Bliss: Specifying Declarative Service Protocols

Munindar P. Singh
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract—BSPL, the Blindingly Simple Protocol Language,
is a recent approach for declaratively expressing service com-
munication protocols that involves only two main constructs:
a way to specify a message as an atomic protocol and a way
to compose protocols. BSPL supports the Local State Transfer
architectural style for decentralized service enactment. BSPL
offers significant gains in expressing protocols (i.e., specifications)
that decouple participants in service engagements (i.e., agents)
as much as possible given the causal constraints induced from
the information exchanged by them. Importantly, BSPL relies
exclusively on how appropriate information flows are induced
from the specification. This paper proposes Bliss, a conceptual
model for interaction that is based on information flow. The idea
behind Bliss is to incrementally develop the information needed
to complete the social object that a protocol computes. Bliss yields
simple steps to help ensure that the resulting protocol adequately
captures the given requirements with respect to the social object.

Index Terms—Business process modeling; Business protocols

I. INTRODUCTION

We take as our point of departure the recently proposed
Blindingly Simple Protocol Language—or BSPL, for short [1],
[2], [3]. BSPL is an approach for interaction-oriented program-
ming: it grants first-class status to protocols as specifications
of interactions among roles. The key features of BSPL for our
present purposes are that it (i) provides a simple functional
syntax through which a protocol can be referenced from
another protocol; (ii) gives central status to the parameters of
a protocol distinguishing between parameters that the protocol
assumes as inputs (to instantiate its interactions) and those it
computes as outputs (from its interactions). Importantly, BSPL
makes the entire causal nature of a distributed enactment ex-
plicit in the parameter bindings, dispensing with conventional
control flow features such as sequencing and choice.

Singh [1] previously showed how BSPL can capture a
number of patterns simply for which previous approaches
are complex and over-specified. Moreover, BSPL composes
protocols in a manner that preserves encapsulation in settings
where traditional approaches fail to do so. Singh [2] proposed
a new architectural style called Local State Transfer or LoST,
which supports purely distributed enactments and thus realizes
the intuitions of BSPL. These useful properties make BSPL a
valuable topic for further investigation from the standpoint of
engineering multiagent and service-oriented systems.

An important intuition behind BSPL is that protocols ought
to be enacted in a purely distributed manner wherein the agents
playing various roles exchange messages asynchronously. The
constraints on enactment reflect the essential causality of

message flow and the knowledge locally available to the agents
by which they determine the contents of their messages. The
protocols should be enactable by myopic agents, who work
based on what they happen to know at a given moment, and
do not look ahead. Further, there are no hidden communica-
tion channels. Despite such flexibility, the enactment should
produce consistent results. In particular, different agents ought
not to interfere with each other. Hence, a protocol should be
specified such that invalid enactments are not possible.

A. Contributions

Previous work on BSPL shows how to verify and enact
BSPL protocols. However, it does not address the challenge of
developing valid BSPL protocols. Given the novelty of BSPL
with respect to traditional software engineering and service
computing, it is crucial that we develop a suitable methodology
for BSPL: it simply would not be feasible to adapt any of
the existing methodologies (e.g., for AUML or commitment
protocols), which all lack BSPL’s information focus.

Accordingly, this paper proposes Bliss, a methodology for
specifying BSPL protocols. Bliss begins from a significant
observation regarding BSPL, namely, that although it does not
deal directly with the realm of meanings of interactions, it is
designed with an emphasis on how to support perspicuously
representing meanings of interactions. The idea is that by
removing all control flow constructs, BSPL renders communi-
cation purely declaratively. Thus meanings can be associated
with each message without regard to where it might occur
in the protocol or the ensuing enactment. A BSPL protocol
enactment fleshes out a notional social object that encapsulates
the progressing social state comprising the meanings of the
messages exchanged by agents enacting the given protocol.

The key idea behind Bliss is to describe how to incremen-
tally develop the information needed to complete that social
object. The main ingredients of Bliss are (i) a new conceptual
model overlaying BSPL; (ii) steps that help systematically
specify a protocol that would compute that social object; and
(iii) steps that ensure that the protocol is fully general given
the top-level requirement to compute that social object.

The main benefits of Bliss are that it better captures
interaction requirements and helps avoid errors and over-
constrained solutions that traditional approaches might pro-
duce. We demonstrate Bliss via the well-known NetBill pro-
tocol and evaluate it via a Service Request protocol that is
specified using UML sequence diagrams and used in a real-
life service computing effort for cyberinfrastructure.

B. Organization

The rest of this paper is organized as follows. Section II
follows Singh [1] in describing the essential background on
BSPL. Section III introduces the new conceptual model for
BSPL that underlies Bliss and helps organize BSPL parameters
according to their functions in a protocol specification. Sec-
tion IV introduces the Bliss methodology. Section V introduces
scientific collaboration services as a case study. Section VI
evaluates the benefits of Bliss on an independently described
real-life service protocol. Section VII concludes with a dis-
cussion of the literature and important future directions.

II. BACKGROUND AND RUNNING EXAMPLE

We use the NetBill protocol [4], [5] to illustrate our
approach (writing the message names slanted). This protocol
begins with a customer requesting a quote for some digital
goods from a merchant (rfq). The merchant sends an offer
(quote), which the customer may accept. If the customer ac-
cepts the offer, the merchant delivers the goods. The customer
then pays. Upon receiving the payment, the merchant sends
a receipt to the customer. The protocol specifies a (linear)
sequence of steps, as previously critiqued, e.g., [5], because it
limits the flexibility of the agents enacting the protocol.

Listing 1 illustrates the main features of BSPL. For readabil-
ity, in the listings, we write reserved keywords in sans serif,
and capitalize role names. In the text, we write message and
protocol names slanted, roles in SMALL CAPS, and parameters
in sans serif. We insert " and ' as delimiters, as in " Self —
Other: hello[ID, name] .

Listing 1. The NetBill protocol.
NetBill Original {
role C, M
parameter out ID key, out item , out price, out

done

private confirmation , document, payment

C — M: rfq[out ID, out item]
M — C: offer[in ID, in item, out price]
C — M: accept[in ID, in item, in price, out

confirmation]

M — C: goods[in ID, in item, in confirmation ,
out document]

C — M: payl[in ID, in price, in document, out
payment]

M — C: receipt[in ID, in item, in payment, out
done |

}

BSPL distinguishes three main adornments on the param-
eters of a message: "in”', meaning the binding must come
from some other message; "out™, meaning that the binding
originates in this message (presumably based on private com-
putations of the sender); and "nil”', meaning that no binding
is known to the sender at the time of emission. The "out’
binding indicates declarative force [6]; e.g., an agent sending
a price quote is not merely reporting a price but declaring it
to be the definitive price in this protocol enactment (instance).

Each message instance must bind a proper value for each
TinT and each "out’ parameter, and a "nul” value for each

Tnil" parameter. (The private line is syntactic sugar to help
catch typographical errors in parameter names by making sure
that all parameters used in the protocol are listed explicitly.) A
parameter adorned "out™ in message m; and "in" in message
my creates a causal dependency from mq to meo.

We introduce a key parameter ID propagated to each
message: this improves on the existing formalizations [4],
[5] by clarifying the information objects exchanged by the
participants. The first message, rfq, has ID adorned "out™ to
initiate the transaction; the remaining messages have it adorned
Tin. The messages generate additional information through
the "out ' parameters item, price, confirmation, document, payment,
and receipt, respectively. In NetBill, the messages are causally
chained so only a sequential enactment is possible.

An enactment corresponds to a binding of public parame-
ters. BSPL requires some of the parameters being declared as
forming the key to ensure that multiple concurrent enactments
of the same protocol would not interfere with each other.
Every protocol and message must have a key: for brevity, by
default, the key of a message equals the set of the protocol’s
key parameters that feature in it. An enactment is complete
when all its public "in' and "out' parameters are bound.
Specifically, an enactment of NetBill completes when ID, item,
price, done are bound. Its private parameters are not relevant
for judging completion.

Formal Syntax

The following BSPL syntax and explanations are simplified
from Singh [1]. Superscripts of + and * indicate one or
more and zero or more repetitions, respectively. Below, |
and | delimit expressions, considered optional if without a
superscript. For simplicity, we omit cardinality restrictions and
parameter types.

Li. A protocol declaration consists of a name, two or more
roles, one or more parameters, and one or more references
to constituent protocols or messages. The parameters
marked key together form this declaration’s key.
Protocol — Name { role Role™ parameter

| Parameter| key | | Reference™ }

Lo. A reference to a protocol (from a declaration) consists
of the name of the protocol appended by as many roles
and parameters as it declares. At least one parameter of
the reference must be a key parameter of the declaration
in which it occurs.

Reference —+ Name (Role™ Parameter™)

Ls. Alternatively, a reference is a message schema, and
consists of exactly one name, exactly two roles, and one
or more parameters (at least one of which must be a key
parameter).

Reference — Role + Role : Name | Parameter™ |

Ls. Each parameter consists of an adornment and a name.
Parameter —> Adornment Name

Ls. An adornment is usually either "in"' or Tout™; "nil
indicates an unknown parameter; "opt ' (occurs only in a
declaration) indicates optionality: could be "nil " or "out™.
Adornment — in | out | nil | opt

III. BLISS: CONCEPTUAL MODEL

BSPL’s parameters capture all that is essential to a protocol’s
semantics. The focus on parameters leads to a clear protocol
semantics that enhances flexibility of enactment. Previous
works [3] provide the formal semantics and a tool for BSPL
but did not provide a conceptual model for how BSPL can
capture interactions as distributed computations. This section
provides a simple yet effective conceptual model underlying
Bliss that lends structure to how parameters are applied in
BSPL, i.e., based on the parameters’ functions in BSPL.
The benefit of the conceptual model is to help us formulate
protocols that are correct: in essence, to validate a protocol
with respect to requirements without over-constraining it.

Our proposed conceptual model places BSPL parameters
into five major categories. Recall that a BSPL protocol refers
both to a composite protocol and an atomic protocol (i.e., an
individual message). The purpose of a BSPL protocol is, when
enacted, to compute a social object. And the computation
is entirely driven by the information parameters carried by
messages emitted and received by the agents enacting a pro-
tocol. The parameters, therefore, capture conceptually distinct
though related purposes. Some parameters (i) characterize
the identity of the social object; (ii) some describe its ultimate
meaning, which falls outside BSPL’s scope; (iii) some help
realize the computation despite the decentralized and myopic
decision-making by the agents; and (iv) some ensure that the
integrity of the social object is preserved.

a) Key parameters: These capture the notion of con-
ceptual object identity that is essential to BSPL. In many
commonly occurring protocols, which represent a single inter-
active transaction, the key would be a singleton. However, a
protocol can potentially represent an aggregation or association
of multiple independent transactions, in which case the key
would have as many parameters as there are independent
transactions. In a protocol that initiates a business transaction,
the key parameters must be "out'. If a key is "out’, the
remaining parameters cannot be "in'—there being no basis for
their bindings. The key of a message occurring in a protocol
must not be disjoint with the key of the protocol.

b) Payload parameters: These feature in the meanings
associated with the protocol, which correspond to transitions
in the social state of the parties enacting the protocol. For
example, a quote may signify that the sender (a merchant) is
creating a commitment to sell the specified item for the speci-
fied price: the item description and price must be described by
the payload of the price quote message. Likewise, an accept
may signify creating a commitment to pay the specified price
for the specified item. The above examples happen to involve
commitments. In other applications, other social constructs
may be relevant. For example, a party invitation may create
an expectation of “friendship,” viewed as a social construct.

c) Completion parameters: These determine when a pro-
tocol completes. A general rule is that we need to ensure that
some parameters are adorned "out': such parameters indicate
that an enactment must involve a definitive action by (an agent

playing) one of the roles, thereby exercising its autonomy.
In this manner, only when the appropriate completion pa-
rameters are bound can we interpret the payload parameters
correctly as characterizing a transition in the social state of
the participants. For example, assuming the item description
and price are already bound, the mere existence of bindings
for these parameters does not signify that the merchant or
customer, respectively, make or accept an offer. That is, we
must include a parameter with an "out” adornment that
signifies that the sender autonomously conveys the appropriate
meaning. However, if one of the payload parameters is adorned
Tout™, there is no need for a separate completion parameter.

The completion parameters for a composite protocol depend
on when the corresponding social object is completed. For an
individual message, since the meaning would be simpler, it is
usually a matter of verifying whether the payload parameters
are adequate and, if not, inserting a single "out™ completion
parameter. In essence, completion corresponds to the declara-
tion or illocution [6] that the specified element of the social
object is complete. This declaration would occur because of
the actions of one participant, who generates the corresponding
element. This declaration may in addition constitute [7] a
request for quotes at the application level and may potentially
create a commitment, or presume a suitable commitment (or
other relevant relationship) already exists.

d) Integrity parameters: These ensure that the social
state of the entire enactment is not corrupted. For example,
we would ensure that a customer doesn’t both accept and
reject an offer by using an integrity parameter that would be
adorned "out in both accept and reject, thereby ensuring
that no more than one of them occurs. Likewise, if there
were two ways in which the merchant could offer to sell
an item for a price, we would have to make sure that no
more than one of those ways could be realized in the same
enactment. The same situation holds when two or more agents
are involved. The verification challenges are harder in such a
case—to ensure that different agents acting myopically do not
violate the integrity of the social object. In effect, the integrity
parameters capture constraints on the mutual nonoccurrence of
messages that would violate an integrity property.

e) Control parameters: These capture properties for
which there is no direct justification based solely on the pay-
load. In effect, these parameters encode ordering properties.
In general, such parameters arise only because a modeler
attempts to force fit an existing over-constrained protocol into
BSPL. Such gratuitous control parameters can also include
what would normally be integrity parameters, simply as a way
of preventing two messages from both being sent.

The above kinds of parameters apply both to a protocol as
a whole and to the messages within it. A protocol might only
need the first three kinds, which are the most important from
the standpoint of describing the state of a social object. In-
tegrity parameters are needed only when there is the possibility
of the social state being corrupted. Control parameters would
not be used unless there is a need to constrain computations
beyond what is needed to compute the social object.

TABLE I
BLISS METHODOLOGY: MAIN STEPS. BLISS ITERATES OVER THESE STEPS.

Step description Input Output Artifact

1 Identify the roles needed in a protocol Interaction purpose Roles

2 Identify the conceptual social object computed Interaction purpose Protocol parameters
3 Identify the messages (or, recursively, subprotocols) to compute the social object Roles Conceptual schema
4 Identify each message as a component of the social object and any additional constraints ~ Messages Message parameters
5 Introduce polymorphism of messages to support flexible sourcing of parameter bindings Messages Protocol

IV. BLISS: METHODOLOGY

We now describe the Bliss methodology for specifying a
BSPL protocol. To specify any software artifact requires iden-
tifying the stakeholders and understanding their requirements.
In the case of a protocol to be enacted by autonomous agents,
the natural stakeholders are the business partners whose agents
would enact the protocol being specified. Not all stakeholders
need be present at design time but the requirements of the
business partners ought to be accounted for—or else, they
would not adopt roles in, and enact, the protocol.

Table I summarizes Bliss. The first two steps of Bliss
call for a collection and analysis of the requirements by
the protocol designers: first, to determine the roles needed
in the protocol and, second, to determine the social object
that enactments of the protocol would compute. If we could
magically compute the social object, the problem would be
solved. However, in a distributed system, the social object
must be computed incrementally through the emission and
reception of messages among the participants playing roles,
respecting the semantic constraints of causality and integrity,
as in BSPL. The subsequent steps flesh out the remaining
elements of the BSPL conceptual model to ensure that a valid
enactment according to BSPL semantics would produce the
target social object.

Let us illustrate Bliss by exercising the steps of Table I on
NetBill to produce our improved variant of it.

1) Roles: CUSTOMER (C) and MERCHANT (M).

2) Protocol Parameters: We classify these as follows.
(1) Keys: we arbitrarily choose a parameter ID to serve as
the protocol key, reflecting the business transaction it carries
out. (ii) Payload: We choose parameters item and price as the
payload, since they correspond to the meaning we associate
with the protocol, i.e., its business transaction. (iii) Com-
pletion: We determine what constitutes the completion of a
NetBill protocol enactment. That is, what are the components
of the conceptual object whose instances will be computed
by enactments of the NetBill protocol? This step represents
the essence of the information-centric conceptualization of
BSPL. Clearly, the item and price would have been settled
and, respectively, delivered and paid. A receipt would have
been provided by the MERCHANT.

3) Conceptual Schema: Figure 1 shows a simple conceptual
schema, omitting the parameters on the messages. The mes-
sages are as named in Section II. We propagate the same key
to each message within the protocol, since the entire protocol
carries out one business transaction. Since each message must

occur no more than once in any business transaction, we need
no additional key parameter on any of the messages.

) — rfq

? — offer
?ID, item, price, done CIID o — accept

NetBill <€————

miD mIID — goods

! — Pay
— receipt

Fig. 1. A conceptual schema for NetBill. Edge direction indicates a foreign

key dependence. A dark background signifies a runnable entity with double
boxes identifying the roles; a light background signifies a conceptual social
object, i.e., a protocol (including a message). The parameters shown for each
entity (including those on the edges emanating from it) jointly form its key.

4) Message Parameters: We consider each message in turn.
« rfg. Since rfq initiates the business transaction, it includes
the protocol’s key parameter, ID, with an adornment of
Tout™. Also, rfq needs to specify the item that the CUS-
TOMER wishes to purchase. This leads to a parameter that
describes the item, and which we call item. Moreover, the
CUSTOMER determines the item, so item is adorned "out ™.

« offer. For an offer to be meaningful, it must specify the
price the MERCHANT is offering and for what item. The
price is provided definitively by the MERCHANT, hence price
is adorned "out™. In NetBill, since offer and the remaining
messages do not introduce a new business transaction, they
all use the protocol’s key parameter, ID, with an adornment
of "in. Here, item is "in' since rfq specifies it.

o accept. The CUSTOMER accepts an offer with the price as
specified in the offer. To capture the CUSTOMER’s autonomy
in making the illocution, we adorn confirmation as "out .

e goods. The MERCHANT provides goods and thus definitively
specifies what they are. In NetBill, the goods are treated
as digital artifacts, which instantiate the item description
employed in rfq and subsequent messages. Hence, goods
includes a parameter document that is adorned "out™.

e pay. The CUSTOMER provides and definitively specifies
the funds. (More realistically, the CUSTOMER provides a
digital certificate that the MERCHANT can encash for funds.)
Hence, pay includes a parameter payment adorned "out .

o receipt. The MERCHANT definitively specifies that the pay-

ment has been received from the CUSTOMER. Hence, receipt
includes a parameter done that is adorned "out™.

Message parameters not featuring in the protocol declaration
are private, indicating they don’t contribute to the social object.
5) Polymorphism: This can apply to each message; we dis-
cuss some of Yolum and Singh’s [5] variations for illustration.

o For an offer to mean the creation of a commitment, it must
specify the price and item. However, as Yolum and Singh
[5] explain, item need not come from the CUSTOMER—e.g.,
to support unsolicited offers. Thus, we introduce a schema
of offer that adorns item as "out. However, because of
integrity, we cannot have two bindings for item for the same
ID; because rfq and offer have different senders, the protocol
would fail safety [3]. Therefore, the new schema specifies
ID as "out™, which would ensure a unique binding for ID
by initiating a fresh transaction for an unsolicited offer.

o For accept, we introduce a schema with "out™ price. As
explained above, this schema must adorn ID as "out' and,
therefore, also item as "out™". This schema needs confirmation
only because that parameter is needed for goods.

o For goods, the MERCHANT can provide the goods prior to
receiving a message carrying the confirmation. Hence, we
introduce a schema with "nil™? confirmation. In the same
spirit as above, it might make business sense to allow the
MERCHANT to open a new transaction, i.e., with "out™ ID,
Tout™ item, and "nil" confirmation by providing the goods.

o For pay, the CUSTOMER merely needs to know the price to
pay and can do so prior to receiving the document. Hence,
we introduce a schema with "nil™ document.

We decide not to allow receipt to occur without a prior pay.
Listing 2 shows the resulting specification in BSPL. It retains
Listing 1’s message schemas: hence the enactments supported
originally remain available.

Listing 2. NetBill protocol via Bliss (Partial).
NetBill Bliss Simple {
role C, M
parameter out ID key, out item , out price, out
done
private confirmation ,

document, payment

C — M: rfq[out ID, out item]

M — C: offer[in ID, in item, out price]

M +— C: offer[out ID, out item, out price]
C — M: accept[in ID, in item, in price, out

confirmation]
C — M: accept[out ID, out item, out price, out
confirmation]

M — C: goods[in ID, in item, in confirmation ,
out document |

M — C: goods[in ID, in item, nil confirmation ,
out document |

C — M: payl[in ID, in price, in document, out
payment]

C — M: payl[in ID, in price , nil document, out
payment]

M — C: receipt[in ID, in item, in payment, out
done |
}

The benefit of the protocol of Listing 2 is that it remains
as robust as the finite-state machine version while supporting
greater flexibility of enactment on part of the roles, thereby
promoting their autonomy. Yolum and Singh [5] identify some
but not all of the variations that we can systematically produce.
In addition, they fail to capture the information flows precisely:
for example, when the MERCHANT sends an offer prior to
receiving a corresponding rfq, the MERCHANT must initiate
an independent transaction—which we can capture.

Oddly, the original NetBill does not include a reject mes-
sage. We can enhance it so the MERCHANT and CUSTOMER
iterate about the price [8]. The main point of this example
from the standpoint of Bliss is that it involves messages with
more than one key parameter. The offer message introduces
a key parameter, say, "out offerID. All the other messages
would include "in™" offerlD to identify the specific offer.

V. APPLYING BLISS ON A COMPLEX SCENARIO

This scenario arises in the domain of scientific collaboration
for oceanography [9]. Scientists own various resources that
they do not fully use in their own investigations. These
resources might be expensive or uniquely located, as a result
of which sharing them can prove highly valuable. For example,
suppose an oceanographic chemist, Alice, has a buoy in
Chesapeake Bay that she would like to share with colleagues.

We envisage a resource-sharing community as including
a unique moderator and zero or more resource contributors
and users. We assume each participant has a suitably obtained
unique account in the community. The same person may be a
contributor and a user for different resources. An owner shar-
ing a resource merely makes it visible to others; each specific
usage episode needs a separate permission. When a resource
is not in use, its owner can withdraw the resource from the
community. A resource has a location (e.g., Chesapeake) and
type (e.g., buoy with salinity sensor).

The following facts and steps are relevant: (i) multiple
topical communities exist; (ii) the moderator can admit a
scientist upon request; (iii) a member can contribute a resource
to the community resource directory; (iv) the owner of a
contributed resource can withdraw it from the community
resource directory; (v) a member can search for a resource
in the community resource directory, potentially specifying its
location and type; and (vi) a member can request to borrow a
resource from its owner, specifying the purpose.

The proposed solution is built from the conceptual schema
of the resource-sharing scenario, as in Figure 2. This schema
shows the domain entities, including the roles involved. The
conceptual social objects capture the four main interactions
that take place in this scenario, and map to protocols in a
straightforward manner. The key of each object includes as
foreign keys the keys of the entities it associates, as well as
a key parameter specific to the social object. We suppress the
identifiers for the roles participating in a given protocol.

Each resulting protocol has one completion parameter—
named outcome in each case. The payload parameters are
few: request for Community Membership and location and
rType for both Resource Contribution and Resource Discovery.
Resource Negotiation needs no explicit payload. None of these
protocols needs any additional control parameters. Note that
the protocols could be combined into a single large protocol
but the proposed design is modular and thus easier to read and
validate. (We omit withdraw for brevity.)

m
O T O
modID D
¢ mID
mclD c | it R
ommunity esource
R) — _
melD Membership melD Discovery
A A o |
Owner User episodelD
mclID mclD riD
I I
Resource Resource
Contribution Negotiation
contributionID usagelD
riD

Fig. 2. A conceptual schema for resource sharing. Community and Resource
are runnable entities but not active within the protocol. MODERATOR is a role
but its key does not feature in any protocol (or message), because we assume
a single moderator per community.

Listing 3. The Community Membership protocol. Here, "opt ™ signifies that
the specified parameter is optional or nilable, to capture denial. The parameters
cID (the community’s ID) and mID (the member’s ID) are both adorned "in™
to indicate that the community and the member must already exist within
the given social environment. Also, mcID denotes the member’s membership
token for the relevant community.
Community Membership {

role Mod, Mem // Moderator , Member

parameter in cID key, in mID key, opt mcID, out

outcome
private request

Mem — Mod: requestAdmission[in cID, in mID, out
request |
Mod +— Mem: admit[in cID, in mID, in request,
out mcID, out outcome]

Mod — Mem: deny[in cID, in mID, in request, nil
mcID, out outcome]

Listing 4. The Resource Contribution protocol. Here, rID denotes a resource
ID; rID is adorned "in™ because the resource would already have been
commissioned before it is contributed to a particular community by a member.
Depending on the nature of the resources of interest, an alternative solution
would be to make both rLocation and rTtype public parameters adorned "in™
to signify that their bindings are determined elsewhere. Here, we assume that
the contributor places a resource at some location and sets the resource’s type,
and sends a contribute message about the resource.
Resource Contribution

role Mod, Mem // Moderator, Member

parameter in mcID key, in rID key, out

contributionID key, out outcome
private rlocation , rType

Mem +— Mod: contribute [in mcID, in rID, out
rLocation , out rType, out contributionID]
}

Listing 5. The Resource Discovery protocol. Here, rID denotes a resource
ID; rID is adorned "out™ because, although the resource would already have
been contributed to a particular community, its key would be generated for
the given episodelD for it to feature in a search result. rOwnerID is the mcID of
the contributor the given resource. The prospective user’s mcID is suppressed.
Resource Discovery
role Mod, Mem // Moderator, Member
parameter out episodelD key, out rID key, out
rOwnerID
private rlocation , rType
Mem — Mod: search[out episodelD , out
rLocation , out rType]
Mod — Mem: response[in episodelD , in
rLocation, in rType, out rOwnerID, out rID]
}

Listing 6. The Resource Negotiation protocol. Here, rID denotes a resource
ID; rID is adorned "in" because the resource is fixed for the negotiation before

it can feature in a search result.
Resource Negotiation

role User, Owner
parameter in rID key, out usagelD key, out outcome

User +— Owner: request[in rID, out usagelD]

Owner — User: permit[in rID, in usagelD, out
outcome |

Owner — User: denyl[in rID, in usagelD, out
outcome |

VI. EVALUATION: SERVICE REQUEST

The Service Request protocol [10] is used as a crucial pro-
tocol in a large cyberinfrastructure project for oceanography.
Figure 3 shows a corresponding UML sequence diagram that
clarifies the alternatives. Even though this is a simple protocol,
it shows errors for a fully distributed enactment, which we can
detect through a formalization in BSPL.

Listing 7. Reconstruction in BSPL of the original (unsafe) Service Request
protocol. To reduce clutter, we fold in parameters replyBy and content into the
parameter operation.
protocol OOI Service Request Unsafe {
role R, P
parameter out ID key, out operation , out result
private confirmation

R — P: request[out ID, out operation]
P — R: accept[in ID, out confirmation]|
P — R: reject[in ID, out confirmation , out

result]

R — P: cancel[in ID, out result]
P — R: fail[in ID, out result]
P — R: answer[in ID, out result]

Listing 7 is obtained from Figure 3 by capturing each
message with a key parameter and suitable payload parameters
based on the documentation. In addition, some of the messages
include parameters with suitable adornments to ensure the
stated sequencing requirements and the stated mutual exclu-
sion requirements. Applying the BSPL verification tool [3], we

X x

r:Requester p:Provider
request
[l [l
It o)
a accept
[T] I [l
=] 1=}
alt
cancel
[T] I I
[T] inform result
[T] failure
(T] reject
Fig. 3. The Service Request protocol. The guard T on each alternative

indicates nondeterministic choice, reflecting the autonomy of the participants.

discover that this protocol is unsafe. Specifically, it is subject
to a race condition. Both cancel and inform result may occur,
leading to a violation of integrity where the binding of result
is not unique among the agents enacting the protocol instance.

?”D — request
(Foquostor JRN BERECESS
clD I reject
?ID, operation, done |
Service ID
Request — forgetlt
I
?pID mID I— answer
— fail
— released

Fig. 4. A conceptual schema for Service Request.

Instead, if we apply Bliss to developing a service request
protocol given the requirements, we end up with Listing 8,
a safe and live design [3]. Below, “same” refers to the given
element being the same here as in Listing 7. Notice that the
way this protocol is set up (to satisfy the documentation) no
polymorphism is appropriate. Here, unlike in our variant of
NetBill, the provider does not take the initiative and generate
an answer for which the requester has not sent a request.

The parameters are these: (i) Key (same): ID; (ii) Payload
(same): operation and result; (iii) Completion (same): none
needed; (iv) Integrity (same): none needed; and (v) Control
(same): none needed. The messages are these:

e request. Same.
e accept. Same in principle, though repeating the parameters

from the request. (Section VII discusses the ReSTful style.)

« reject. Same.

o forgetlt. Uses an "out ' parameter releaseToken instead of result
so as to avert an integrity violation. Here, releaseToken is
a control parameter in Bliss. This message has a weaker
connotation than the cancel message in the original.

o answer. Like accept, repeats the parameters from request.
Uses the control parameter releaseToken to avoid an occur-
rence conflict that would cause an integrity violation.

o fail. Uses the control parameter releaseToken to avoid an
occurrence conflict to prevent an integrity violation.

« released. A message introduced to achieve completion (live-
ness [3]) that uses the control parameter releaseToken to create
an ordering dependency from forgetlt, so the PROVIDER
cannot release the REQUESTER unilaterally. The completion
parameter result serves double duty as a control parameter
preventing fail and released from both being sent.

Listing 8. The Service Request protocol, corrected.
protocol OOI Service Request Corrected {
role R, P
parameter out ID key, out operation , out result
private confirmation , releaseToken

R — P: request[out ID, out operation]

P — R: accept[in ID, in operation , out
confirmation]

P — R: reject[in ID, in operation , out
confirmation , out result]

R — P: forgetlt[in ID, in operation, in
confirmation , out releaseToken]

P — R: answer[in ID, in operation, in
confirmation , nil releaseToken , out result]

P — R: fail[in ID, in operation, in
confirmation , nil releaseToken , out result]

P — R: released[in ID, in operation, in
releaseToken , out result]

VII. DISCUSSION

Existing work on business protocols, e.g., [11], [12], con-
centrates on verifying their correctness with respect to tech-
nical properties. Previous works on BSPL [2], [3] address its
architecture and formal semantics. Bliss complements them
by addressing the important challenge of ensuring that the
protocols specified are valid with respect to the social object
we wish them to compute and flexible in how they do so.

In general, over-specifying a protocol is easy—by encod-
ing a concrete “happy” path. Existing protocols tend to fall
into this trap. Thinking about alternative enactments takes
more careful thinking. Bliss provides a conceptual model
and methodology based on the information content of social
objects that guides the requisite thinking and analysis to
capture flexible protocols. Consequently, it provides a robust
basis for declaratively capturing meanings of interactions.

Often, multiple formalizations are possible for the pay-
load of a message. In a ReSTful style, we would place
all parameters needed to express the meaning of a message
into the message explicitly, which simplifies the connection

between social meaning and the information carried by the
parameters. Notice that these would be the parameters needed
to compute the meaning, not all the parameters that might be
sent. An alternative formalization is to include only some of
the parameters needed for a message’s meaning explicitly in
the message. The included parameters would, of course, be
the key parameters of the message as well as the necessary
parameters that are not already bound to the key parameters
through some other, causally prior, messages involving the
sender and receiver of the current message. The remaining,
elided parameters would be recovered via a database join. The
benefit would be reducing communication redundancy to save
bandwidth or energy. For simplicity, we adopt the ReSTful
approach here, and thus ensure that each message includes
all the parameters needed to formulate its meaning. A post-
processing step may optimize protocols generated using Bliss
for message transmission costs.

A. Literature

The topic of design methodologies for service-oriented and
multiagent systems has garnered a lot of attention. Existing
methodologies [13], [14], [15], [16] consider high-level ab-
stractions such as goals and commitments and formulate steps
to create a service-oriented or multiagent system beginning
from an understanding of the requirements of stakeholders.
Despite their use of high-level concepts, they usually produce
protocols expressed as UML Sequence Diagrams [17] or a
similar procedural notation that limits the flexibility of the
participants. Given BSPL’s novelty in capturing interactions
purely via information, the existing methodologies do not
apply, which motivates us to propose Bliss.

Bliss is distinguished from other early-stage design method-
ologies by its emphasis on first capturing the notional social
object computed by a protocol enactment and then seeking pa-
rameter descriptions that help specify such an object. The more
typical approach is to proceed bottom up by identifying what
messages the participants might exchange before describing
what those messages jointly compute.

Parunak [18] advocates an approach for eliciting require-
ments wherein designers standing in for different stakehold-
ers imagine individual enactments (specifically, sequences
of messages exchanged); annotate the messages with their
relationships to one another and compute conversational struc-
tures from those relationships. Kalia and Singh’s [19] Muon
approach goes further by using commitments as a basis for
detecting and handling business exceptions. Bliss benefits most
from an understanding of the meaning of a protocol. It does
not require, but is assisted by, prior knowledge of the messages
exchanged and constraints on their orderings. However, Bliss
seeks to capture causally significant relationships as evinced
in the information transmitted in those messages. The focus
on meaning and causality helps avoid over-specification by
producing protocols that are not restricted to the particular
enactments that the designers happen to have imagined.

B. Directions

A possible way to enhance Bliss is to incorporate the
classical top-down stepwise refinement style. For example,
for Purchase, we may determine it involves Order Placement,
Payment, and Shipping. In the next step, one would refine each
of these protocols, thus identifying their constituent messages.
Then, the designer can think of any causality or consistency
constraints, and represent each constraint through suitably
adorned parameters. The designer can finally determine the
crucial requirements for each protocol. Bliss could benefit
from tool support that would facilitate deployment and ex-
tensive empirical evaluation in practical settings.

ACKNOWLEDGMENTS

This work was partially supported by the NSF under grant
0910868 and by NSF contract OCE-0418967 with the Con-
sortium for Ocean Leadership. I would like to thank Matthew
Arrott and Amit Chopra for helpful discussions.

REFERENCES

[1] M. P. Singh, “Information-driven interaction-oriented programming:
BSPL, the Blindingly Simple Protocol Language,” in Proc. AAMAS,
2011, pp. 491-498.

, “LoST: Local State Transfer—An architectural style for the

distributed enactment of business protocols,” in Proc. ICWS, 2011, pp.

57-64.

, “Semantics and verification of information-based protocols,” in
Proc. AAMAS, 2012, pp. 1149-1156.

[4] B. Cox, J. D. Tygar, and M. Sirbu, “NetBill security and transaction
protocol,” in Proc. USENIX Wkshp. Elect. Comm., 1995, pp. 77-88.

[5] P. Yolum and M. P. Singh, “Commitment machines,” in Proc. ATAL
2001, LNAI 2333, Springer, 2002, pp. 235-247.

[6] J. L. Austin, How to Do Things with Words. Clarendon Press, 1962.

[7]1 A. K. Chopra and M. P. Singh, “Constitutive interoperability,” in Proc.
AAMAS, 2008, pp. 797-804.

[81 M. P. Singh, “Formalizing communication protocols for multiagent
systems,” in Proc. IJCAI, 2007, pp. 1519-1524.

[9] M. Arrott,A. Chave, C. Farcas, E. Farcas,J. Kleinert, I. Krueger,

M. Meisinger, J. Orcutt, C. Peach, O. Schofield, M. P. Singh, and F.

Vernon, “Integrating Marine Observatories into a System-of-Systems,”

in Proc. MTS-IEEE Oceans, 2009, pp. 1-9.

OOIL “Generic service request protocol,” 2011, https://confluence.

oceanobservatories.org/display/syseng/CIAD+COI+OV+Service+

Request+Protocol.

T. Miller and P. McBurney, “Propositional dynamic logic for reasoning

about first-class agent interaction protocols,” Comp. Intell., 27(3):422—

457, 2011.

P. Yolum, “Design time analysis of multiagent protocols,” Data & Know.

Eng., 63(1):137-154, 2007.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,

“Tropos: An agent-oriented software development methodology,” J.

JAAMAS, 8(3):203-236, 2004.

T. Juan, A. Pearce, and L. Sterling, “ROADMAP: Extending the Gaia

methodology for complex open systems,” in Proc. AAMAS, 2002, pp.

3-10.

L. Padgham and M. Winikoff, “Prometheus: A practical agent-oriented

methodology,” in Agent-Oriented Methodologies, B. Henderson-Sellers

and P. Giorgini, Eds. Idea Group, 2005, ch. 5, pp. 107-135.

M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia methodology

for agent-oriented analysis and design,” J. AAMAS, 3(3):285-312, 2000.

Object Management Group, UML 2.0 Superstructure Specification,

2004, http://www.omg.org/spec/UML/2.0/Superstructure/PDF/

H. V. D. Parunak, “Visualizing agent conversations,” in Proc. ICMAS,

1996, pp. 275-282.

A. K. Kalia and M. P. Singh, “Muon: Designing Multiagent Communi-

cation Protocols from Interaction Scenarios,” J. AAMAS, 2014, pp. 1-32.

In press.

[2]

[3]

[10]

(11]

(12]

[13]

[14]

[15]

[16]
(17]
(18]

[19]

