack strategy as follows:

• AS1 – Monitoring attack: This attack is to collect useful
system information and identify a vulnerable node to
compromise as a target. It can be performed inside or
outside the network from the R to DE stages. In this attack,
no node compromise process is involved and accordingly,
its attack cost is low, ac1 = 1.

• AS2 – Social engineering: The typical examples of this
attack include email phishing, pretexting, baiting, or tail-
gating [53]. We assume that an inside attacker can suc-
cessfully compromise an adjacent node if the attack is
successful. If the attacker is an outside attacker, it can
identify a node as vulnerable during its reconnaissance
stage. This attack can be performed from D to DE stages as
an outside or inside attacker. Since it is highly challenging
to deceive a human user who can easily detect a social
engineering attack, the associated attack cost for AS2 is
high, ac2 = 3.

• AS3 – Botnet-based attack: A botnet consists of compro-
mised machines (or bots) running malware using C2 of
a botmaster. When this attack is chosen, all compromised
nodes (including original attackers) will launch epidemic
attacks (e.g., spreading malware to compromise) to their
adjacent, legitimate nodes [54]. This attack can be used
from E to DE stages, with high attack cost, ac3 = 3.

• AS4 – Distributed Denial-of-Service (DDoS): A set of com-
promised nodes can form a botnet and perform DDoS [54].
When an attacker tries to compromise one of its adjacent
nodes as a potential victim node, if all compromised
nodes send service requests to the potential victim node,
the potential victim node’s vulnerability may increase
because it could not properly handle all operations due to
the large volume of requests received (e.g., not properly
executing underlying security operations). This will allow

7



the attacker to easily compromise the potential victim
node or exfiltrate confidential data from it. To model this,
unknown vulnerability, uvi, for a given victim node i will
increase for the attacker to more easily compromise a node
with unknown vulnerability (e.g., increasing ε1% for UV).
This attack can be performed from E to DE stages, with
high attack cost, ac4 = 3.

• AS5 – Zero-day attacks: This attack can be performed to
exploit unknown vulnerabilities of software, which are
not patched yet. When AD5 is performed, the attacker can
leverage unpatched vulnerabilities to attack its adjacent
nodes and obtain their root permission. We model this
attack behavior by the attacker that can compromise its
adjacent nodes using the probability based on the nor-
malized uvj , represented by uvj/10. This attack can be
performed from E to DE stages at low cost, ac5 = 1. The
effect of launching this attack can be shown in terms of
attack impact in terms of how much confidential informa-
tion has been compromised by the zero-day attack.

• AS6 – Breaking encryption: Examples include a legitimate
node’s private or secret key compromise. The attacker
with the encryption key is considered an inside attacker
with the privilege to exploit system resources. This attack
can be launched from C2 to DE stages to collect system
configurations or confidential information. Upon the at-
tack succeeds, the attacker can intercept all the informa-
tion to be sent to a victim node whose private key is
compromised. This attack may exploit vulnerabilities êvi
associated with encryption keys and involve high attack
cost, ac6 = 3. We assume that if a legitimate node’s private
key is compromised, the node is compromised. Hence, the
attacker can escalate its attack by reauthenticating itself
with a new password and steal confidential information
or implant malware into file downloads.

• AS7 – Fake identity: This attack can be performed when
packets are transmitted without authentication or inter-
nal nodes spoofing the ID of a source node, such as
MAC/IP/Virtual LAN tag spoofing in an SDN-based IoT
by an SDN switch [55]. This attack involves compromising
a node with a fake ID. This attack can be performed from
E to DE stages with cost, ac7 = 2. This attack increases
the encryption vulnerabilities of its adjacent nodes (e.g.,
increasing ε1% for EV).

• AS8 – Data exfiltration: This attack will also allow the
attacker to compromise one of the adjacent nodes. The
attacker will check all data compromised by itself un-
til the DE stage. Then, if the accumulated importance
of compromised data exceeds a certain threshold (i.e.,∑
j∈CA importancej > Thc), the attacker can decide

whether to exfiltrate the collected intelligence to the out-
side. This attack costs high with ac8 = 3.

We summarize the characteristics of all attack strategies
considered in terms of the CKC stages involved, attack
cost, node compromise, and exploited the vulnerability in
Table 3. Except for AS1, the attack success from AS2 to AS8

is determined based on whether all nodes on the attack path
to reach a target node have been successfully compromised.
For AS1, the attack success is determined based on how
long the attacker has monitored a target system. This is
computed by the probability vulnerabilityi · e−1/TA , where

TA is the time elapsed the attacker has monitored a given
target system. This implies that the attack is likely successful
when the attacker has scanned the targeted system longer
and finds more vulnerabilities. After the attacker exfiltrates
data successfully and leaves the system, a new attacker will
arrive. Otherwise, the attacker may be evicted by the NIDS
or try other strategies to escalate its attack to the next level.

An Attacker’s Deception Detectability: Depending on
an attacker’s capability, it may have a different level of intel-
ligence to detect defensive deception techniques. We denote
it by ad to represent an attacker’s probability (omitted an
attacker’s ID for simplicity) to detect deception used by the
defender. An attacker can use this probability, ad, to detect
honeypot, honey information, fake key, and hidden edge as
D5 −D8 described in the following section.

4.5 Defense Model
Attack Intelligence Collection: Different types of defense
strategies can be deployed by the defender to counter APT
attackers. At the same time, the NIDS will be run periodi-
cally (see Section 4.1). Note that we do not count triggering
an NIDS as one of the defense strategies in order to meet a
high standard of system integrity. When an attacker arrives
at the system as an inside attacker (i.e., after the E stage),
it can be detected by the NIDS. However, the system aims
to collect more attack intelligence (e.g., attack signatures),
which can improve the NIDS as a long-term goal. Thus,
depending on the perceived risk level from the attacker, the
system will determine whether to keep the detected attacker
in the system or evict it. We estimate the perceived system
risk level based on the criticality level of the compromised
node, ci, and determine if the system will allow the attacker
to reside in the system or be evicted according to predefined
risk threshold Thrisk, which is a real number ranged in
[0, 1]. The decision to evict node i, which is detected as
compromised, can be given by:

Evicti =

{
1 if ci > Thrisk

0 otherwise.
(14)

Here Evicti = 1 means evicting node i while Evicti = 0
means allowing node i to reside in the system. Note that this
rule is applied when node i is detected as compromised by
the NIDS regardless of its correctness. Hence, false-positive
nodes can be also assessed by this rule while false negative
nodes can safely reside in the system without being assessed
by Thrisk.

When nodes detected as compromised (i.e., true and
false positives) are evicted, all associated edges will be
disconnected, which may generate some non-compromised
nodes being isolated from the network. To maintain connec-
tivity of non-compromised but isolated nodes, we connect
them to the network based on P ri to maintain node i’s mean
degree based on the ER network model [46]. To deal with the
attackers (or compromised nodes) residing in the system,
the defender system can take several defense strategies.
Each strategy k will be represented by: (i) defense cost (dck)
in time/complexity and expense, where dck ∈ [0, 3] as an
integer for no, low, medium, and high cost, respectively;
(ii) defense impact (dik) for its defense effectiveness; (iii)
the stage of the CKC (i.e., R, D, E, C2, LM, or DE) for
strategy k being used; and (iv) system change on what actual

8



changes are made in the system (e.g., what vulnerabilities
are reduced or network topology or cryptographic keys
being changed). The defense impact, dik, is computed by:

dik = 1− aik, (15)

where aik is the attack impact introduced by strategy k in
Eq. (13). We measure the effectiveness of a defense strategy
as the opposite impact of attack success (i.e., successfully
compromising a node). That is, attack failure will increase
the impact of the defense strategy.

Defense Strategies: We consider the four well-known
conventional defense strategies and four popular decep-
tion defense (DD) strategies. The conventional four de-
fense strategies include patch management, firewall, rekey-
ing cryptographic keys, and eviction of detected compro-
mised nodes, which aim to prevent, detect, mitigate, and
respond to intrusions, respectively. We also chose the four
DD strategies, which deploy honeypots, honey information,
fake keys, and hiding network topology edges to mislead
attackers, waste their resources, and ultimately result in
attack failure. Each defense strategy is described as follows:
• DS1 – Firewalls: We assume that firewalls are implemented

in the SDN controller to monitor and control the incoming
and outgoing packet flows according to predefined rules.
When the defender launches DS1, the firewall is updated
with new rules that can cover the latest vulnerabilities.
Since our work concerns the SDN with IoT mobility, we
assume to use the stateful firewall to filter the TCP flow
and maintain the state of each IoT device until it connects
to the system [56]. We model the effectiveness of firewalls
by lowering down unknown vulnerabilities (uvi) all over
the network by a certain percent (i.e., ε2%).

• DS2 – Patch Management: Known vulnerabilities can be
patched by a given defense system [57]. A patch is used
to temporarily fix software vulnerabilities or provide up-
dates in a full software package. A patch refers to a
software update such as code to be installed in a software
program. This will decrease software vulnerabilities (svi)
of all nodes, such as decreasing a certain percent of the
vulnerability (i.e., ε2%).

• DS3 – Rekeying Cryptographic Keys: Cryptographic keys
used for all nodes in the network are rekeyed, which
lowers the encryption vulnerability êvi. We modeled this
by formulating êvi = evi · e−1/Trekey , which is similarly
modeled as in a system reliability model [58] where
1/Trekey is used as a failure rate. Trekey increments by 1 per
game to count how long the key has been used in terms
of the number of games. When this strategy is taken, it
means a new key is issued, so we reset Trekey = 1.

• DS4 – Eviction: Recall that an attacker with low risk (see
Eq. (14)) is allowed to stay in the system for collecting
attack intelligence. However, as the system is at risk due
to high-security vulnerability in terms of the amount of
compromised confidential information (i.e., importance;
see Eq. (16)), all inside attackers (or compromised nodes)
will be evicted from the system. However, the false nega-
tives will remain in the system while a substantial number
of compromised nodes is evicted using DS4.

• DS5 – Low/high-interaction honeypots (LHs/HHs) [59]: LHs
and HHs can be activated as a defense strategy. LHs
and HHs differ in their deception detectability and cost.

In a given network, we deploy a set of LHs and HHs
which are deactivated in the deployment phase. When
this strategy is selected, they will be activated, which
will change the network topology as LHs and HHs are
to be connected with a number of nodes in the network.
Hence, DS5 will change attack paths and lure attackers
to the honeypots. When DS5 is selected, LHs and HHs
will be activated. This will enable them to be connected
to highly vulnerable nodes based on vulnerabilityi where
HHs will be connected to nodes of higher vulnerability
than nodes connected to LHs. In order for the attacker not
to reach legitimate nodes, we will only allow incoming
connections (i.e., in-degree) from legitimate nodes to the
honeypots. Once the attacker is caught by one of the
implemented honeypots, it will be diverted to a fake
network for monitoring purposes. Recall that an attacker
can detect the deception with ad for an LH and ad/2 for an
HH. When a honeypot strategy is taken by the defender,
it will last for the duration of a given subgame.

• DS6 – Honey information: This defense strategy can lure
attackers by disseminating false information, such as
honey token, fake patch, honey files, or bait files. This
strategy will involve the dissemination of false system
vulnerability information, such as providing high (low)
vulnerabilities for less (more) vulnerable nodes. The at-
tacker will need to detect whether a known vulnerability
of a potential victim node is true or fake according to its
deception detectability, ad. If the attacker is successfully
deceived, it will make an attack strategy decision based
on incorrect vulnerability information, which ultimately
will result in attack failure.

• DS7 – Fake keys [2]: Fake keys can be planted for potential,
inside attackers which may use a fake key obtained by
compromising another legitimate, inside node to commu-
nicate with other nodes to obtain more confidential infor-
mation. This will be realized that even if the attacker com-
promises a cryptographic key (e.g., AS2, AS6, AS7, AS8),
a potential victim targeted by the attacker may not be
compromised. We model this using the probability the
attacker obtains a fake key implanted in nodes, Pfake.
When the attacker obtains the fake key of a node, the node
will not be compromised.

• DS8 – Hiding network topology edges: This strategy hides
cNT% of network edges in order to hide an actual network
topology to an attacker. We use a simple rule for each node
to hide the edge with the most critical adjacent node based
on its criticality value, ci.

We excluded moving target defense (MTD) techniques in
the defense strategies because their goals, effects, and roles
may overlap those of DD strategies [24, 60]. Hence, we focus
our work on investigating the pure effect of DD strategies.

All defense strategies will have corresponding defense
costs (dck’s) and are believed useful when the attacker is in
certain CKC stages based on the defender’s belief. This is
used for the defender to choose each subgame based on
hypergame theory. We summarized the characteristics of
each defense strategy considered in Table 4.

4.6 System Failure Conditions
We define a system failure (SF) state in terms of failing
three security goals, such as loss of confidentiality, loss of

9



TABLE 4
CHARACTERISTICS OF DEFENSE STRATEGIES

DS CKC
stage

Defense
cost

System change Type

DS1 R – D 1 Lowering UV Non-DD
DS2 D – DE 2 Lowering SV Non-DD
DS3 E – DE 3 Lowering EV Non-DD
DS4 E – DE 3 Evict all

compromised
nodes

Non-DD

DS5 E – DE 3 Lure attackers to
with LHs and HHs

DD; Active

DS6 C2 – DE 1 Disseminate fake
vulnerability
information

DD; Active

DS7 E – DE 2 Plant a fake key DD; Passive
DS8 R – DE 2 Hide critical

network edges
DD; Passive

Note: Each CKC stage is indicated by Reconnaissance (R), Delivery
(D), Exploitation (E), Command and Control (C2), Lateral Movement
(M), and Data Exfiltration (DE). Defense cost is ranged in [1, 3] as an
integer, representing low, medium, and high, respectively. System
change may involve lowering unknown vulnerabilities (UV), software
vulnerabilities (SV), or encryption vulnerabilities (EV).

integrity, and loss of availability. The loss of confidentiality
occurs when a certain amount of important information is
compromised. The loss of integrity occurs when the system
has too many compromised nodes. Lastly, the loss of avail-
ability occurs when the system is malfunctioning due to too
many nodes being evicted. Based on the three conditions of
the security breach, we define SF by:

SF =

{
1 if ρ1 ≤

∑
i∈G cpi·Importancei∑
i∈G Importancei

|| ρ2 ≥ |Gt||G|
0 otherwise.

(16)

Here cpi is the compromised status of node i, returning 0 for
non-compromise; 1 otherwise. Importancei is the character-
istic of each node shown in Table 2. Gt refers to a network at
time t which does not include nodes being evicted while G
is an original network. Hence |G| and |Gt| are the number of
the original nodes and the number of the current nodes in
the system at time t, respectively. The ρ1 is a threshold as a
fraction to determine whether a system fails or not based on
the sum of compromised nodes’ importance values over the
sum of all nodes’ importance values. The ρ2 is a threshold to
determine whether a system can functionally operate based
on a sufficient number of active nodes at time t. Therefore, in
the SF condition, the first term (i.e., ρ1 ≤

∑
i∈G cpi·Importancei∑
i∈G Importancei

)
checks the loss of confidentiality and integrity while the
second term (i.e., ρ2 ≥ |Gt||G| )) checks the loss of availability.

5 ATTACK-DEFENSE HYPERGAME

5.1 Procedures and Structure of a Game
First, the attacker will select strategy AS1 to monitor a target
system in the reconnaissance (R) stage, aiming to penetrate
it as a legitimate user. If the attack is successful in the stage
of the R, it means it successfully identified a vulnerable
node during the period of the reconnaissance, TA. Hence,
the attacker is successful in identifying node i based on the
success probability, vulnerabilityi · e−1/TA . After then, the
attacker can proceed to the delivery (D) stage of the CKC. In
the D stage, the attacker can choose one of the two strategies
AS1 and AS2. If the attacker can successfully compromise a
targeted victim node, which is one of its adjacent nodes, it

can successfully penetrate the system and become an inside
attacker with legitimate credentials. Now the attacker is in
the Exploitation (E) stage. From E to data exfiltration (DE)
stages, any inside attacker detected can be assessed by the
defender on whether it can stay in the system based on
the risk assessment in Eq. (14). Hence, depending on the
criticality of the attacked node, the attacker can be detected
by the NIDS or be kept in the system if the defense system
intends to collect attack intelligence from it. To assess such
risk, the attacker should be detected as an attacker (i.e., true
and false positives) by the NIDS. If not (i.e., false negatives),
the attacker can safely stay even without being detected.
From E to DE, the attack is determined as successful if
aii > 0 (see Eq. (13)). If the original attacker (i.e., a node
the attacker is on) is evicted, then a new attacker will arrive.
If an attacker is successful by taking AS8 (data exfiltrated),
it will leave the system and a new attacker will arrive. This
process will continue until the system fails based on Eq. (16).

The attacker-defender game considered in this work is a
repeated game of complete information and imperfect infor-
mation where each game session will be a multi-stage game
as an APT attacker performs multi-stage attacks, following
the CKC stages. Since we assume that an attacker and a
defender know their opponent’s type, action space, and pay-
off, they play a game of complete information. However, al-
though players play sequential games in the given repeated
game, within each game session where an attacker and a
defender take an action, they take actions simultaneously,
which forms a game of imperfect information. In addition,
they are limited in accurately observing opponent player’s
actions, generating the level of perceived uncertainty, g, as
discussed in Section 3. In Fig. 1, we summarized the key
ideas of a player’s choice of the strategy at each CKC game
and the overall structure of the repeated game considered
in this work.

5.2 Utilities

An attacker’s utility (uAij) corresponding to attack strategy i
(ASi) can be expressed as the difference between attack gain
and attack loss. The attacker’s utility (uAij) when the attacker
takes ASi and the defender takes DSj is calculated by:

uAij = GAij − LAij , GAij = aii + dcj , LAij = aci + dij , (17)

where the attack and defense cost (i.e., aci and dcj) and the
attack and defense impact (i.e., aii and dij) are discussed in
Sections 4.4 and 4.5, respectively.

A defender’s utility (uDij ) by selecting DSj when the
attacker takes ASi can be computed based on the difference
between the gain and loss by:

uDji = GDji − LDji, GDji = dij + aci, LDji = dcj + aii. (18)

Similar to uAji, the attack and defense cost (i.e., dcj and
aci) and the attack and defense impact (i.e., dij and aii)
are computed. We consider a zero-sum game between the
attacker and defender (i.e., uAij + uDji = 0).

5.3 Estimation of Uncertainty

As shown in Eq. (7) in Section 3, an attacker’s and de-
fender’s hypergame expected utilities (HEUs) are estimated
based on the level of uncertainty, g, perceived by each

10



(a) A player’s choice of the strategy at a single CKC game (b) The structure of a repeated game

Fig. 1. The description of overall game: (a) describes how the attacker and defender choose its strategy at each CKC stage. The overall game
consists of multiples of the CKC games as shown in (b), which shows an example case. Each CKC game consists of multiple plays of the attacker
and defense and the whole game consists of multiples of CKC games until the system fails. The modeled game is a repeated game where each
session is a CKC game.

TABLE 5
POSSIBLE STRATEGIES UNDER EACH STAGE OF THE CKC

Subgame CKC stage Attack strategies Defense strategies

0 Full game AS1 −AS8 DS1 −DS8

1 R AS1 DS1, DS8

2 D AS1, AS2 DS1, DS2

3 E AS1 −AS5, AS7 DS3 −DS5, DS7

4 C2 AS1–AS7 DS3–DS8

5 M AS1–AS7 DS3–DS8

6 DE AS1–AS8 DS3–DS8

player. In this section, we show how the level of g is
estimated by the attacker (i.e., gA) and the defender (i.e.,
gD). Note that we omit an ID of the attacker and defender
for simplicity.

We model an attacker’s perceived uncertainty based on
whether a defensive deception is used and how long the
attacker has monitored a target system. That is, given the
time period the attacker has monitored in a target system
(TA) and the effectiveness of defensive deception strategies
taken (df), the attacker’s uncertainty (gA) is estimated by:

gA = 1− exp(−λ · (1 + (1− ad) · dec)/TA), (19)

where λ is a parameter of representing an amount of initial
knowledge towards a given system configuration (higher λ
increases uncertainty, and vice versa) and ad refers to the
probability that an attacker can detect defensive deception
deployed by the defender and dec indicates whether a
defensive deception (DD) strategy is taken. That is, dec = 1
when DD strategies (i.e., DS5–DS8) are taken by the de-
fender while setting dec = 0 when non-DD strategies (i.e.,
DS1−DS4) are taken by the defender. The formulation of gA

above implies that the attacker has lower uncertainty as it
has monitored the target system longer. On the other hand,
the attacker has higher uncertainty when it has lower ad and
the defender takes a DD strategy.

A defender’s uncertainty towards an attacker decreases
as it has monitored the attacker for a longer period where
the defender’s monitoring time towards the attacker is
denoted by TD. In addition, if the attacker has not been
deceived by defense strategies, it is assumed to be intelligent
not to expose its information to the defender. Considering

these two, we model gD by:

gD = 1− exp(−µ · ad/TD), (20)

where µ is a parameter representing an amount of initial
knowledge towards an attacker (i.e., higher µ increases
uncertainty, and vice versa), ad is an attacker’s deception
detectability, and TD is a defender’s accumulated monitor-
ing time towards the attacker. In gD, the defender perceives
lower uncertainty at longer TD while perceiving higher
uncertainty at higher ad.

5.4 Estimation of HEUs
In order to calculate the HEU for each player (see Eq. (7)), we
need to obtain Pκ (i.e., the probability a row player chooses
subgame κ), rκi (i.e., the probability of a row player taking
strategy i in subgame κ), and cκj (i.e., the probability of a
column player taking strategy j in subgame κ based on a
row player’s belief) because Sj is estimated based on Pκ
and cκj (see Eq. (6)) while rκi is needed when a row player
considers strategy i.

5.4.1 Computation of Pκ
Recall that Pκ refers to the probability that subgame κ is
played by a row player. We notate this for an attacker and a
defender by PAκ and PDκ , respectively. We define a subgame
based on where an attacker is located in the stages of the
CKC which will determine a set of available strategies for
both parties. We assume that the attacker knows where it
is located in the CKC while the defender is not certain
about the stage of the attacker in the CKC. We model
the defender’s PDκ based on its uncertainty gD. Thus, the
defender can know the CKC stage of the attacker with 1−gD
(i.e., certainty) and correctly choose a subgame based on the
attacker’s actual stage in the CKC. With gD, the defender
will choose subgame 0 (i.e., a full game with all available
strategies). The set of available strategies may be different
depending on what subgame to play, as shown in Table 5.

5.4.2 Computation of rκi and cκj
The rκi is the probability that a row player will play strategy
i. We denote this for the attacker and defender by rAκi and rDκj
for attack strategy j and defense strategy j, respectively. The

11



cκj is the probability that a column player will take strategy
j based on a row player’s belief. We also denote this for
the attacker and defender by cAκi and cDκj attack strategy i
and defense strategy j, respectively. In the very beginning,
since no historical information is available, each player will
use a uniform probability by choosing one of the available
strategies in a chosen subgame with an equal probability,
meaning that a strategy is chosen at random. As players
participate in repeated games, their recorded history regard-
ing what strategies have been taken is available. Then, we
will use Dirichlet distribution [61] to model multinomial
probabilities based on the strategies taken for past repeated
games. If either an attacker or defender is certain about the
opponent’s strategy, it will estimate its corresponding rAκi,
rDκj , c

A
κi, and cDκj by:

rAκi =
γAκi∑

i∈ASκ
γAi

, cAκj =
γDκj∑

j∈DSκ
γDj

, (21)

rDκj =
γDκj∑

j∈DSκ
γDj

, cDκi =
γAκi∑

i∈ASκ
γAi

. (22)

Note that ASκ and DSκ are a set of attack strategies and
defense strategies, respectively. γDj (γAi ) is the number of
times the defender (attacker) will take strategy j (or i) based
on the attacker’s (defender’s) belief up to time (t− 1) where
the current state is at time t. Since the probability of a
column player playing a particular strategy is estimated by
a row player’s belief, ground truth cAκj and cDκi (as shown
in the equations above) will be only detected with the
probability (1 − gA) and (1 − gD) when the row player is
an attacker or a defender, respectively. Otherwise, the row
player will select one among the available strategies in a
given subgame κ at random due to the uncertainty.

5.4.3 Hypergame Expected Utilities

An attacker’s HEU (AHEU) is computed with: (1) attack
utilities (i.e., uAij ’s in Eq. (17)); (2) the attacker’s belief about
defense strategy j (i.e., SAj in Eq. (6)); and (3) the attacker’s
perceived uncertainty (i.e., gA in Eq. (19)). Similarly, a
defender’s HEU (DHEU) is estimated using: (1) defense
utilities (i.e., uDji’s in Eq. (18)); (2) the defender’s belief about
attack strategy i (i.e., SDi in Eq. (6)); and (3) the defender’s
perceived uncertainty (i.e., gD in Eq. (20)). Both AHEU and
DHEU can be obtained based on Eq. (7). Since the row
player selects strategy i based on rκi for given subgame κ,
we calculate AHEU and DHEU by:

AHEU(rsAi , g
A) = HEU(rsAi , g

A),

DHEU(rsDj , g
D) = HEU(rsDj , g

D). (23)

A player will play a strategy according to the probability
distribution of utilities of strategies available in a given
subgame κ.

The use of subjectively perceived uncertainty by each
player (see Eqs (19) and (20)) in determining the defender’s
subgame and calculating the attacker’s and defender’s
HEUs (see Eq. (23)) shows how the concept of bounded
rationality is applied in our formulated cyber deception
hypergame.

6 EXPERIMENTAL SETTING

In this section, we describe comparing schemes for perfor-
mance analysis, the metrics, and the network setting that are
considered in our experiments.

6.1 Metrics

In this work, we use the following metrics:

• Perceived Uncertainty Level (gA or gD): An attacker’s or a
defender’s mean uncertainty level which is measured as
shown in Eqs. (19) and (20), respectively.

• Hypergame Expected Utility (HEU): This metric measures
the HEU of played strategies profile based on Eq. (7).

• Cost for Taking a Chosen Strategy (CA or CD): This metric
measures the average attack (or defense) cost paid by an
attacker (or a defender) to play a specific strategy. Attack
cost (CA) and defense cost (CD) of all available strategies
are summarized in Tables 3 and 4, respectively. For a given
scenario consisting of a series of games until the system
fails based on Eq. (16), the average attack or defense cost
per game is demonstrated.

• Mean Time to Security Failure (MTTSF): This metric mea-
sures a system lifetime based on the system states that do
not fall in the system failure states based on Eq. (16).

• TPR of an NIDS: This measures the true positive rate of the
NIDS to observe how much DD contributes to enhancing
the quality of the NIDS by increasing the TPR.

• FPR of an NIDS: This measures the false positive rate of
the NIDS in order to observe how much DD contributes
to enhancing the quality of the NIDS by reducing the FPR.

• HNE Hitting Ratio: This measures the fraction that the at-
tacker’s HNE (HNE(GA)) is matched with the defender’s
HNE (HNE(GD)), where GA and GD are the games
viewed by the defender and attacker, respectively.

6.2 Comparing Schemes

We compare the performance of the following schemes:

• Game with defensive deception and perfect information (DD-
PI): This scheme plays a game where each player has
perfect information regarding which strategy is played by
its opponent, which means there is no uncertainty, g = 0
(i.e., gA = gD = 0), when a defender uses all defensive
deception (DD) strategies.

• Game without defensive deception and perfect information (No-
DD-PI): This scheme plays a game where each player has
perfect information regarding what strategy its opponent
plays (i.e., gA = gD = 0) when the defender does not use
DD strategies.

• Hypergame with defensive deception and imperfect information
(DD-IPI): This scheme plays a game where each player
does not have perfect information regarding the strategy
of its opponent (i.e., gA > 0, gD > 0) when the defender
uses DD strategies. This is our proposed scheme.

• Hypergame without defensive deception and imperfect informa-
tion (No-DD-IPI): This scheme plays a game where each
player does not have perfect information towards what
strategy its opponent takes (i.e., gA > 0, gD > 0) when the
defender does not use DD strategies.

12



6.3 Network Setting

We consider 500 nodes in a given network where network
topology is generated by the ER random graph model
with G(N,P r) where N is the total number of nodes and
P r(= P ri ) is the connection probability between any pair of
nodes [46]. To consider honeypots with low or high inter-
actions, we also assign 75 nodes as honeypots with 50 LHs
and 25 HHs. For honeypots, we maintain a directed network
where the outgoing edges (i.e., out-degree) are from each
honeypot to all other honeypots to ensure an attacker does
not connect with other legitimate nodes. When a honeypot is
activated (i.e., DS5), highly vulnerable nodes are connected
to the honeypot as an incoming edge. However, outgoing
edges from the honeypot are always forwarded to other
honeypots, not real legitimate nodes, which are protected
from the attacker. In our experiment, when the honeypots
are activated, the top 225 vulnerable nodes are connected to
honeypots where the top 75 vulnerable nodes are connected
to 25 HHs and the next top 150 vulnerable nodes are
connected to 50 LHs. We assume that the defender has
inherently higher uncertainty regarding an attacker while
the attacker has a certain level of knowledge regarding a
system due to its reconnaissance effort before becoming an
inside attacker. This was reflected by setting λ = 0.8 and
µ = 8 in Eqs. (19) and (20), respectively.

Table 6 summarizes the notations of key design pa-
rameters, their meaning, and default values used in our
experiments. We selected the default values used in Table 6
based on the following rationale. Based on our investigation,
the effects of varying λ, µ, ad, and Thrisk are not significant.
On the other hand, we used µ = 8 and Thrisk = 0.3 to
maximize MTTSF under the DD-IPI scheme. In addition,
following the concept of Byzantine failure [62] assuming
that a system cannot operate properly if more than one-third
of system components are compromised, we set ρ1 = 1/3.
As a system requirement to ensure service availability, we
assume at least half of the nodes in the network should be
available and accordingly set ρ2 = 0.5.

The simulation is coded in Python 3.8, and the net-
work is constructed with the NetworkX package. We run
our code in the TinkerCliffs cluster of VT-ARC where we
requested 500 threads from 5 AMD EPYC 7702 CPUs for
computing. The system is Red Hat 7.7. The simulation
source code is available at https://github.com/Wan-ZL/
Foureye-1-Simulation.

7 RESULTS & ANALYSES

Fig. 2a shows the average uncertainty perceived by the
attacker when varying the vulnerability upper bound of
nodes in a given network where each data point was shown
based on 100 times simulation runs. Since DD-PI and No-
DD-PI have zero uncertainty (i.e., gA = gD = 0), the players
have perfect information towards each other. This means
the attacker and defender can accurately know the moves
of their opponent, respectively. Therefore, zero uncertainty
with games of perfect information is reasonable. However,
under imperfect information, when defensive deception
(DD) strategies are used (i.e., DD-IPI), low-risk attackers are
allowed to stay in the system and they can decrease their
perceived uncertainty due to their longer staying time in

TABLE 6
NOTATIONS OF KEY DESIGN PARAMETERS AND THEIR DEFAULT

VALUES

Symbol Meaning Default

ack Cost of attack strategy k Table 2
dck Cost of defense strategy k Table 3
ρ1, ρ2 Thresholds for SF in Eq. (16) 1/3, 1/2
NLH Number of low-interaction honeypots deployed

but not activated in a network
50

NHH Number of high-interaction honeypots deployed
but not activated in a network

25

NWS Number of Web servers deployed in a network 25
NDB Number of databases deployed in a network 25
NIoT Number of IoT nodes deployed in a network 450
N Total number of nodes 500
nvi Total number of security vulnerabilities of node

i, including encryption (5), software (5), and un-
known (1)

11

P r Probability of two nodes being connected in an
Erdös-Rényi random network

0.05

ad An attacker’s deception detectability [0, 0.5]
λ, µ A constant for normalization for the attacker’s un-

certainty and defender’s uncertainty, respectively
1, 8

Pfp,
Pfn

Probabilities of false positives and false negatives
in the NIDS

0.01, 0.1

Thrisk Risk threshold used in Eq. (14) 0.3
Thc The threshold used in AS8 (Data exfiltration) 150
ε1, ε2 Increased or decreased percent of a given vulner-

ability probability by taking attack strategies (i.e.,
AS5, AS7) or defense strategies (i.e.,DS1−DS3)

10, 1

Pfake Probability the attacker obtains a fake key 1− ad
cNT Percentage (%) of edges that are hidden by defense

strategy DS8

20

the system. On the other hand, under No-DD-IPI, no use of
DD strategies does not allow any attackers in the system.
This makes the attackers hard to reduce their perceived
uncertainty towards the defender (i.e., the given system).

In Figs. 2b and 2c, under varying the vulnerability of
nodes in the network, we plotted AHEU and attack cost
for each defense scheme. We did not observe any notice-
able sensitivity with respect to varying the extent of node
vulnerability. This is because all three metrics, including
uncertainty, AHEU, and attack cost, do not depend on
network conditions but rather depend on the choices of
strategies by the attacker and corresponding impact and
cost in HEU. In terms of AHEU in Fig. 2b, overall the
attacker performs better under DD-based schemes than No-
DD-based schemes. The reason is that under the DD-based
schemes, attackers can use more strategies by being an
insider of the system while performing only monitoring
attacks as an outside attacker under No-DD-based schemes.
In addition, this leads the attacker naturally to perform
better under PI than IPI. This explains why the attacker
obtains the highest AHEU under DD-PI while having the
lowest AHEU under No-DD-IPI. In terms of attack cost,
the attacker used more cost under IPI while using less cost
under PI as shown in Fig. 2c. Under uncertainty, the attacker
cannot choose its optimal, cost-effective strategy. Moreover,
the attacker paid a higher cost under DD while incurring a
lower cost under No-DD. This implies that DD strategies are
effective to mislead the attacker to choose less cost-effective
strategies by increasing its uncertainty. We also discussed
how the attack cost and AHEU with respect to the number
of games in Fig. 1 (a)-(b) in Appendix A of the supplement
document with the discussions of the observed trends.

In Figs. 3a, 3b and 3c, we showed the defender’s un-
certainty, DHEU, and defense cost when the vulnerability
upper bound of nodes (Uv) in the network varies. In Fig. 3a,

13



2 4 6 8 10
vulnerability upper bound

0.0
0.1
0.2
0.3
0.4
0.5
0.6

U
nc

er
ta
it
y

(a) Attacker’s uncertainty

2 4 6 8 10
vulnerability upper bound

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

A
H
EU

(b) Attacker’s HEU

2 4 6 8 10
vulnerability upper bound

1.4

1.5

1.6

1.7

1.8

A
tt
ac

k 
C
os

t

(c) Attack cost

Fig. 2. An attacker’s uncertainty, hyergame expected utility (AHEU), and attack cost. The ‘vulnerability upper bound’ (Uv) refers to the CVSS-based
software vulnerability score of IoT devices, Web servers, and Databases, where Uv is given as an integer ranged in [0, Uv].

2 4 6 8 10
vulnerability upper bound

0.00
0.05
0.10
0.15
0.20
0.25
0.30

U
nc

er
ta
it
y

(a) Defender’s uncertainty

2 4 6 8 10
vulnerability upper bound

6.75
7.00
7.25
7.50
7.75
8.00
8.25
8.50

D
H
EU

(b) Defender’s HEU

2 4 6 8 10
vulnerability upper bound

1.4

1.5

1.6

1.7

D
ef
en

se
 C
os

t

(c) Defense cost

Fig. 3. A defender’s uncertainty, hyergame expected utility (DHEU), and defense cost. The ‘vulnerability upper bound’ (Uv) refers to the CVSS-based
software vulnerability score of IoT devices, Web servers, and Databases, where Uv is given as an integer ranged in [0, Uv].

2 4 6 8 10
vulnerability upper bound

60
70
80
90

100
110
120
130

M
TT

SF

(a) MTTSF

2 4 6 8 10
vulnerability upper bound

0.90
0.91
0.92
0.93
0.94
0.95

TP
R

(b) TPR of an NIDS

2 4 6 8 10
vulnerability upper bound

0.005
0.006
0.007
0.008
0.009
0.010

FP
R

(c) FPR of an NIDS

Fig. 4. System lifetime (i.e., MTTSF), true positive rate (TPR), and false positive rate (FPR) of an NIDS under varying the level of system vulnerability.

DD-PI and No-DD-PI have zero uncertainty due to the
perfect information available. Under DD-IPI, the defender’s
uncertainty is much lower than No-DD-IPI. This is because
the defender can observe the same attacker for a longer
period and collect more attack intelligence because using
DD allows low-risk attackers to stay in the system.

In Fig. 3b, compared to AHEU (i.e., 2.5 to 6), we can
observe much higher DHEU (i.e., 6 to 8.5). Since HEU is
estimated based on the impact and cost of taking a cho-
sen strategy, using DD costs more and results in lowering
DHEU. Besides, under IPI, the defender may not choose its
optimal strategy all the time, lowering down DHEU due to
less benefit of taking a chosen strategy. Hence, it is reason-
able to observe that the highest DHEU is obtained with No-
DD-PI while the lowest DHEU is observed with DD-IPI. In
Fig. 3c, as expected, the highest defense cost incurs under
DD-IPI while the lowest defense cost is observed under
No-DD-PI. This also reflects the role of the defense cost in
DHEU. DHEU and defense cost with respect to the number
of games are also discussed in Fig. 1 (c)-(d) in Appendix A
of the submitted supplement document.

In Fig. 4a, we showed how the four different schemes
perform under varying the extent of node vulnerability in
terms of MTTSF. Regardless of whether PI or IPI is con-
sidered, DD-based schemes outperformed non-DD-based
schemes. Again this is because DD-based schemes allow
for the reassessment of detected intrusions, leading to a
reduction in false positives while improving the TPR of the
NIDS. However, DD-IPI outperformed all other schemes in
terms of MTTSF. This is because IPI can allow the defender
to effectively leverage the nature of DD strategies for mis-
leading the attacker effectively and making it choose non-
optimal strategies. Moreover, we notice that the behavior
of DD schemes is sensitive to node vulnerability, showing
the reduced MTTSF under high vulnerability because the
attacker can better exploit vulnerable nodes and more ef-
ficiently compromise them. Except for insensitivity under
high vulnerability nodes, the performance trends in TPR of
the NIDS are well aligned with those in MTTSF under the
four schemes, as shown in Fig 4b. TPR can be improved
under DD-IPI due to the high effectiveness of DD under
IPI. In Fig. 4c, we observed: (1) No-DD-IPI and No-DD-PI

14



TABLE 7
PAYOFF MATRICES FOR HNE CALIBRATION

(a) Defender’s Game GD

ASx ASy
DSx DHEU(rsDx ), AHEU(rsAx ) DHEU(rsDx ), AHEU(rsAy )

DSy DHEU(rsDy ), AHEU(rsAx ) DHEU(rsDy ), AHEU(rsAy )

(b) Attacker’s Game GA

DSx DSy
ASx AHEU(rsAx ), DHEU(rsDx ) AHEU(rsAx ), DHEU(rsDy )

ASy AHEU(rsAy ), DHEU(rsDx ) AHEU(rsAy ), DHEU(rsDy )

schemes have the highest FPR because those schemes do
not use the defensive deception to obtain additional attack
intelligence that can decrease the FPR of the NIDS; and (2)
DD-IPI scheme has a lower FPR than DD-PI scheme because
the defender can have better chances to monitor attackers by
taking the benefit of using DD strategies.

We also discussed the probability of each strategy taken
by an attacker and a defender in Figs. 2 and 3 and TPR and
FPR of the NIDS in Fig. 4 of Appendix A with respect to the
number of attack-defense games played under each scheme
in the submitted supplement document.

8 HYPER NASH EQUILIBRIUM

Nash equilibrium is a solution concept for game theory
where each player has complete information and the same
view about the game. However, in hypergame theory, each
player has a unique view of the game and may not have
a correct belief about the strategy taken by the opponent.
Therefore several studies [8, 9, 10, 11] introduced the Hy-
per Nash Equilibrium (HNE) for discovering the strategy
equilibrium based on the belief of each player. The HNE is
defined as:

For N rational players in a game Γ〈N, {Ai}Ni=1, {vi}Ni=1〉,
each player i have a set of action, Ai = {a1i , a2i , . . . , ami }
where m actions available. We define a∗i as HNE if the
following meet:

vi(a
∗
i , a
∗
−ii) ≥ vi(ai, a∗−ii) for ∀i,∀ai, (24)

where −i refers to the players except player i. aji means
player j’s action in player i’s belief, Aji means player j’s
strategy space in player i’s belief, and aji, a

∗
ji ∈ Aji. The

vi(·) means player i’s payoff function.
The HNE is based on each player’s belief about a game

G. We defined the attacker’s view as GA, and the defender’s
view as GD, where GA, GD, and G may not be the same.
In addition, the GA = GD does not mean the belief of
attacker and defender are correct based on the ground
truth game G, because attacker and defender may have the
same misbelief. In our work, the vi(ai, aji) is AHEU for the
attacker and DHEU for the defender. Since player need to
estimate opponent’s AHEU/DHEU based on the observed
action record, defender can estimate AHEU by replacing
rAtκp = cAtκp and cDtκq = rDtκq , and attacker can estimate DHEU
by replacing rDtκq = cDtκq and cDtκq = rDtκq . The player’s belief
is computed by Eq. (21)–(22). For easy understanding, we
show Table 7 as a simple example, where each player has a
different view about the game.

Based on the concept of Hyper Nash Equilibrium, we
investigate the HNE hitting ratio to show the probability
that the attacker’s HNE matches the defender’s HNE in our
proposed game. Fig. 5 is the result under a game with fixed

0 10 20 30 40 50 60 70
number of games

0.0
0.1
0.2
0.3
0.4
0.5
0.6

HN
E 
hi
tti
ng

 ra
tio

Fig. 5. Hyper Nash Equilibrium (HNE) Hitting Ratio.

values from Table 6. According to the result, we found: (1)
The schemes with imperfect information (IPI) have lower
ratios than the schemes with perfect information because the
existence of uncertainty diverges players’ beliefs about the
game; (2) DD-IPI scheme has a low ratio at the beginning
but gradually increased because the uncertainty for both
attacker and defender decreases as their monitoring time
increases; and (3) No-DD-IPI performs worse than DD-IPI
because both the attacker and defender do not have many
chances to observe each other as detected attackers will be
evicted from the system immediately.

9 CONCLUSION & FUTURE WORK

From this study, we obtained the following key findings:

• An attacker’s and defender’s perceived uncertainty can
be reduced when defensive deception (DD) is used. This
is because the attacker perceives more knowledge about
the system as it performs attacks as an inside attacker.
On the other hand, the defender’s uncertainty can be
significantly reduced by collecting attack intelligence via
DD while allowing the attacker to be in the system. This
also naturally led to reducing false detection of intrusions.

• Attack cost and defense cost are two critical factors in
determining HEUs (hypergame expected utilities). There-
fore, high DHEU (defender’s HEU) is not necessarily
related to high system performance in MTTSF (mean time
to security failure) or TPR (true positive rate) which can
also be a key indicator of system security. Therefore, using
DD under imperfect information (IPI) yields the best
performance in MTTSF (i.e., the longest system lifetime)
while it gives the minimum DHEU among all schemes.

• Even if DD strategies mainly aim to mislead the attacker’s
perception and make them poor attack decisions, they
also introduce a positive effect to the system security by
increasing TPR of the NIDS due to the benefit of the
attack intelligence collected through the DD strategies.
This implies that DD strategies play key roles in both
defending against attackers and protecting existing assets
by increasing intrusion detection.

• In a hypergame of imperfect information where DD strate-
gies are used, even under nodes with high-security vul-
nerabilities, we observed high resilience in maintaining
high MTTSF and high TPR of the NIDS. This is mainly
interpreted as the benefit of using DD under uncertainty
which can effectively manipulate the attacker’s perception
towards a defender’s move and the system.

15



• We observed that the HNE hitting ratio is lower un-
der hypergames with imperfect information than under
games with perfect information due to the subjectively
perceived uncertainty by the attacker and defender. When
the defender uses DD techniques, it allows both players
to monitor each other for a longer period of time than the
setting with no DD strategies, leading to a higher HNE
hitting ratio.

This work brings up the following future research direc-
tions: (1) considering multiple attackers arriving in a system
simultaneously in order to consider more realistic scenarios;
(2) developing a strategy selection method that employs re-
sources by each player in a distributed manner to maximize
its respective reward; (3) estimating each player’s belief
based on machine learning in order to more correctly predict
a next move of its opponent; (4) dynamically adjusting a risk
threshold, i.e., Eq. (14), depending on a system’s security
state; (5) introducing a recovery mechanism to restore a
compromised node to a healthy node allowing the recovery
delay; (6) developing an intrusion response system that can
reassess a detected intrusion in order to minimize false
positives while identifying an optimal response strategy to
deal with intrusions with high urgency; and (7) considering
another intrusion prevention mechanism, such as moving
target defense, as one of the defense strategies.

ACKNOWLEDGMENTS

This research was partly sponsored by the Army Re-
search Laboratory and was accomplished under Cooper-
ative Agreement Number W911NF-19-2-0150. In addition,
this research is also partly supported by the Army Research
Office under Grant Contract Number W91NF-20-2-0140. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

REFERENCES

[1] W. L. Sharp, “Military deception,” Joint War-Fighting
Center, Doctrine and Education Group, Norfolk, VA,
Pub. 3-13.4, 2006.

[2] H. Almeshekah and H. Spafford, “Cyber security de-
ception,” in Cyber Deception. Springer, 2016, pp. 25–52.

[3] J. W. Caddell, “Deception 101-primer on deception,”
DTIC Document, Tech. Rep., 2004.

[4] N. S. Kovach, A. S. Gibson, and G. B. Lamont, “Hyper-
game theory: A model for conflict, misperception, and
deception,” Game Theory, 2015, article ID 570639.

[5] P. G. Bennett, “Toward a theory of hypergames,”
Omega, vol. 5, no. 6, pp. 749–751, 1977.

[6] Wikipedia. (2018) Foureye butterflyfish. Accessed:
10-01-2020. [Online]. Available: https://en.wikipedia.
org/wiki/Foureye butterflyfish

[7] J.-H. Cho, M. Zhu, and M. P. Singh, Modeling and
Analysis of Deception Games based on Hypergame Theory.
Cham, Switzerland: Springer Nature, 2019, ch. 4, pp.
49–74.

[8] T. Kanazawa, T. Ushio, and T. Yamasaki, “Replicator
dynamics of evolutionary hypergames,” IEEE Trans.
Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 37, no. 1, pp. 132–138, Jan. 2007.

[9] Y. Sasaki, N. Kobayashi, and K. Kijima, “Mixed exten-
sion of hypergames and its applications to inspection
games,” in Proc. 51st Annual Meeting of the ISSS-2007,
Tokyo, Japan, 2007.

[10] Y. Sasaki, “Preservation of misperceptions–stability
analysis of hypergames,” in Proc. 52nd Annual Meeting
of the ISSS-2008, Madison, Wisconsin, 2008.

[11] K. Kijima, “Intelligent poly-agent learning model and
its application,” Information and Systems Engineering,
vol. 2, pp. 47–61, 1996.

[12] N. Garg and D. Grosu, “Deception in honeynets: A
game-theoretic analysis,” in Proc. IEEE Information As-
surance and Security Workshop (IAW). IEEE, 2007, pp.
107–113.

[13] T. E. Carroll and D. Grosu, “A game theoretic investi-
gation of deception in network security,” Security and
Communication Networks, vol. 4, no. 10, pp. 1162–1172,
2011.

[14] Y. Yin, B. An, Y. Vorobeychik, and J. Zhuang, “Optimal
deceptive strategies in security games: A preliminary
study,” in Proc. AAAI Conf. Artificial Intelligence, 2013.

[15] W. Casey, A. Kellner, P. Memarmoshrefi, J. A. Morales,
and B. Mishra, “Deception, identity, and security: The
game theory of Sybil attacks,” Comms. of the ACM,
vol. 62, no. 1, pp. 85–93, 2018.

[16] A. Schlenker, O. Thakoor, H. Xu, F. Fang, M. Tambe,
L. Tran-Thanh, P. Vayanos, and Y. Vorobeychik, “De-
ceiving cyber adversaries: A game theoretic approach,”
in Proc. 17th Int’l Conf. on Autonomous Agents and Mul-
tiagent Systems, 2018, pp. 892–900.

[17] L. Xiao, D. Xu, N. B. Mandayam, and H. V. Poor,
“Attacker-centric view of a detection game against
advanced persistent threats,” IEEE Trans. on Mobile
Computing, vol. 17, no. 11, pp. 2512–2523, 2018.

[18] X. Fang, L. Zhai, Z. Jia, and W. Bai, “A game model
for predicting the attack path of APT,” in Proc. 2014
IEEE 12th Int’l Conf. on Dependable, Autonomic and Secure
Computing, 2014, pp. 491–495.

[19] J. Pawlick, S. Farhang, and Q. Zhu, “Flip the cloud:
Cyber-physical signaling games in the presence of ad-
vanced persistent threats,” in Proc. Int’l Conf. on Deci-
sion and Game Theory for Security. Springer, 2015, pp.
289–308.

[20] C. Bakker, A. Bhattacharya, S. Chatterjee, and D. L.
Vrabie, “Learning and information manipulation: Re-
peated hypergames for cyber-physical security,” IEEE
Control Systems Letters, vol. 4, no. 2, pp. 295–300, 2019.

[21] ——, “Metagames and hypergames for deception-
robust control,” ACM Trans. on Cyber-Physical Systems,
vol. 5, no. 3, pp. 1–25, 2021.

[22] E. M. Hutchins, M. J. Cloppert, and R. M. Amin,
“Intelligence-driven computer network defense in-
formed by analysis of adversary campaigns and intru-
sion kill chains,” Leading Issues in Information Warfare &
Security Research, vol. 1, no. 1, p. 80, 2011.

[23] L. Zhang and V. L. Thing, “Three decades of decep-
tion techniques in active cyber defense-retrospect and

16



outlook,” Computers & Security, p. 102288, 2021.
[24] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-

Asher, T. J. Moore, D. S. Kim, H. Lim, and F. F. Nel-
son, “Toward proactive, adaptive defense: A survey
on moving target defense,” IEEE Comms. Surveys &
Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[25] D. Ye, T. Zhu, S. Shen, and W. Zhou, “A differentially
private game theoretic approach for deceiving cyber
adversaries,” IEEE Trans. on Information Forensics and
Security, vol. 16, pp. 569–584, 2021.

[26] S. Tadelis, Game Theory. Princeton University Press,
2013.

[27] R. Vane and P. E. Lehner, “Using hypergames to select
plans in adversarial environments,” in Proc. 1st Work-
shop on Game Theoretic and Decision Theoretic Agents,
1999, pp. 103–111.

[28] R. Vane, “Planning for terrorist-caused emergencies,”
in Proc. Winter Simulation Conf., Dec. 2005.

[29] J. T. House and G. Cybenko, “Hypergame theory ap-
plied to cyber attack and defense,” in Proc. SPIE Conf.
Sensors, and Command, Control, Comms., and Intelligence
(C3I) Technologies for Homeland Security and Homeland
Defense IX, vol. 766604, May. 2010.

[30] B. Gharesifard and J. Cortés, “Evolution of the percep-
tion about the opponent in hypergames,” in Proc. 49th
IEEE Conf. Decision and Control (CDC), Dec. 2010, pp.
1076–1081.

[31] ——, “Evolution of players’ misperceptions in hyper-
games under perfect observations,” IEEE Trans. Auto-
matic Control, vol. 57, no. 7, pp. 1627–1640, Jul. 2012.

[32] Y. Sasaki, “Subjective rationalizability in hypergames,”
Advances in Decision Sciences, vol. 2014, p. 7 pages, 2014.

[33] U. S. Putro, K. Kijima, and S. Takahashi, “Adaptive
learning of hypergame situations using a genetic algo-
rithm,” IEEE Trans. Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 30, no. 5, pp. 562–572, Sep.
2000.

[34] K. Ferguson-Walter, S. Fugate, J. Mauger, and M. Major,
“Game theory for adaptive defensive cyber deception,”
in Proc. 6th Annual Symp. on Hot Topics in the Science of
Security. ACM, 2019, p. 4.

[35] Y. M. Aljefri, M. A. Bashar, L. Fang, and K. W. Hipel,
“First-level hypergame for investigating misperception
in conflicts,” IEEE Trans. Systems, Man, and Cybernetics:
Systems, vol. 48, no. 12, pp. 2158–2175, 2017.

[36] C. Bakker, A. Bhattacharya, S. Chatterjee, and D. L.
Vrabie, “Metagames and hypergames for deception-
robust control,” ACM Trans. Cyber-Phys. Syst., vol. 5,
no. 3, Mar. 2021.

[37] N. M. Fraser and K. W. Hipel, Conflict Analysis: Models
and Resolutions. North-Holland, 1984.

[38] K. Ferguson-Walter, S. Fugate, J. Mauger, and M. Major,
“Game theory for adaptive defensive cyber deception,”
in Proc. 6th Annual Symp. on Hot Topics in the Science of
Security, 2019, pp. 1–8.

[39] C. N. Gutierrez, M. H. Almeshekah, J. Avery, S. Bagchi,
and E. H. Spafford, “Modeling deception in informa-
tion security as a hypergame: A primer,” in Proc. 16th
Annual Information Security Symp., ser. CERIAS. West
Lafayette, IN: CERIAS - Purdue University, 2015, pp.
41:1–41:1.

[40] R. Vane, “Advances in hypergame theory,” in Proc. AA-
MAS Workshop on Game-Theoretic and Decision Theoretic
Agents, 2006.

[41] ——, Hypergame theory for DTGT agents. AAAI, 2000.
[42] J. Han, M. Kamber, and J. Pei, “Data mining concepts

and techniques,” The Morgan Kaufmann Series in Data
Management Systems, p. 105, 2011, Section 3.5.2.

[43] M. Boussard, D. T. Bui, L. Ciavaglia, R. Douville, M. L.
Pallec, N. L. Sauze, L. Noirie, S. Papillon, P. Peloso, and
F. Santoro, “Software-defined LANs for interconnected
smart environment,” in Proc. 2015 27th Int’l Teletraffic
Congress, Sep. 2015, pp. 219–227.

[44] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M.
Vieira, and M. Nogueira, “Programmable networks—
from software-defined radio to software-defined net-
working,” IEEE Comms. surveys & tutorials, vol. 17,
no. 2, pp. 1102–1125, Second Quarter 2015.

[45] U. Brandes, “A faster algorithm for betweenness cen-
trality,” Jour. of Mathematical Sociology, vol. 25, no. 2, pp.
163–177, 2001.

[46] M. E. J. Newman, Networks: An Introduction. Oxford
University Press, 2010.

[47] Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J.-H.
Cho, “A survey on centrality metrics and their network
resilience analysis,” IEEE Access, pp. 1–1, 2021.

[48] CVSS, “Common vulnerability scoring sys-
tem,” accessed: 07-18-2020. [Online]. Available:
https://www.first.org/cvss/

[49] S. Scott-Hayward, “Design and deployment of secure,
robust, and resilient SDN controllers,” in Proc. 2015 1st
IEEE Conf. on Network Softwarization (NetSoft). IEEE,
2015, pp. 1–5.

[50] K. Raghunath and P. Krishnan, “Towards a secure SDN
architecture,” in Proc. 2018 9th Int’l Conf. on Computing,
Communication and Networking Technologies (ICCCNT).
IEEE, 2018, pp. 1–7.

[51] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous
univariate distributions, volume 2. John Wiley & Sons,
1995, vol. 289.

[52] H. Okhravi, M. A. Rabe, W. G. Leonard, T. R. Hobson,
D. Bigelow, and W. W. Streilein, “Survey of cyber
moving targets,” Lexington Lincoln Lab, MIT, TR 1166,
2013.

[53] K. Krombholz, H. Hobel, M. Huber, and E. Weippl,
“Advanced social engineering attacks,” Jour. of Infor-
mation Security and Applications, vol. 22, pp. 113–122,
2015.

[54] E. Bertino and N. Islam, “Botnets and Internet of Things
security,” Computer, vol. 50, no. 2, pp. 76–79, Feb. 2017.

[55] Y. Liu, Y. Kuang, Y. Xiao, and G. Xu, “SDN-based data
transfer security for Internet of Things,” IEEE Internet
of Things Jour., vol. 5, no. 1, pp. 257–268, Feb. 2018.

[56] S. Prabakaran and R. Ramar, “Stateful firewall-enabled
software-defined network with distributed controllers:
A network performance study,” Int’l Jour. of Communi-
cation Systems, vol. 32, no. 17, p. e4237, 2019.

[57] O. Leiba, Y. Yitzchak, R. Bitton, A. Nadler, and A. Shab-
tai, “Incentivized delivery network of IoT software
updates based on trustless proof-of-distribution,” in
Proc. 2018 IEEE European Symp. on Security and Privacy
Workshops (EuroS PW), Apr. 2018, pp. 29–39.

17



[58] Y. C. Tay, Analytical Performance Modeling for Computer
Systems. Morgan & Claypool, 2010.

[59] S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas,
Z. Zhao, A. Doupé, and G. Ahn, “HoneyProxy: Design
and implementation of next-generation honeynet via
SDN,” in Proc. IEEE Conf. Comms. and Network Security
(CNS), Oct. 2017, pp. 1–9.

[60] M. Zhu, A. H. Anwar, Z. Wan, J. Cho, C. A.
Kamhoua, and M. P. Singh, “Game-theoretic and ma-
chine learning-based approaches for defensive decep-
tion: A survey,” CoRR, vol. abs/2101.10121, 2021.

[61] Y. W. Teh, Dirichlet Process. Boston, MA: Springer, 2010,
pp. 280–287.

[62] F. C. Gärtner, “Byzantine failures and security: Arbi-
trary is not (always) random,” INFORMATIK 2003-Mit
Sicherheit Informatik, Schwerpunkt” Sicherheit-Schutz und
Zuverlässigkeit”, 2003.

Zelin Wan is currently pursuing his PhD in the
Department Computer Science at Virginia Tech,
VA, USA since 2020. He received the B.S. de-
gree in Computer Science from the University of
Arizona, AZ, USA in 2019. His research interests
include game theoretic and machine learning–
based cybersecurity and network science.

Jin-Hee Cho (M’09; SM’14) is currently an as-
sociate professor in the Department of Com-
puter Science at Virginia Tech, VA, USA since
Aug. 2018 and a director of the Trustworthy Cy-
berspace Lab. Prior to joining the Virginia Tech,
she worked as a computer scientist at the U.S.
Army Research Laboratory (USARL), Adelphi,
Maryland, since 2009. Dr. Cho has published
over 160 peer-reviewed technical papers in lead-
ing journals and conferences in the areas of trust
management, cybersecurity, metrics and mea-

surements, network performance analysis, resource allocation, agent-
based modeling, uncertainty reasoning and analysis, information fusion
/ credibility, and social network analysis. She received the best paper
awards in IEEE TrustCom’2009, BRIMS’2013, IEEE GLOBECOM’2017,
2017 ARL’s publication award, and IEEE CogSima 2018. She is a winner
of the 2015 IEEE Communications Society William R. Bennett Prize
in the Field of Communications Networking. In 2016, Dr. Cho was
selected for the 2013 Presidential Early Career Award for Scientists
and Engineers (PECASE), which is the highest honor bestowed by
the US government on outstanding scientists and engineers in the
early stages of their independent research careers. Dr. Cho earned
MS and PhD degrees in computer science from Virginia Tech in 2004
and 2008, respectively. She is currently serving on the editorial board
as an associate editor in The Computer Journal, IEEE Transactions on
Network and Service Management, and IEEE Transactions on Services
Computing. She is a senior member of the IEEE and a member of the
ACM.

Mu Zhu received his B.S. degree in Electronic
Engineering from Zhengzhou University, Henan,
China, in 2014, and the M.S. degree in Computer
Engineering from University of Delaware, DE,
USA in 2017. He is currently working toward PhD
degree in the Department of Computer Science
at North Carolina State University since 2017.
His research interests include network cyberse-
curity, game theory, and machine learning.

Ahmed H. Anwar (S’09; M’19) is currently a
postdoctoral research scientist in the U.S. Army
Research Lab in Adelphi, MD since 2019. His
research interests include Network Security, Al-
gorithmic Game Theory and Machine Learning.
Dr. Anwar earned his PhD degree in Electri-
cal Engineering from the University of Central
Florida in 2019. Before that he worked as a
research assistant in Nile University, Egypt, and
Qatar University between 2011 and 2013. He
received his BSc. degree (with highest honors)

in electrical engineering from Alexandria University, Alexandria, Egypt,
in 2011 and the MSc. degree in wireless Information Technology from
Nile University, Egypt, in 2013.

Charles A. Kamhoua is a Senior Electronics
Engineer at the Network Security Branch of the
U.S. Army Research Laboratory (ARL) in Adel-
phi, MD, where he is responsible for conducting
and directing basic research in the area of game
theory applied to cyber security. Prior to joining
the Army Research Laboratory, he was a re-
searcher at the U.S. Air Force Research Labora-
tory (AFRL), Rome, New York for 6 years. He has
held visiting research positions at the University
of Oxford and Harvard University. He has co-

authored more than 200 peer-reviewed journal and conference papers
that include 5 best paper awards. He has been at the forefront of several
new technologies, co-editing four books at Wiley-IEEE Press entitled
“Game theory and machine learning for cyber security”, “Modeling and
Design of Secure Internet of Things”, “Blockchain for Distributed System
Security”, and “Assured Cloud Computing”. He has been recognized
for his scholarship and leadership with numerous prestigious awards,
including the 2020 Sigma Xi Young Investigator Award for outstanding
leadership and contribution to game theory applied to cyber security,
the 2019 US Army Civilian Service Commendation Medal. He received a
B.S. in electronics from the University of Douala (ENSET), Cameroon, in
1999, an M.S. in Telecommunication and Networking from Florida Inter-
national University (FIU) in 2008, and a Ph.D. in Electrical Engineering
from FIU in 2011. He is currently a senior member of ACM and IEEE.

Munindar P. Singh (F’09) is Alumni Distin-
guished Graduate Professor in the Department
of Computer Science at North Carolina State
University. He is a codirector of the DoD-
sponsored Science of Security Lablet at NCSU,
one of six nationwide. Munindar’s research inter-
ests include AI and multiagent systems and their
applications, including in cybersecurity. Munin-
dar is a Fellow of AAAI (Association for the
Advancement of Artificial Intelligence), AAAS
(American Association for the Advancement of

Science), and IEEE (Institute of Electrical and Electronics Engineers),
and was elected a foreign member of Academia Europaea. He has
won the ACM/SIGAI Autonomous Agents Research Award, the IEEE
TCSVC Research Innovation Award, and the IFAAMAS Influential Paper
Award. He won NC State University’s Outstanding Graduate Faculty
Mentor Award as well as the Outstanding Research Achievement Award
(twice). He was selected as an Alumni Distinguished Graduate Profes-
sor and elected to NCSU’s Research Leadership Academy. He also
won NC State’s Outstanding Faculty Mentor Award. Munindar was the
editor-in-chief both of the ACM Transactions on Internet Technology
(2012–2018) and IEEE Internet Computing (1999–2002). His current
editorial service includes IEEE Internet Computing, Journal of Artificial
Intelligence Research, Journal of Autonomous Agents and Multiagent
Systems, IEEE Transactions on Services Computing, and ACM Trans-
actions on Intelligent Systems and Technology. He previously served on
the editorial board of the Journal of Web Semantics. He also served on
the founding steering committee for the IEEE Transactions on Mobile
Computing. Munindar was a general cochair of the 2005 International
Conference on Autonomous Agents and MultiAgent Systems and of
the 2016 International Conference on Service-Oriented Computing.
Munindar served on the founding board of directors of IFAAMAS, the
International Foundation for Autonomous Agents and MultiAgent Sys-
tems. Twenty-nine students have received PhD degrees and thirty-nine
students MS degrees under Munindar’s direction.

18


