
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2022) 36:16
https://doi.org/10.1007/s10458-021-09540-8

1 3

Mandrake: multiagent systems as a basis for programming
fault‑tolerant decentralized applications

Samuel H. Christie V1,2 · Amit K. Chopra1 · Munindar P. Singh2

Accepted: 14 December 2021
© The Author(s) 2022

Abstract
We conceptualize a decentralized software application as one constituted from autonomous
agents that communicate via asynchronous messaging. Modern software paradigms such
as microservices and settings such as the Internet of Things evidence a growing interest
in decentralized applications. Constructing a decentralized application involves designing
agents as independent local computations that coordinate successfully to realize the appli-
cation’s requirements. Moreover, a decentralized application is susceptible to faults mani-
fested as message loss, delay, and reordering. We contribute Mandrake, a programming
model for decentralized applications that tackles these challenges without relying on infra-
structure guarantees. Specifically, we adopt the construct of an information protocol that
specifies messaging between agents purely in causal terms and can be correctly enacted
by agents in a shared-nothing environment over nothing more than unreliable, unordered
transport. Mandrake facilitates (1) implementing protocol-compliant agents by introduc-
ing a programming model; (2) transforming protocols into fault-tolerant ones with simple
annotations; and (3) a declarative policy language that makes it easy to implement fault-
tolerance in agents based on the capabilities in protocols. Mandrake’s significance lies in
demonstrating a straightforward approach for constructing decentralized applications with-
out relying on coordination mechanisms in the infrastructure, thus achieving some of the
goals of the founders of networked computing from the 1970s.

Keywords Fault tolerance · Agent programming · Protocols

 * Samuel H. Christie V
 schrist@ncsu.edu

 Amit K. Chopra
 amit.chopra@lancaster.ac.uk

 Munindar P. Singh
 mpsingh@ncsu.edu

1 Lancaster University, Lancaster, UK
2 North Carolina State University, Raleigh, NC 27695, USA

http://orcid.org/0000-0003-1341-0087
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09540-8&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 2 of 30

1 Introduction

We conceptualize a decentralized software application as one that involves two or more
autonomous endpoints, or agents. We assume a communication infrastructure based on
asynchronous messaging since that reduces coupling between the agents. Although our
approach could be realized on more restrictive infrastructures, for generality, we focus on
asynchrony without ordering guarantees.

We observe two motivations for decentralization. First, decentralization reflects auton-
omy in the overarching social architecture of an application [21]. Applications in domains
such as e-commerce, finance, and healthcare span multiple autonomous real-world parties.
Second, decentralization reflects loose coupling in the technical architecture. The micros-
ervices paradigm [41] supports developing, deploying, and scaling microservices indepen-
dently of each other. The Internet of Things (IoT) motivates decentralization in both social
and technical terms [36, 54] by bringing forth interactions between devices owned by two
or more parties and by technologies such as fog computing that distribute information pro-
cessing and storage [43].

However, getting decentralized applications right is extremely difficult. Asynchrony and
faults make coordinating the computations of an application challenging. This challenge is
exacerbated when, as in open applications, agents represent autonomous real-world parties
and are independently constructed. Further, autonomy motivates flexibility in interactions
[58]; however, flexibility itself is in tension with ease of coordination [8, 56].

In conventional approaches for building distributed systems, coordination, including
consistency and fault tolerance, is addressed in an application’s communication infrastruc-
ture via guarantees for reliable and ordered delivery of messages. TCP, e.g., implements
complex reliability and ordering mechanisms. Already there is a move away from TCP
in several domains for performance reasons. E.g., in the IoT, lightweight communica-
tion services such as CoAP [50] are preferable to TCP-based protocols such as HTTP and
AMQP [1]. Performance though is not the only reason move away from complex com-
munication services. There is a fundamental systems principle, the end-to-end model [47],
that argues against reliability and ordering guarantees fixed in the infrastructure. The argu-
ment is twofold. One, such guarantees turn out to be redundant considering what must be
implemented at the application level to make an application robust. Two, and worse, they
interfere with application meaning [19], which lies in the application domain and refers
to how users make distributed decisions in practice. Specifically, infrastructure guarantees
hamper flexibility by preventing agents from observing some sequences of events (and
thus computations) that are legitimate from the application perspective and that agents
could benefit from in practice. Traditional fault tolerance, in particular, is not meaningful,
because it is transparent to the application and neither influences nor considers agent deci-
sions. Naturally, a communication service that has redundant features and interferes with
application reasoning is likely to result in poorer performance than if concerns of consist-
ency and fault tolerance were left to the application.

1.1 Contributions

This paper addresses the challenges of building robust decentralized applications in a
manner compatible with the end-to-end model. In particular we contribute Mandrake,
a set of techniques that demonstrates how a fault-tolerant decentralized application can

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 3 of 30 16

be realized as a multiagent system sitting on top of an infrastructure that provides nei-
ther ordering nor reliability guarantees. Mandrake is based on the insight that to sup-
port meaning, a decentralized application must be modeled via a declarative informa-
tion protocol [52]. An information protocol captures the interactive part of application
meaning by constraining an agent’s emission of messages based purely on its local
information state, which is essentially the agent’s history of communications. Recep-
tions, by contrast, are unconstrained. Specifically, an agent may receive messages sent
by others in any order. An agent’s decision making (which would generally rely both on
its local state and internal state) is up to the agent’s implementation. Taken together, the
possibility of an agent receiving messages in any order and processing them in accord-
ance with its own decision making are crucial to realizing application meaning.

Such an application architecture provides an opportunity to introduce meaningful
fault tolerance—that is, fault tolerance based on information available to agents and
incorporated in their decision making. In particular, it enables understanding a fault as
the violation of an expectation of an agent to receive some information from others and
fault tolerance as what agents do to prevent or handle the violations.

Concretely, Mandrake makes the following technical contributions.

• A transformation language for extending protocols with common communication
patterns that enable fault tolerance, such as forwarding information.

• A high-level programming model that enables realizing agents that enact informa-
tion protocols. The programming model motivates a specific agent architecture and
is realized via a concrete API for implementing agents.

• A declarative language for specifying fault tolerance policies, to simplify the devel-
opment of robust, application-specific agents.

Mandrake builds upon recent contributions that take advantage of information proto-
cols to enable application-level fault tolerance. Fault tolerance based on information
protocols was first proposed in [22]. Christie et al. [24] demonstrate that information
protocols enable constructing agents that can recover from message loss; however, the
programming model support for constructing such agents was limited to message vali-
dation. It provides neither an API nor a language for specifying fault tolerance policies.
Bungie [23] informally presents fault-tolerance patterns that can be applied to informa-
tion protocols to obtain more robust protocols. Mandrake formalizes those intuitions in
a transformation language.

1.2 Organization of the paper

Section 2 describes a health care scenario, and gives a protocol specification. Sec-
tion 3 describes the need for fault tolerance, specifically at the application level, and
describes the annotations we introduce for transforming protocols to support fault tol-
erance. Section 4 describes our proposed programming model, including architecture,
agent programming API, and a declarative fault tolerance policy specification language.
Section 5 gives a conceptual evaluation and comparison with the Jason agent program-
ming framework. Section 6 contrasts Mandrake with related work in the areas of fault
tolerance, services, and MAS development. Section 7 summarizes our conclusions and
identifies several directions for future work.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 4 of 30

2 Scenario specification

Our running example is a simple medical treatment scenario: The patient may send
a complaint to the doctor describing the symptoms they have been experiencing. In
response, the doctor may send a prescription to a pharmacist, who fills the prescription
for the patient.

Listing 1 gives a specification of a basic prescription process at the interaction level
written in the information-based protocol language BSPL [52].

An information protocol specifies an interaction in terms of messages between roles,
the information those messages carry, and causality and integrity constraints on those
information parameters.

The Treatment protocol involves three roles (Patient, Doctor, and Pharmacist) and
consists of four messages between these roles. Each message has a payload of param-
eters that can be adorned ⌜��⌝ , ⌜���⌝ , or ⌜���⌝ , and of which at least one must be a ��� .
These parameter adornments define causality constraints on the basis of whether or not
a binding for that parameter is known. Parameter bindings occur within the context of
an enactment identified by the bindings of ��� parameters; within an enactment, each
parameter may be bound only once for integrity. All constraints are on the emission of
messages; message reception is unconstrained except that a message must be emitted to
be received.

Parameters adorned ⌜���⌝ create new bindings and so must not already have a bind-
ing when the message is sent; for example, Patient creates a new binding for symptom
when they send Complaint. Parameters adorned ⌜��⌝ identify dependencies, and their
binding must be known before the message can be sent; for example, Doctor cannot
send Prescription until they know the binding of symptom. Finally, ⌜���⌝ parameters
prevent a message from being sent if a binding is known; for example, the ⌜���⌝ Rx
in Reassurance prevents Doctor from sending it if they have already sent Prescription
(which binds Rx).

Patient can begin an enactment of Treatment by sending Complaint, which has no
⌜��⌝ parameters and thus no dependencies. Sending Complaint introduces new bind-
ings for the sID and symptom parameters because they are adorned ⌜���⌝ . Once Doc-
tor observes the binding for sID and symptom, they have enough information to either
send Reassurance or Prescription. Doctor chooses between Reassurance and Prescrip-
tion: Reassurance binds done which blocks Prescription, and Prescription binds Rx

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 5 of 30 16

which blocks Reassurance. A protocol enactment is complete when all its public ⌜���⌝
parameters are bound, so Reassurance completes the enactment of Treatment when it
binds done. If Doctor chooses to send Prescription instead, the enactment is completed
when Pharmacist sends FilledRx and binds done.

Correlation based on key parameters makes duplicated messages idempotent; only the
first reception results in a new observation. Correlation is the basis for handling multiple
complaints concurrently; each Complaint message has its own sID, and is thus either a
duplicate (and ignored) or the beginning of a distinct interaction. Importantly, key-based
correlation makes information protocols robust against message reordering, since messages
are interpreted by their contents instead of their order.

Key parameters model semantic identifiers, that is, meaningful identifiers for correlation
that are part of the application domain. The use of semantic identifiers for correlation and
idempotence is not novel, but it is commonplace to rely on arbitrary syntactic identifiers
instead—for example, AMQP’s correlation ID is a single parameter external to the mes-
sage (and thus not meaningful within the interaction) for correlating request/response pairs.
[20]. De Graauw [29], e.g., notes the limitations of using reliable messaging protocols for
Web services and advocates using semantic identifiers for idempotence and fault tolerance.
BSPL provides language features for modeling semantic identifiers, enabling programming
models such as Mandrake that can exploit them for correlation.1

3 Fault tolerance

Under ideal conditions, the above protocol sufficiently specifies the system: each partici-
pant is enabled to perform the actions necessary for filling the prescription, yet constrained
from doing things they shouldn’t, such as producing inconsistent bindings.

However, if any of the messages is lost, or if an agent does not perform an expected
task (e.g., doctor fails to send the prescription), then the prescription will not be filled. We
want to ensure that the patient will eventually get their medication, even if some things go
wrong.

This concept of maintaining correctness and progress despite faults is fault tolerance.
However, most work on fault tolerance, which we shall call infrastructure-level fault toler-
ance, has been focused on addressing the sources of faults rather than achieving the desired
outcome. This can be seen from the cause-based perspective of the most common fault
tolerance taxonomies [6]. The resulting methods are independent of the application, and
either focused on specific errors (e.g., memory faults) or generic solutions (e.g., redundant
components with automatic failover). Instead, we focus on application-level fault toler-
ance, using higher-level concepts to work directly toward the desired outcome.

Take Patient’s submission of a complaint for example. An infrastructure-level approach
might be to use TCP, which automatically resends packets until they are acknowledged to
recover from packet loss during transmission. However, infrastructure-level acknowledg-
ments are basically meaningless, because they are not produced intentionally by the agent.
Such acknowledgments cover the smallest possible amount of progress, mere transmission,
without verifying that the agent has received, accepted, or processed the messages.

1 ⇐ r3 ∶ semantic − identif iers.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 6 of 30

3.1 Application‑level fault tolerance

An application-level approach should both reassure that progress is being made and help
the agent recover from problems. For example, the doctor could forward a copy of the
Prescription to the patient. The forwarded prescription both proves that progress has been
made, and enables new recovery options for the patient, as the patient can now forward the
Prescription directly to the pharmacist. If all goes well the agents directly interact with
each other for maximum efficiency, but if something goes wrong the patient knows where
and how to resume the enactment.

Meaningful communication is helpful for fault tolerance, because it supports and
informs agent expectations based on the protocol. After submitting a complaint, Patient
expects to receive either reassurance or a filled prescription. If this expectation is not met
within a reasonable time (as determined by Patient), Patient may assume that something
has failed and attempt recovery, perhaps by resending their Complaint to the doctor, or by
more directly pursuing the fulfillment of their prescription and contacting the pharmacist.

3.2 Approach overview

After identifying the completion requirements and agent expectations from the protocol,
we propose using the following communication patterns to add robustness to a MAS and
support fault tolerance:

1. (Remind) Retry sending messages to recover from failed expectations;
 e.g., remind Doctor of Complaint.
2. (Checkpoint) Forward intermediate information to an agent with expectations, so they

are aware of progress;
 e.g., forward Prescription to Patient.
3. (Continue) Forward intermediate information to continue from checkpoint, instead of

redoing work;
 e.g., forward Prescription from Patient to Pharmacist.

These patterns are implemented by adding messages to the protocol, to capture the addi-
tional actions that can be taken. Although these changes could be made directly to the
protocol, we propose the use of syntactic transformations applied to the protocol. Such
transformations enable capturing the higher-level semantics of the change being made, and
reduce the effort required for implementing these patterns by abstracting them. Thus, trans-
formations represent a middle-ground compromise between directly modifying the exist-
ing protocol (fully backwards-compatible, but loses information about the transformation
made), and developing a new protocol language that incorporates concepts such as retries
or forwarding directly (which sacrifices backwards compatibility, both at the implementa-
tion and theoretical levels).

The following subsections show how to transform the protocol to support these patterns,
and implement agent policies to use them.

3.3 Transforming protocols via annotations

To support fault tolerance, we can extend the protocol to include additional messages that
enable the agents to make progress despite faults. These additional messages are working

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 7 of 30 16

toward existing objectives and thus ultimately communicate the same information, so they
can be derived from existing messages according to common patterns.

Although we could take advantage of the idempotence of information-based proto-
cols and resend the original messages, we instead construct new messages for two rea-
sons: First, a new message conveys the information that there is an attempted recovery. The
message may introduce a new key parameter to permit multiple distinguishable recovery
attempts. Second, new messages can add completely new communication patterns, such
as having the Patient forward a copy of their prescription directly to Pharmacist instead of
asking Doctor to resend the prescription.

To reduce the effort of adding messages to a protocol, we introduce the concept of tool-
ing-supported protocol transformations. A transformation takes a protocol and adds mes-
sages according to the designer’s specifications. In the following listings, we give examples
of transformations applied to messages from Treatment, followed by the output each trans-
formation produces.

Our primary protocol transformation pattern is the forward, which resends some infor-
mation from one agent to another; possibly though not necessarily between the original
agents. The forward transformation is the basis for all three of our patterns mentioned in
Sect. 3.2. For example, the Patient can remind Doctor about their symptoms by forwarding
the Complaint if they don’t receive any treatment. We forward messages in our protocol
using another message containing all the same parameters plus a new key to identify the
instances of forwarding.

Listing 2 shows the @forward transformation. The annotation has three arguments:
the recipient to forward the message to, the name to use for the new message, and a new
key parameter. To support multiple forwards relaying the same message, the annotation
can also take a from argument. Expanding this reminder transformation produces the
Reminder message, which contains the same parameters as the original Complaint mes-
sage, plus the new key.

For some patterns we provide additional shorthand. For example, as Listing 3 shows,
to support the Remind pattern, @remind is shorthand for forwarding a message from the
original sender to the original recipient.

Note that transformation can generate message and key names if they are not provided.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 8 of 30

The examples of forwarding in Listings 2 and 3 are direct, between the original sender
and recipient. In larger multiparty protocols, however, indirect reminders can greatly
increase the range of possible fault recovery actions. By indirect reminders, we mean
reminders received from an agent other than the original sender. Indirect reminders are
used in the Checkpoint and Continue patterns. For example, the Doctor may give Patient
a copy of the prescription (Checkpoint), to enable Patient to remind Pharmacist about the
prescription directly (Continue). Indirect reminders are simple but powerful concepts for
application-specific fault tolerance, endowing parties with necessary local information to
directly respond to faults or follow up on incomplete tasks.

We further support indirect reminders through two additional transformations, route
and gossip:

The @route annotation takes as parameters a sequence of intermediary agents through
which to route the forwarding of a message, and expands to a sequence of forwards. In the
example in Listing 4, @route is used to generate messages enabling Doctor to forward the
prescription to Patient, who can then forward it again to Pharmacist.

Similarly, the @gossip transformation generates a complete transmission graph among
a set of roles (defaulting to all roles), so each peer can forward a message to its neighbors
to eventually reach everyone. Gossip is distinct from the concept of broadcast, which has
the source directly transmit to all recipients. Listing 5 shows how applying the @gossip
transformation to the Prescription message adds new forwarding messages to the protocol
so that any of the agents can forward it to the others. The gossip transformation enables

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 9 of 30 16

the agents to enact any propagation policy they choose, and can be an effective means of
transmitting messages if the topology of the network changes over time (as it would with
agent failure) [48].

4 Programming model

Figure 1 shows the architecture of a Mandrake agent. Each role in a protocol has a logi-
cal skeleton consisting of the messages it is enabled to send and receive; this skeleton is
provided by the adapter components below the center line. An operational agent fleshes
out this skeleton with internal business logic that drive its interactions with other agents
by determining when to send a message and what to do with received messages. Such
logic may be either proactive or reactive, forming the respective architectural components
framed in dashed red lines. The internal logic would typically rely on private internal state,
e.g., as encoded in internal databases.

Proactors Reactors

Local State

Internal State

Checker

Receiver Emitter

Agent Internals
Adapter

messages messages

query,
update

parameter
bindings

m
es
sa
ge

s

re
ce
pt
io
n
ev
en

ts
m
es
sa
ge

s

read write

parameter
bindings

read write

parameter
bindings

Fig. 1 Agent architecture

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 10 of 30

The Adapter serves as the interface through which each agent interacts with other
agents, enforcing compliance by checking incoming and outgoing messages against what
the agent knows about the protocol and previously observed messages. The Adapter con-
sists of the following components:

• Local State, which is responsible for storing the interaction history as observed by the
agent.

• Checker, which processes incoming and outgoing messages to update the Local State
after verifying that they satisfy protocol constraints.

• Emitter and Receiver, which handle the physical transmission of messages, forwarding
parsed messages to the Checker.

The implementation and configuration are up to the system designers, but could be made
using components from a standard library such as our reference implementation.

The remaining components constitute the agent internals:

• Internal State, independent of the agent’s interactions
• Policy components: Proactors and Reactors, which emit messages based on internal

triggers (such as a schedule) and message reception events respectively. These compo-
nents can access but not modify the Local State.

We have developed a reference implementation of Mandrake in Python, which is available
at https:// gitlab. com/ masr/ mandr ake. Our reference implementation realizes the program-
ming model primarily as API functions provided by an adapter library. These API func-
tions, listed in Table 1, are all that is required to implement an agent.

Our example listings are also written in Python using the reference API, and many
of them are taken from the example treatment scenario implementation in the above
repository.

Table 1 The Mandrake API for programming agents

Function Purpose

adapter(⟨����⟩ , ⟨��������⟩) Initialize an adapter with a protocol specification and role,
so it can check incoming and outgoing messages accord-
ing to that role’s perspective

adapter.register_reactor(⟨������⟩,⟨�������⟩) Register a function as a reactor for a schema; whenever that
schema is observed, handler is invoked

@adapter.reaction(⟨������⟩) Decorator syntax for registering a function definition as a
reactor

⟨������⟩(⟨���������⟩...) Construct a message instance according to a schema from
the protocol, using keyword arguments to bind parameters

⟨������⟩.match(⟨���������⟩...) Get all enabled instances for a message that match the
provided parameters, which are usually usually keys

⟨��������⟩.bind(⟨���������⟩=⟨�����⟩...) Bind multiple parameters at once; an individual parameter
can be bound via property assignment

adapter.send(⟨��������⟩) Send a message instance to the recipient specified in the
protocol

adapter.start(⟨����⟩...) Start the adapter, listening for incoming messages and run-
ning asynchronous tasks such as proactors

https://gitlab.com/masr/mandrake

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 11 of 30 16

4.1 Reactors

Reactors are policy components that are registered with the Checker and invoked by the
Checker in response to protocol events such as sending or receiving a message.

Listing 6 shows a reactor declaration for the Complaint message in the Patient agent.
Potentially, the role skeleton (describing its reactors) could be automatically generated by
tooling from a protocol specification.

Listing 7 shows a possible complaint reactor implementation, that gets an instance of
the Prescription message corresponding to the same enactment, binds its Rx parameter to
aspirin, and sends it. Requesting a message instance from the enactment automatically
fills the known ⌜��⌝ parameters; in this case ID and symptom.

4.2 Proactors

Proactors are policy components that are not invoked by the Checker; they could be run
according to a schedule or some other internal trigger. Proactive policies are necessary for
initiating an enactment, because there are no prior events to react to, but other messages in
a protocol may also be sent proactively.

For example, to generate the initial Complaint in the Treatment protocol, Patient could
use the following proactive policy function:

The Complain function is not automatically invoked in reaction to an event, but must
be proactively invoked by the agent to initiate the interaction. Perhaps Patient invokes

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 12 of 30

Complain through a suitable user interface, such as a mobile app. Within Complain, a
Complaint message is constructed, passing in the ID and symptom. Because a Complaint
message initiates a new enactment, it can be constructed directly from parameters instead
of derived from previous observations. Finally, the adapter sends the message.

4.3 Utilizing transformations via agent policies

Once a protocol has been extended either manually or via transformations to support infor-
mation forwarding and thus fault recovery, the agents need policies to send the messages at
the right times.

Listing 9 implements a simple reactor in the Doctor for forwarding the Prescription
message. When Doctor sends Prescription, a copy is made with an additional fwdID key,
and forwarded to Patient.

Reminder policies are more complicated and challenging to write by hand, since
reminders are normally only sent for known messages that have not yet been responded to,
often according to a schedule.

Listing 10 shows how a reminder policy might be implemented in the Patient. The func-
tion loops indefinitely, but sleeps until noon each day. At the appropriate time, it scans the
history for all sent Complaint messages, and sends a reminder for those that do not have a
treatment, as evidenced by the observation of a Reassurance or FilledRx message.

Other policies, such as those for the @forward, @route, and @gossip transforma-
tions, can be implemented similarly. Fundamentally, every policy either reacts to a message

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 13 of 30 16

reception (and can use the relevant enactment history) or proactively generates messages
according to a schedule.

4.4 Declarative policy specification

Because some fault tolerance policies are common and potentially complex to write
directly in low-level proactor and reactor code (e.g., sending reminders, as illustrated in
Listing 10), we have implemented a declarative domain-specific language for specifying a
class of fault tolerance policies. Instead of implementing the corresponding proactors and
reactors, developers can instead specify rules in the language.

4.4.1 Syntax

In the syntax description below, indicates a line break, and brackets indicate optional-
ity. Monospace tokens and quotations are parsed literally, and italic Tokens are terms. +
indicates the object should be matched one or more times.

L
1

 Each agent is given a list of policies, with each entry at the same indentation level
prefixed by a hyphen and space

L
2

 Each policy consists of several clauses: an ’action’ clause, and additional condition
clauses. The clauses are given by a keyword followed by a colon and space (‘: ’), and
then the body of the clause, usually one clause per line.

L
3

 The body of an action clause itself consists of parts: an action to perform, a list of
messages, and optional destination, delay, and preposition subclauses.

L
4

 The various actions have slightly different structures

L
5

 The event subclause of an action identifies an event to react to or wait for

L
6

 A When clause describes the schedule for invoking a proactive policy, in traditional
cron notation or some frequency in seconds; this clause is left off for reactive policies.

Action ⟶ (remind|forward|broadcast)

[𝚊𝚏𝚝𝚎𝚛 n 𝚜𝚎𝚌𝚘𝚗𝚍𝚜]

[𝚞𝚗𝚝𝚒𝚕|𝚞𝚙𝚘𝚗 events]

remind ⟶𝚛𝚎𝚖𝚒𝚗𝚍 role 𝚘𝚏messages

forward ⟶𝚏𝚘𝚛𝚠𝚊𝚛𝚍messages 𝚝𝚘 role

broadcast ⟶𝚋𝚛𝚘𝚊𝚍𝚌𝚊𝚜𝚝messages

events ⟶ event ((𝚘𝚛|𝚊𝚗𝚍) event)+

event ⟶ (𝚛𝚎𝚌𝚎𝚒𝚟𝚎𝚍|𝚍𝚞𝚙𝚕𝚒𝚌𝚊𝚝𝚎)messages

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 14 of 30

L
7

 A cron string specifies a period using 5 fields: minute, hour, day, month, weekday.
Each field is either a number, or an asterisk (*), meaning ‘every’. Field may also be
restricted with ∗ ∕n , meaning ‘every nth’. Multiple values can be provided for each
field, separated by commas.

 For example, ‘30 12 */2 * *’ means ‘every other day at 12:30’.

4.4.2 Examples

Listing 11 shows a policy specification for Patient to remind Doctor about the complaint by
forwarding Doctor a new copy of the message on the first of each month. When loaded into
Patient’s adapter, this policy specification creates a new Scheduler set to run every day, and
registers a generated handler that sends the appropriate reminder.

The agent implementation needs to know which message to use for sending a reminder
or forward. To avoid coupling the agent implementations, we use an explicit, declarative
mapping specification instead of an implicit naming convention:

These mapping relationships can be automatically generated by tooling as part of the
protocol transformation process.

Besides scheduled actions, the language can specify reactions, such as automatically
forwarding information immediately when it becomes available:

When ⟶ cron string | (𝚎𝚟𝚎𝚛𝚢 n 𝚜𝚎𝚌𝚘𝚗𝚍𝚜)

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 15 of 30 16

The reactive policy in Listing 13 automatically forwards the Prescription message to
Patient when it is observed; that is, right after sending it to Pharmacist. The policy regis-
ters a reactor for the Prescription message that generates a corresponding FwdPrescription
according to the map and sends it.

The second specification uses the keyword remind as an alias for the generic forward
action, and generates two policy components for Patient: a proactor for reminding Doc-
tor of the complaint, and a reactor for Prescription and Reassurance that deactivates the
reminder for the corresponding complaint after receiving one of those two messages. Thus,
this policy will stop sending Doctor reminders after the expectation for a treatment is ful-
filled, where Listing 11 would continue indefinitely.

These simple policies can be used to construct flexible fault recovery strategies by send-
ing reminders until receiving evidence of progress. For simplicity, forwarding sends the
message to all potential recipients by default if no recipients are explicitly specified. Simi-
larly, if a policy does not explicitly specify a condition, it implicitly reacts to the concerned
messages. For example, forward Prescription automatically forwards Prescription
(e.g., by sending FwdPrescription) to all potential recipients immediately after Prescrip-
tion is observed (sent).

Listing 14 shows how remind and forward can be combined to enable more effective
recovery, adding new policies for Patient and Pharmacist to those in Listing 13. Because
Patient is the stakeholder desiring FilledRx, it is the best party to judge whether the task
has been completed. Forwarding Prescription to Patient gives Patient direct recourse to
address a delayed or lost prescription by reminding Pharmacist directly. If Prescription is
lost, the reminder gives Pharmacist the information necessary to send FilledRx. If FilledRx
is lost instead, the reminder prompts Pharmacist to resend it.

5 Evaluation

We evaluate our work conceptually, by explaining how our approach supports application
meaning; comparatively, by contrasting it with what would be possible in another MAS
framework; and experimentally, by demonstrating how application-level fault tolerance can
be effective, practical approach.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 16 of 30

5.1 Conceptual evaluation

Our primary contribution is an interaction-oriented programming model designed to
support application-level fault tolerance, whose primary competitors are infrastruc-
ture-level techniques and ad hoc solutions. Although performance comparisons could
be made between our work and examples of competing approaches, such a comparison
would at best risk comparing poor versions of each, but would also make a category
error. As such, we further develop our argument here regarding the necessity of applica-
tion meaning and interaction specifications, and show the necessity for an approach like
Mandrake.

5.1.1 Application meaning

To understand our contribution, it helps to take a quick look at the history of networked
applications. The creators of the IP standard, for example, recognized the criticality of
application meaning [26]. They observed, correctly, that application meaning varies across
applications. Thus, it appeared to them that there would be no systematic way to support
application meaning through network abstractions. However, they also saw the need for
abstractions. Accordingly, they chose to provide a connection abstraction with reliability
and ordering. TCP realizes this abstraction. It supports client-server programming, which
relieves programmers of having to model complex interactions and creates the illusion of a
distributed finite state machine. The solution was known to be suboptimal even at that time
because it violates the end-to-end principle that some of the same researchers had recog-
nized and articulated [47]. In particular, client-server programming is ill-suited to decen-
tralization because it is at odds with the idea of the endpoints carrying out their respective
computations largely independently of one another with coupling only where necessary.

In a nutshell, then, computing has faced the dilemma of a design choice between (a)
accommodating application meaning but at the cost of working directly on low-level
abstractions and (b) using programming abstractions that hide network behavior but at the
cost of a more restrictive communication layer that largely subverts decentralization.

We respond to the above dilemma by adopting the abstraction of an information proto-
col. A protocol captures the part of an application’s meaning concerned with how its end-
points interact, leaving their internal details of each endpoint completely hidden. Moreo-
ver, an information protocol captures only the essential causal and integrity constraints to
achieve a successful interaction—i.e., judged successful according to application meaning.
By avoiding spurious constraints, a protocol provides the most flexible computations with
respect to application meaning. An abstraction based on protocols is thus both generic and
avoids spurious restrictions.

5.1.2 Potential causality

Research on implementations based on the dominant paradigm of potential causality [40]
seek to provide even stronger communication guarantees, such as the ordering observed
by distinct endpoints being totally ordered [13]. However, potential causality imagines
internal causal connections in an application: a message being sent is assumed to be caus-
ally subsequent to any previously received message. Thus, it inherently overestimates the
causal relationships. Overestimating the casual relationships leads to well-known problems

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 17 of 30 16

as brought forth by Cheriton and Skeen [19]; Birman originally resisted this point [12] but
has recently acknowledged it in essence [11].

In contrast, information protocols as adopted here capture the true causality for each
application, though abstracted to the causal connections inferred from interactions without
regard to internal computations. In this way, information protocols take the opposite stance
on causality and avoid the problems of potential causality.

5.2 Comparison: Jason

A significant part of Mandrake is the programming model, which is intended to simplify
agent development, with a special focus on supporting application-level fault tolerance. To
evaluate the programming model, we compare it to Jason [17], the agent programming por-
tion of the JaCaMo framework [15]. We compare our work with Jason for these reasons:
to show that a popular existing approach does not support application-level fault tolerance
(novelty), yet would benefit (significance); and to describe how our work might be applied
to other platforms than our own reference implementation (generality).

Jason is an implementation and extension of the AgentSpeak [16] programming lan-
guage that provides logic programming techniques for building agents according to the
Belief-Desire-Intention (BDI) model [51]. Mandrake’s programming model focuses on
supporting the interactive aspects of an agent, leaving the internal decision-making to be
plugged in; a BDI model could be used to provide decision-making for a Mandrake agent,
perhaps using the python-agentspeak library. We have not implemented a BDI reasoner for
any Mandrake agents, but parameters learned through message observations match well
with terms in a belief base; and Mandrake’s support for both proactive and reactive logic
should be able to accommodate any reasoner.

5.2.1 Model

Jason is a high-level system for agent development, organizing actions into plans and goals,
and using communication abstractions to directly exchange beliefs with other agents and
select an action based on the current beliefs. Since communication is abstract, multiple
infrastructures can be used for communication, such as a centralized mode for local devel-
opment, or the JADE agent development framework. JADE in turn can be configured to
use multiple transport protocols for sending messages, including HTTP, XMPP[32], and
JMS[27]. Each of these protocols aims to provide reliable communication at the infra-
structure level; HTTP for instance is based on TCP, which resends packets until they are
acknowledged. This approach is effective at dealing with uncommon short-term and seem-
ingly random packet loss.

Protocols are not a first-class abstraction in Jason; instead, communication patterns are
coded as part of the agent logic, coupling the agent implementations. Nor are protocols
often used as an external specification to guide development, so interaction correctness
cannot be verified.

However, Jason’s declarative logic programming style is compatible with an informa-
tion-based implementation, and provides flexibility that can help with asynchronous mes-
sages. If they are properly used, Jason’s rule-based intentions can match the corresponding
events regardless of the order they occur, and multiple permutations can be handled with
only a few lines.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 18 of 30

5.2.2 Fault tolerance

Neither Jason nor JADE has specific support for application-level fault tolerance. As such,
any fault tolerance will be ad hoc and must be replicated for each message. The code to
implement timeouts and retries can easily begin to outweigh the primary interaction logic.
However, even if fault tolerance is not supported by the language, the concept of applica-
tion-level fault tolerance is still important, and a variant of the Mandrake methodology can
still be useful.

Plans should be written to progress according to available knowledge instead of simple
sequences. For example, instead of sequentially handling the steps of a protocol as in the
Contract Net example included with Jason, make each step a separate intention triggered
by a belief, such as the arrival of all bids. This decouples the steps and makes it easier
to enter them from multiple paths, such as a recovery path, by simply setting the correct
beliefs. Then plans should be augmented to track expectations, triggering a recovery plan if
the expectation is not met.

This methodology should enable application-level fault tolerance, even if the implemen-
tation is manual and tedious. Jason’s support for Java extensions could enable the imple-
mentation of a library for Mandrake similar to our Python version.

5.3 Experimental results

We have implemented the system, and performed lightweight experimental evaluations to
demonstrate its existence, and possible strengths and weaknesses of the proposed recovery
patterns. These experiments were performed using a Linux VM on a laptop, and are not
expected to demonstrate best-in-class performance.

The experiment features two parameters: the recovery policies, and the loss rate. The
results are displayed in multiple subfigures grouped by the statistic being analyzed: the
total enactments completed within the 30 second timeout, the number of messages emitted
by Patient, the number of packets sent by Patient, and the rate at which each policy com-
pleted its enactments.

The policies examined are (1) a simple reminder policy (referred to as Retry), where
Patient reminds Doctor of Complaint if their expectation for FilledRx is unmet, and Doc-
tor and Pharmacist correspondingly resend any matching messages when reminded to do
so, and (2) a checkpoint policy. For the checkpoint policy, Patient reminds Doctor of their
complaint until they receive either a copy of their prescription or its fulfillment. Once
Patient has received a copy of the prescription, it no longer reminds Doctor but forwards
the prescription directly to Pharmacist; the idea being that if the Doctor is busy or unreli-
able, sending directly will be faster. Once Patient has forwarded the prescription to Phar-
macist, they continue reminding Pharmacist of the prescription until it is filled.

These two policies represent conservative and augmented information flows, respec-
tively. The conservative approach, implemented as a simple reminder policy, only sends
information along the original pathways provided by the protocol; e.g. the patient only
interacts with the doctor. The conservative retry policy is still an application-level policy,
but it is somewhat restricted. The checkpoint policy is more proactive, augmenting the pro-
tocol with alternative information flows: the patient can now communicate with the phar-
macist directly. One objective of this experiment is to show that when implemented cor-
rectly, the augmented flows can be at least as good as a basic reminder flow.

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 19 of 30 16

The loss rate is the probability that any message sent by a given agent is lost. We simu-
lated losses of 1%, 5%, and 25% (for a consistent factor of 5 between tests), to see how the
statistics scale under simulated conditions representing UDP packet loss during transmis-
sion, or overwhelmed agents. UDP loss in a network rarely more than a few percent, but
more extreme loss rates were included to make the effects of greater loss more apparent.2
Instead of simulating all combinations of agent loss rates, we focused on several cases: no
loss, one lossy agent with the others unaffected, both non-Patient agents being lossy (since
it’s the one doing the recovery) and all emissions equally lossy. Each of these cases is rep-
resented by a separate subfigure, with the label indicating which agents are lossy for that
expe.riment. During a given step, all lossy agents are set to have the same loss rate.3

The experiment was run for five iterations for each combination of loss configuration
and recovery policy, to average the results. The sample standard deviations were calculated
and included in the graphed data, but are too small to see. The Patient was configured to
send 1000 complaints, and expect responses within 1 second (that is, run its recovery poli-
cies every second, and wait at least one second before resending a message). Clearly unre-
alistic for even the most impatient hypochondriac, but still useful as a simulation because
our focus is on message loss and recovery. An iteration of the experiment would end as
soon as all the enactments were complete, or it had no recovery policy and had not com-
pleted any enactments for more than one second. There was also a 30 second timeout that
was rarely reached.

Figure 2 shows the total number of enactments completed by each policy for each loss
configuration. Both recovery policies were effective at recovering from loss in all cases
shown here. We include the results for the cases where the patient does not employ a retry
policy to show that completion decreases proportionally to cumulative loss, as expected.

Figure 3 shows the number of message emissions Patient made for each policy and loss
configuration. Without any loss, exactly 1,000 messages are emitted. Here we see a slight
difference in performance between the two recovery policies. Both have to send additional
messages to recover from loss, but the basic retry policy is sensitive to the loss rates of
both Doctor and Pharmacist, whereas the checkpoint policy is much less sensitive to Doc-
tor’s loss rate. The checkpoint policy never performs worse than the retry policy, and out-
performs it to the greatest extent when only Doctor is lossy. This is because Doctor will
sometimes succeed in sending a copy of the prescription to Patient even when failing to
send it to Pharmacist, but during the subsequent recovery the patient can send the message
to Pharmacist directly via a much more reliable connection.

Note that there is additional overhead incurred by the checkpoint approach; namely
that Doctor must send extra copies of the prescription to Patient, doubling the number of
messages Doctor must send under normal conditions (in failure conditions some of the
reminder work is taken over by Patient). Thus, checkpoint-style policies are likely best
used in applications where replicating the information to multiple agents is either already
performed as part of the existing requirements (such as monitoring), or of negligible mar-
ginal cost.

Figure 4 shows similarly shaped results for the number of packets that Patient emits, though
the total numbers are much lower. This is because the policies are batch processes, and may
find multiple enactments that require action (resending, forwarding, etc.) at the same time;

2 ⇐ r3 ∶ loss − rate.
3 ⇐ r3 ∶ cases.

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 20 of 30

when multiple messages are generated at the same time, our implementation groups the mes-
sages by recipient and encodes them into as few packets as it can. When the messages are
small, as in this experiment, the savings can be significant—here, the number of messages
ranged from 1000 to 3000, but the number of packets only ranged from 1000 to 1080.

The final graph, Fig. 5, shows the rate at which each policy completed enactments, in
enactments per second. The first configuration, where none of the agents are lossy, shows that
the simple retry policy is slightly more efficient to execute than the checkpoint policy. In all
other cases, their performance seems similar, with the only notable difference being again the
Doctor-only case, where the checkpoint policy’s throughput is much less effected by loss than
the retry policy.

(a) No Loss

0 0.1 0.2

900

1,000

1,100

1,200

C
om

pl
et
ed

(b) Patient Only

0 0.1 0.2

800

900

1,000

loss rate

(c) Doctor Only

0 0.1 0.2

800

900

1,000

(d) Pharmacist Only

0 0.1 0.2

800

900

1,000

C
om

pl
et
ed

(e) Docter + Pharmacist

0 0.1 0.2

600

800

1,000

loss rate

(f) All

0 0.1 0.2
400

600

800

1,000

None
Retry

Checkpoint

Fig. 2 Total enactments completed. Each subfigure represents a different loss configuration, with the lines
representing the udieecovery policies. In this figure, a line is also given for the absence of a recovery policy,
to show the cumulative effect of the loss rate. Subfigure a has no loss, b–d have one lossy agent, e has both
doctor and pharmacist lossy, and in f all agents are equally lossy. The Y-axes show the number of enact-
ments completed by the timeout, which is set to be 30 seconds. The X-axes are the three different loss rates
tested: 0.01, 0.05, and 0.25

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 21 of 30 16

6 Related work

Fault handling may be thought as a kind of exception handling. However, exception in the
context of programming languages, including process languages such as BPMN [42], are
handled by a centralized language runtime. Plus, exceptions and exception handling are
implemented via out of band signaling, which adds complexity to the program. By contrast,
Mandrake addresses faults in decentralized MAS, specifically, faults understood as the vio-
lation of expectations in the enactment of protocols. Agents with expectations may initiate
recovery, in alignment with the protocol. Fault tolerance in Mandrake merely involves the
addition of alternative paths to completion, such as retries and forwarding.

Software systems built using the actor model, where processes are encapsulated in
actors that interact with their environment through simple messages, have long been used
to build fault-tolerant distributed systems [5]. The actor model [2, 3] is conducive to fault
tolerance both because the simple messaging interface of actors minimizes coupling and
enables testing, and because actors easily model physical distribution, which is necessary
for eliminating single points of failure.

Actor-based systems commonly address fault tolerance through supervision hierarchies.
If an actor throws an error, its supervisor receives the error and can respond by restarting

(a) No Loss

0 0.1 0.2

900

1,000

1,100

1,200

E
m
is
si
on

s
(b) Patient Only

0 0.1 0.2
1,000

1,100

1,200

1,300

1,400

loss rate

(c) Doctor Only

0 0.1 0.2
1,000

1,100

1,200

1,300

(d) Pharmacist Only

0 0.1 0.2
1,000

1,100

1,200

1,300

E
m
is
si
on

s

(e) Docter + Pharmacist

0 0.1 0.2
1,000

1,200

1,400

1,600

1,800

loss rate

(f) All

0 0.1 0.2
1,000

1,500

2,000

2,500

Retry
Checkpoint

Fig. 3 Messages emitted. Each subfigure represents a different loss configuration, with the lines represent-
ing the two recovery policies. Subfigure a Has no loss, b–d Have one lossy agent, e Has both doctor and
pharmacist lossy, and in f All agents are equally lossy. The Y-axes show the number of messages emitted by
Patient. The X-axes are the three different loss rates tested: 0.01, 0.05, and 0.25

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 22 of 30

the actor, killing dependent actors, or possibly dying and throwing an error itself. These
supervision hierarchies enable the developer to design fault tolerance at the application
level, and can be supported by libraries such as Erlang’s OTP [18] to minimize develop-
ment effort.4 However, Erlang does not have specific support for programming application
level message retries, relying on TCP for automatic packet-level retries and supervisor-
triggered restarts when the connection breaks. While supervision could conceptually be
used to implement application-level retries, supervisor hierarchies in Erlang/OTP are spe-
cifically for detecting process failures, and restarting failed processes and any processes
that depend on them. This mechanism for restarting crashed agents is complementary with
Mandrake, which focuses on recovering lost information between live agents.5 Actor sys-
tem fault tolerance also usually focuses on handling signaled errors—errors that do not
immediately crash the actor, but are instead reported via some status message for another
actor to handle. Such signals are helpful for handling domain-specific problems that pre-
vent progress (Mandrake’s retries will not help if the Pharmacist is waiting for a delivery

(a) No Loss

0 0.1 0.2

900

1,000

1,100

1,200

P
ac
ke

ts
(b) Patient Only

0 0.1 0.2
1,000

1,010

1,020

loss rate

(c) Doctor Only

0 0.1 0.2
1,000

1,010

1,020

(d) Pharmacist Only

0 0.1 0.2
1,000

1,010

1,020

P
ac
ke

ts

(e) Docter + Pharmacist

0 0.1 0.2
1,000

1,020

1,040

loss rate

(f) All

0 0.1 0.2
1,000

1,020

1,040

1,060

1,080

Retry
Checkpoint

Fig. 4 Total packets sent. Each subfigure represents a different loss configuration, with the lines represent-
ing the two recovery policies. Subfigure a Has no loss, b–d Have one lossy agent, e Has both doctor and
pharmacist lossy, and in f All agents are equally lossy. The Y-axes show the number of UDP packets sent by
Patient. The X-axes are the three different loss rates tested: 0.01, 0.05, and 0.25

5 ⇐ r2 ∶ signaled − errors.

4 ⇐ r2 ∶ supervision.

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 23 of 30 16

from their supplier), or which need to be resolved by another party (perhaps the Pharmacist
needs to notify their supplier when they run out of stock).

To avoid hidden coupling, all communications between agents should be explicitly
specified; thus the status and error messages should be added to the protocol specifica-
tion. Signaled errors are thus compatible with Mandrake; we merely focused on the aspects
that Mandrake specifically addresses. However, signaled errors cannot handle cases where
information was lost (e.g. the Pharmacist could not signal an error for a prescription it
never received), or when an unexpected crash occurs (e.g. a hardware failure, preventing
any signals from being sent); Mandrake provides a solution for these situations through
expectations. Finally, most actor systems rely on infrastructure for reliable messaging and
process messages sequentially, expecting FIFO ordering. Relying on FIFO enables the
developers to avoid explicitly modeling actor state, and TCP signals when a connection
breaks simplifying supervision. In contrast, Mandrake’s explicit information model relieves
the dependence on FIFO for state alignment, and uses expectations to detect agent failures
so communication can survive temporary network disruptions.

Microservices are an increasingly common architecture and means of deployment. Each
microservice is intended to encapsulate a single application concern, exposed as a web
service for easy composition, and deployed in an isolated environment to reduce coupling

(a) No Loss

0 0.1 0.2
1,800

2,000

2,200

2,400

2,600

R
at
e

(b) Patient Only

0 0.1 0.2

200

300

400

loss rate

(c) Doctor Only

0 0.1 0.2

200

400

(d) Pharmacist Only

0 0.1 0.2

200

300

400

500

R
at
e

(e) Docter + Pharmacist

0 0.1 0.2

200

400

loss rate

(f) All

0 0.1 0.2

200

400

Retry
Checkpoint

Fig. 5 Rate of completion (enactments/second). Each subfigure represents a different loss configuration,
with the lines representing the two recovery policies. Subfigure a has no loss, b–d have one lossy agent, e
has both doctor and pharmacist lossy, and in f all agents are equally lossy. The Y-axes show the number of
enactments completed (by observing FilledRx or one of its reminders) divided by the duration of the itera-
tion. The X-axes are the three different loss rates tested: 0.01, 0.05, and 0.25

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 24 of 30

and interference from other components [41]. Traditional web-based interactions are asym-
metric, with the client merely reflecting state held by the server. However, microservices
are often clients themselves, and depend on other services to produce their outputs, expos-
ing them to communication faults. To some extent fault tolerance is transparently added
to microservices via sidecars or service meshes such as Istio [34], proxies that manage
requests and retries on behalf of the microservice. In contrast, Mandrake assumes a decen-
tralized system where each agent manages its own state and messages, enabling more flex-
ible and robust communication patterns between agents.

Fisher et al. [31] discuss a framework for certifying reliable autonomous entities, but
consider the problem at the social and regulatory levels. Such an approach is useful for
identifying the methods and processes can be used to certify that an agent will behave as
it ought despite its autonomy, but does not support designing a system that can complete
objectives despite faults.

Much work has been done to support programming models for agent development, such
as the JaCaMo framework and extensions thereto [7, 9, 45, 46] and JADE [10]. However,
most existing work on programming models is focused on implementing the agent logic
rather than supporting interactions, and little effort has focused on supporting fault toler-
ance. IODA is an approach for multi-agent simulations that does have a model of interac-
tions [38], though it does not specifically support application-level fault tolerance.

There is MAS work focused on exception handling in multiagent contexts: Klein and
Dellarocas [37] propose a shared exception handling service that other agents turn to for
help recovering from a problem, such as when a plan fails or a garbled message is received.
Platon et al. [44] surveyed the challenges for exception handling in MAS, and Platon’s the-
sis is on exception handling and a robust framework for executing agent plans [44]. Lam
et al. [39] describe a workflow management system that uses norms and semantic web
techniques to handle exceptions that arise during enactment. Mandrake takes a more agent-
local and interaction-oriented approach, with each agent responding to any violations of its
own expectations using communication patterns supported by an interaction protocol.

Outside of programming models and exception handling, there is also much work on
protocols, modeling, verification, and monitoring of MAS behavior.

Several approaches model protocols by specifying an ordering of messages via some
control-flow expression, e.g., via a state machine or trace expression. Baldoni et al. [8]
present a state machine-based view of interaction from the agent standpoint and show
how interoperability of agents can be ensured provided they conform with the endpoint
specification based on the role they adopt in a protocol, the main challenge there being
to guarantee that the agents don’t make incompatible choices. Ferrando et al. [30] specify
protocols as trace expressions, with recent work on enactability. Winikoff et al. [57] pro-
poses a graphical protocol notation based on hierarchical state machines combined with
logical predicates for improved usability and expressiveness without sacrificing formal
verification.

The control flow-based languages typically assume reliable, FIFO delivery of messages
between pairs of agents. However, as we saw earlier, ordering assumptions interfere with
agent autonomy by limiting the choices available to them. And reliability assumptions
are generally insufficient for purposes of fault tolerance since what counts as a fault and
recovery are application-level considerations. One could argue that by specifying message
ordering, the control flow-based languages lift the ills of ordering to the application level.

By contrast, BSPL, by specifying information causality and integrity, enables imple-
menting protocols with unordered, unreliable communication. Not relying on ordering
in fact helps to easily implement fault tolerance at the application level. For example, to

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 25 of 30 16

handle message loss, agents have the luxury of being able to retry a transmission whenever
they want. And agents can receive such a retransmission at any time. Further, receiving a
duplicate has no effect in BSPL because it simply brings already known information.

Dastani et al. [28] present an approach on monitoring agent behavior against specified
norms. Günay et al. [33] study commitment protocols, and how to dynamically adapt them
to changes in the environment or in the agents to ensure goals could still be reached. Bal-
doni et al. [7] use type checking for roles in a commitment protocol. In the information pro-
tocol framework underlying Mandrake, the compatibility of the choices allowed to agents
(via roles) by a protocol are checked through verifying safety and liveness of a protocol
[53, 55]. The Mandrake adapter uses runtime protocol monitoring to ensure compliance
and support fault recovery policies.

Agent-based approaches are now being employed for applications such as the Internet
of Things [25] to improve flexibility (because agents can use multiple means to achieve a
goal) and responsiveness (because agents act independently without relying on orchestra-
tion) in such a decentralized setting. These objectives would benefit from an approach such
as ours, and show how our work could be useful for existing web and IoT applications.

Today, most developers rely on existing protocols such as TCP for communication
between services or agents. A few build a new infrastructure-level protocol for their needs
that may later become standardized, such as uTP [14] and QUIC [35]. Rarely is appli-
cation-level information used to inform network-level fault recovery; the closest exam-
ples might be job-queuing systems that distinguish between message reception and job
completion.

Many network protocols such as TCP use acknowledgments to confirm packet delivery,
and thus quickly detect and recover from packet loss [4]. Acknowledgments can also be
used at the application level, but we do not focus on application-level acknowledgments
because their similarity to packet acknowledgments distracts from the broader significance
of application-level fault tolerance; we discuss them briefly here instead. Network-level
acknowledgments are not meaningful: they only confirm packet delivery, not whether the
information has been received or processed by the application. Conversely, application-
level acknowledgments are less efficient for large data transfers because decision-making
and autonomy, necessary for meaning, increase latency and overhead. However, applica-
tion-level acknowledgments convey the meaning that the information was observed and
acknowledged by the agent; they provide a basis for commitments, and indicate that the
information is being processed—likely an acknowledged message has been logged, and
could be restored even if the agent crashes.

7 Discussion: conclusions and future directions

In this paper we have raised the topic of meaning-based application-level fault tolerance.
Every application has its own objectives and criteria for success, and fault tolerance must
work toward those goals, not just ensure individual steps. Accomplishing application
objectives requires awareness and utilization of application meaning; infrastructure-level
techniques do not have access to application-level information and so cannot solve applica-
tion-level problems. Infrastructure-level techniques are used because they are well under-
stood, optimized, and generic—any problem that uses the infrastructure can theoretically
benefit from them. To close this gap between easy-to-use infrastructure-level techniques
and the application-level solutions we need, specifically in the MAS domain, we propose

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 26 of 30

an interaction-oriented agent programming model with first-class support for fault toler-
ance. However, our work is just the beginning. We now discuss several possible directions
for future work:

Multicast errors Although many common system designs use a pairwise interaction
model compatible with our current work, there are other communication patterns for which
the compatibility is less clear. One important direction for extending our work might be to
determine Mandrake’s limits for handling multicast communication and then address any
revealed problem, possibly by extending our framework to include patterns for consensus
protocols or other aggregation.

Role replacement One possible way to restore progress in a decentralized application
despite unavailability is to identify new business partners. That is, the agents enacting a
protocol could give up on a counterparty that is nonresponsive, and find another agent to
fill the role. For example, Patient could choose a different Doctor or Pharmacist if Patient is
unsatisfied with their service.

Porting to other platforms Mandrake is currently implemented for BSPL on a Python-
based agent development framework. However, the concepts proposed by Mandrake should
be applicable to other agent development frameworks. For example, a Mandrake-style pro-
tocol adapter could be implemented for JADE or JaCaMo on top of their existing speech-
act communication systems, which would enable the enactment of BSPL protocols on
those platforms. Or, a BDI-based system for expectations and recovery policies could be
built, integrating Mandrake concepts more natively. It would also be interesting to generate
Jason plan skeletons using our declarative policy specifications.

Dynamically adjusting transmitted information Although a message’s dependencies
may be useful to track for provenance, not all information dependencies are useful for the
recipient, especially if they are already known. Redacting unused parameters may save
bandwidth and decoding time.

To support such an optimization, we conceptually distinguish between four represen-
tations of a message: the schema, instance, bun, and packet. The schema is the abstract
specification of a message, and is not associated with a particular payload or enactment. An
instance consists of a message schema plus information bindings, and is associated with an
enactment. A bun is an instance of a message that has been serialized for transmission; it
may have more or fewer parameters than the message schema, so long as the recipient can
reconstruct the complete instance upon reception. Finally, the packet is the physical mes-
sage (e.g., UDP) transmitted by the infrastructure, though some transports (such as TCP)
may not have application-visible packets. We distinguish between bun and packet because
a bun is the representation of a complete message; one bun may be split across multiple
packets, or multiple buns may be batched into a single packet.

Congestion control Enabling the switch from TCP to UDP may gain in latency and
overhead but risks problems such as congestion collapse. Such problems may not be appar-
ent in simple simulations but can make real-life implementations difficult.

By sharing information with the Receiver, the Emitter can be aware of statistics for each
channel. By aggregating timestamp observations, the Emitter can estimate delay, which is
an indicator for traffic congestion.

Using information about observed delays and retries, a range of congestion policies
can be implemented, such as TCP-style backoff, or adjusting transmission rate based on
observed delay, as in Low Extra Delay Background Transport (LEDBAT) [49].

In our estimation, based on the end-to-end principle, all decisions that could affect the
application should be made at the application level. That does not mean that the devel-
oper must make such decisions, just that they should be able to. Separating the system into

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 27 of 30 16

layers makes those decisions inaccessible to higher layers of the system. Thus, we propose
and demonstrate an architecture that uses encapsulation instead of layering to hide com-
plexity. The adapter can provide default implementations of e.g., congestion control (pos-
sibly identical to TCP), but the developer can choose to override them at any time. In this
way, flexibility can be gained without also increasing complexity for the developer.

Improved programming model Our current programming model, based on classic Web
request handling patterns, is easy to learn and greatly simplifies certain challenges of asyn-
chronous message handling like message correlation via the match API. Unfortunately,
reactive handlers for each incoming message burden developers with control flow decisions
that should already be covered by the protocol specification; for example, an action that
should be taken after two messages are received in any order would need two handlers, one
for each message, each with a check for whether the other has been received yet or not. An
alternative programming model could focus on the enabled messages, abstracting away the
enabling events. The outstanding challenge for developing such a model is how to handle
cases where more than one message becomes enabled at the same time, especially if the
generators are asynchronous. We are also pursuing an integration of our information proto-
col approach with Jason BDI agents.

Mandrake is applicable to any MAS since it makes no assumptions regarding the cou-
pling between agents. That is, it addresses the most general setting where the agents are
loosely coupled and can behave in any way they like. Given a protocol, Mandrake provides
means to have the agents interact in a robust manner. Mandrake does impose some require-
ments on the interaction, however, through its adoption of BSPL; namely, BSPL requires
a key-based information structure and so may not be compatible with existing systems.
BSPL is also limited from doing certain kinds of multicast and streaming interactions. In
future work Mandrake could be implemented to support BSPL extensions for multicast and
streaming interactions.

Acknowledgements Thanks to the EPSRC (grant EP/N027965/1) and the NSF (grant IIS-1908374) for
support.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. AMQP (2014). Advanced {Message} {Queuing} {Protocol}. https:// www. amqp. org.
 2. Agha, G. (1990). Concurrent object-oriented programming. Communications of the ACM (CACM),

33(9), 125–141. https:// doi. org/ 10. 1145/ 83880. 84528
 3. Agha, G. A. (1986). Actors. Cambridge, Massachusetts: MIT Press.
 4. Allman, M. (1998). On the generation and use of TCP acknowledgments. ACM SIGCOMM Computer

Communication Review, 28(5), 4–21.
 5. Armstrong, J. (2003). Making reliable distributed systems in the presence of software errors. Ph.D.

thesis, Royal Institute of Technology, Stockholm, Sweden.
 6. Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1),
11–33.

http://creativecommons.org/licenses/by/4.0/
https://www.amqp.org
https://doi.org/10.1145/83880.84528

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 28 of 30

 7. Baldoni, M., Baroglio, C., Capuzzimati, F., & Micalizio, R. (2018). Type checking for protocol role
enactments via commitments. Autonomous Agents and Multi-Agent Systems, 32(3), 349–386.

 8. Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., & Singh, M.P. (2009). Choice, interoper-
ability, and conformance in interaction protocols and service choreographies. In: Proceedings of the
8th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 843–
850. IFAAMAS, Budapest. https:// doi. org/ 10. 5555/ 15581 09. 15581 29

 9. Baldoni, M., Baroglio, C., Micalizio, R., & Tedeschi, S. (2020). JADE/JaCaMo+2COMM: Pro-
gramming agent interactions. In: Proceedings of the 18th International Conference on Advances
in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness (PAAMS), Lecture
Notes in Computer Science, vol. 12092, pp. 388–391. Springer. https:// doi. org/ 10. 1007/ 978-3- 030-
49778-1_ 33

 10. Baldoni, M., Boella, G., Genovese, V., Grenna, R., & van der Torre, L. (2008). How to program
organizations and roles in the JADE framework. In: Proceedings of the 6th German Conference
on Multiagent System Technologies, no. 5244 in Lecture Notes in Computer Science, pp. 25–36.
Springer, Kaiserslautern, Germany. https:// doi. org/ 10. 1007/ 978-3- 540- 87805-6_4

 11. Birman, K. (2015). Evolution of fault tolerance. In: SOSP History Day, pp. 7:1–7:32. ACM, New
York.

 12. Birman, K. P. (1994). A response to Cheriton and Skeen’s criticism of causal and totally ordered
communication. Operating Systems Review, 28(1), 11–21. https:// doi. org/ 10. 1145/ 164853. 164858

 13. Birman, K. P., Schiper, A., & Stephenson, P. (1991). Lightweight causal and atomic group mul-
ticast. ACM Transactions on Computer Systems, 9(3), 272–314. https:// doi. org/ 10. 1145/ 128738.
128742

 14. BitTorrent: uTorrent Transport Protocol (2017). http:// bitto rrent. org/ beps/ bep_ 0029. html
 15. Boissier, O., Bordini, R. H., Hübner, J. F., & Ricci, A. (2019). Dimensions in programming multi-

agent systems. Knowledge Engineering Review (KER), 34, e2. https:// doi. org/ 10. 1017/ S0269 88891
80000 5X

 16. Bordini, R.H., & Hübner, J.F. (2010). Semantics for the Jason variant of AgentSpeak (plan failure
and some internal actions). In: Proceedings of the 19th European Conference on Artificial Intel-
ligence (ECAI), Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 635–640. IOS
Press, Lisbon. https:// doi. org/ 10. 3233/ 978-1- 60750- 606-5- 635

 17. Bordini, R. H., Hübner, J. F., & Wooldridge, M. J. (2007). Programming multi-agent systems in
agent speak using Jason. Chichester: Wiley.

 18. Cesarini, F., & Vinoski, S. (2016). Designing for scalability with Erlang/OTP: implement robust,
fault-tolerant systems. UK: O’Reilly Media Inc.

 19. Cheriton, D.R., & Skeen, D. (1993). Understanding the limitations of causally and totally ordered
communication. In: Proceedings of the 14th ACM Symposium on Operating System Principles
(SOSP), pp. 44–57. ACM Press, Asheville, North Carolina. https:// doi. org/ 10. 1145/ 168619. 168623

 20. Chopra, A. K., Christie, S. H., & Singh, M. P. (2020). An evaluation of communication protocol
languages for engineering multiagent systems. Journal of Artificial Intelligence Research (JAIR),
69, 1351–1393. https:// doi. org/ 10. 1613/ jair.1. 12212.

 21. Chopra, A.K., & Singh, M.P. (2016). From social machines to social protocols: Software engineer-
ing foundations for sociotechnical systems. In: Proceedings of the 25th International World Wide
Web Conference, pp. 903–914. ACM, Montréal. https:// doi. org/ 10. 1145/ 28724 27. 28830 18

 22. Christie, S.H., & Chopra, A.K. (2020). Fault tolerance in multiagent systems. In: International
Workshop on Engineering Multi-Agent Systems, pp. 78–86. Springer.

 23. Christie, S. H., Chopra, A. K. V., & Bungie, M. P. (2021). Bungie: Improving fault tolerance via
extensible application-level protocols. IEEE Computer, 54(5), 44–53.

 24. Christie, S. H., Smirnova, D., Chopra, A. K., & Singh, M. P. (2020). Protocols over things: A decen-
tralized programming model for the Internet of Things. IEEE Computer, 53(12), 60–68.

 25. Ciortea, A., Boissier, O., Zimmermann, A., & Florea, A.M. (2016). Responsive decentralized com-
position of service mashups for the internet of things. In: Proceedings of the 6th International Con-
ference on the Internet of Things (IoT), pp. 53–61. ACM, Stuttgart. https:// doi. org/ 10. 1145/ 29915
61. 29915 73

 26. Clark, D. (2015). The network and the OS. In: SOSP History Day, pp. 11:1–11:19. ACM, Monte-
rey, California. https:// doi. org/ 10. 1145/ 28309 03. 28309 12

 27. Curry, E., Chambers, D., & Lyons, G. (2003). A JMS message transport protocol for the JADE
platform. In: IEEE/WIC International Conference on Intelligent Agent Technology, 2003., pp. 596–
600. IEEE.

 28. Dastani, M., Torroni, P., & Yorke-Smith, N. (2018). Monitoring norms: A multi-disciplinary per-
spective. Knowledge Engineering Review, 33, e25. https:// doi. org/ 10. 1017/ S0269 88891 80002 67

https://doi.org/10.5555/1558109.1558129
https://doi.org/10.1007/978-3-030-49778-1_33
https://doi.org/10.1007/978-3-030-49778-1_33
https://doi.org/10.1007/978-3-540-87805-6_4
https://doi.org/10.1145/164853.164858
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
http://bittorrent.org/beps/bep_0029.html
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1145/168619.168623
https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1145/2872427.2883018
https://doi.org/10.1145/2991561.2991573
https://doi.org/10.1145/2991561.2991573
https://doi.org/10.1145/2830903.2830912
https://doi.org/10.1017/S0269888918000267

Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

Page 29 of 30 16

 29. de Graauw, M. (2010). Nobody needs reliable messaging. https:// www. infoq. com/ artic les/ no- relia
ble- messa ging/

 30. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., & Mascardi, V. (2019). On enactability of
agent interaction protocols: Towards a unified approach. In: Proceedings of the 7th International
Workshop on Engineering Multi-Agent Systems (EMAS), Lecture Notes in Computer Science, vol.
12058, pp. 43–64. Springer, Montréal. https:// doi. org/ 10. 1007/ 978-3- 030- 51417-4_3

 31. Fisher, M., Mascardi, V., Rozier, K. Y., Schlingloff, B., Winikoff, M., & Yorke-Smith, N. (2021).
Towards a framework for certification of reliable autonomous systems. AAMAS, 35(1), 8. https://
doi. org/ 10. 1007/ s10458- 020- 09487-2

 32. Gregori, M.E., Cámara, J.P., & Bada, G.A. (2006). A jabber-based multi-agent system platform.
In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pp. 1282–1284

 33. Günay, A., Winikoff, M., & Yolum, P. (2013). Generating and ranking commitment protocols. In:
Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems,
pp. 1323–1324. IFAAMAS.

 34. Istio: What is Istio? (2020). https:// istio. io/ latest/ docs/ conce pts/ what- is- istio/
 35. Iyengar, J., & Thomson, M. (2020). QUIC: A UDP-based multiplexed and secure transport. Tech.

rep., Internet Engineering Task Force (IETF), Fremont, California. Proposed standard; https:// datat
racker. ietf. org/ doc/ draft- ietf- quic- trans port/

 36. Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strate-
gic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry.

 37. Klein, M., & Dellarocas, C. (1999). Exception handling in agent systems. In: Proceedings of the
3rd International Conference on Autonomous Agents, pp. 62–68. ACM, Seattle. https:// doi. org/ 10.
1145/ 301136. 301164

 38. Kubera, Y., Mathieu, P., & Picault, S. (2011). IODA: An interaction-oriented approach for multi-
agent based simulations. Autonomous Agents and Multi-Agent Systems, 23(3), 303–343.

 39. Lam, J., Guerin, F., Vasconcelos, W., & Norman, T.J. (2009). Building multi-agent systems for
workflow enactment and exception handling. In: International Workshop on Coordination, Organi-
zations, Institutions, and Norms in Agent Systems, pp. 53–69. Springer

 40. Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM (CACM), 21(7), 558–565. https:// doi. org/ 10. 1145/ 359545. 359563

 41. Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice architecture:
aligning principles, practices, and culture. UK: O’Reilly Media Inc.

 42. OMG: Business Process Model and Notation (BPMN), version 2.0.2 (2014). https:// www. omg. org/
spec/ BPMN/. Object Management Group

 43. Pallas, F., Raschke, P., & Bermbach, D. (2020). Fog computing as privacy enabler. IEEE Internet
Computing, 24(04), 15–21.

 44. Platon, E., et al. (2007). Modeling exception management in multi-agent systems. Ph.D. thesis,
UNIVERSITÉ PARIS 6.

 45. Ricci, A., Ciortea, A., Mayer, S., Boissier, O., Bordini, R.H., & Hübner, J.F. (2019). Engineering
scalable distributed environments and organizations for MAS. In: Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 790–798.
IFAAMAS, Montréal

 46. Ricci, A., Croatti, A., Bordini, R.H., Hübner, J.F., & Boissier, O. (2020). Exploiting simulation for
MAS development and execution - the JaCaMo-Sim approach. In: Proceedings of the 8th Interna-
tional Workshop on Engineering Multi-Agent Systems (EMAS), Lecture Notes in Computer Sci-
ence, vol. 12589, pp. 42–60. Springer, Auckland. https:// doi. org/ 10. 1007/ 978-3- 030- 66534-0_3

 47. Saltzer, J. H., Reed, D. P., & Clark, D. D. (1984). End-to-end arguments in system design. ACM
Transactions on Computer Systems, 2(4), 277–288. https:// doi. org/ 10. 1145/ 357401. 357402

 48. Shah, D. (2009). Gossip algorithms. Founding in Trends Network, 3(1), 1–125. https:// doi. org/ 10.
1561/ 13000 00014

 49. Shalunov, S., Hazel, G., Iyengar, J., & Kuehlewind, M. (2012). RFC 6817: Low extra delay back-
ground transport (LEDBAT). https:// datat racker. ietf. org/ doc/ html/ rfc68 17

 50. Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol (CoAP).
Tech. Rep. RFC 7252, Internet Engineering Task Force (IETF), Fremont, California. Proposed
standard; https:// tools. ietf. org/ html/ rfc72 52

 51. de Silva, L., Meneguzzi, F., & Logan, B. (2020). BDI agent architectures: A survey. In: Proceed-
ings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
4914–4921. ijcai.org. https:// doi. org/ 10. 24963/ ijcai. 2020/ 684

https://www.infoq.com/articles/no-reliable-messaging/
https://www.infoq.com/articles/no-reliable-messaging/
https://doi.org/10.1007/978-3-030-51417-4_3
https://doi.org/10.1007/s10458-020-09487-2
https://doi.org/10.1007/s10458-020-09487-2
https://istio.io/latest/docs/concepts/what-is-istio/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://doi.org/10.1145/301136.301164
https://doi.org/10.1145/301136.301164
https://doi.org/10.1145/359545.359563
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
https://doi.org/10.1007/978-3-030-66534-0_3
https://doi.org/10.1145/357401.357402
https://doi.org/10.1561/1300000014
https://doi.org/10.1561/1300000014
https://datatracker.ietf.org/doc/html/rfc6817
https://tools.ietf.org/html/rfc7252
https://doi.org/10.24963/ijcai.2020/684

 Autonomous Agents and Multi-Agent Systems (2022) 36:16

1 3

 16 Page 30 of 30

 52. Singh, M.P. (2011). Information-driven interaction-oriented programming: BSPL, the Blindingly
Simple Protocol Language. In: Proceedings of the 10th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pp. 491–498. IFAAMAS, Taipei. https:// doi. org/ 10.
5555/ 20316 78. 20316 87

 53. Singh, M.P. (2012). Semantics and verification of information-based protocols. In: Proceedings of
the 11th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp.
1149–1156. IFAAMAS, Valencia, Spain. https:// doi. org/ 10. 5555/ 23437 76. 23438 61

 54. Singh, M.P., & Chopra, A.K. (2017). The Internet of Things and multiagent systems: Decentralized
intelligence in distributed computing. In: Proceedings of the 37th IEEE International Conference on
Distributed Computing Systems (ICDCS), pp. 1738–1747. IEEE, Atlanta. https:// doi. org/ 10. 1109/
ICDCS. 2017. 304. Blue Sky Thinking Track.

 55. Singh, M.P., & Christie V, S.H. (2021). Tango: Declarative semantics for multiagent communication
protocols. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 391–397. IJCAI, Online. https:// doi. org/ 10. 24963/ ijcai. 2021/ 55

 56. Winikoff, M. (2007). Implementing commitment-based interactions. In: Proceedings of the 6th Inter-
national Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pp. 868–875.
IFAAMAS, Honolulu.

 57. Winikoff, M., Yadav, N., & Padgham, L. (2018). A new hierarchical agent protocol notation. Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), 32(1), 59–133.

 58. Yolum, P., & Singh, M.P. (2002). Commitment machines. In: Proceedings of the 8th International
Workshop on Agent Theories, Architectures, and Languages (ATAL 2001), LNAI, vol. 2333, pp. 235–
247. Springer, Seattle.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.5555/2343776.2343861
https://doi.org/10.1109/ICDCS.2017.304
https://doi.org/10.1109/ICDCS.2017.304
https://doi.org/10.24963/ijcai.2021/55

	Mandrake: multiagent systems as a basis for programming fault-tolerant decentralized applications
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organization of the paper

	2 Scenario specification
	3 Fault tolerance
	3.1 Application-level fault tolerance
	3.2 Approach overview
	3.3 Transforming protocols via annotations

	4 Programming model
	4.1 Reactors
	4.2 Proactors
	4.3 Utilizing transformations via agent policies
	4.4 Declarative policy specification
	4.4.1 Syntax
	4.4.2 Examples

	5 Evaluation
	5.1 Conceptual evaluation
	5.1.1 Application meaning
	5.1.2 Potential causality

	5.2 Comparison: Jason
	5.2.1 Model
	5.2.2 Fault tolerance

	5.3 Experimental results

	6 Related work
	7 Discussion: conclusions and future directions
	Acknowledgements
	References

