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Abstract— Network security analysis and ensemble data visualization are two active research areas. Although they are treated as
separate domains, they share many common challenges and characteristics. Both focus on scalability, time-dependent data analytics,
and exploration of patterns and unusual behaviors in large datasets. These overlaps provide an opportunity to apply ensemble visual-
ization research to improve network security analysis. To study this goal, we propose methods to interpret network security alerts and
flow traffic as ensemble members. We can then apply ensemble visualization techniques in a network analysis environment to pro-
duce a network ensemble visualization system. Including ensemble representations provide new, in-depth insights into relationships
between alerts and flow traffic. Analysts can cluster traffic with similar behavior and identify traffic with unusual patterns, something
that is difficult to achieve with high-level overviews of large network datasets. Furthermore, our ensemble approach facilitates analysis
of relationships between alerts and flow traffic, improves scalability, maintains accessibility and configurability, and is designed to fit
our analysts’ working environment, mental models, and problem solving strategies.

Index Terms—Ensemble, security, visualization

1 INTRODUCTION

The world is increasingly relying on computer networks. Given the
proliferation of network attacks and vulnerabilities, network security
analytics has become an important area of computer science, and more
recently data visualization. To maintain the security and stability of a
network system, analysts continuously collect vast amount of data that
capture important characteristics about their networks, then analyze
the data to detect attacks, intrusions, and suspicious activity hidden in
the traffic. Visualization has been proposed as an important component
of this effort, since it allows for interactive exploration and analysis of
large amounts of data, and can help analysts detect unexpected patterns
more efficiently and effectively than traditional, text-based representa-
tions [5, 25, 30].

A second area of research that has grown rapidly in recent years is
ensemble analysis. In numerous disciplines, scientists collect data pro-
duced by a series of runs of a simulation or an experiment, each with
slightly different initial conditions or parameterizations. This collec-
tion of related datasets—an ensemble—has been widely used to simu-
late complex systems, explore unknowns in initial conditions, investi-
gate parameter sensitivity, mitigate uncertainty, and compare structural
characteristics of models. Each individual dataset forms a member of
the ensemble. Ensemble visualization is an active area of research in
visualization, specifically designed for exploring and comparing both
within and between members of massive ensemble datasets.

Even though network security data and ensemble data look quite
different at first glance, they can be seen as similar in terms of their
analytic challenges and goals. Both are large and time-dependent, ne-
cessitating analysis in the time dimension and approaches to support
scalability. Ensemble visualization focuses on comparison and aggre-
gation of related ensemble members, while security visualization fo-
cus on exploration of correlations between network traffic. Although
visualization of scientific ensemble and network data at the most de-
tailed level will likely be different, high-level ensemble overviews and
frameworks could allow an analyst to quickly identify and drill down
on subsets of interesting or suspicious network traffic. If we view
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network security data as a type of ensemble, there is an important op-
portunity to apply ongoing ensemble visualization research to improve
network security analytics. This also suggests that future findings in
ensemble visualization may further enhance cyber situation awareness.

To explore this hypothesis, we transformed a scientific ensemble
visualization system we designed for nuclear physicists studying par-
ticle collisions to a network ensemble visualization system built to an-
alyze and visualize alerts and flow traffic. The first requirement is
to convert network data into ensemble form. In our system, a net-
work ensemble consists of related, time-dependent sequences of alerts
and flow traffic, each representing a single ensemble member. Rela-
tionships between the members are defined either by network proper-
ties or analyst-chosen time windows. The ensemble visualization next
calculates dissimilarities between pairs of members using time-series
comparison techniques. These dissimilarities are used to perform ag-
glomerative clustering to combine similar members. Cluster results
are visualized as a tree, representing a level-of-detail overview of inter-
member relationships within the network data. The cluster tree visu-
alization allows analysts to interactively choose subsets of members
to compare, analyze and visualize, allowing them to efficiently dis-
cover traffic with similar or unique patterns. It also meets the design
requirements demonstrated in our prototype security visualization sys-
tem, built in the collaboration with security analysts at the U.S. Army
Research Laboratory (ARL) [8]:

• visualizations must “fit” an analyst’s mental models,

• visualizations must integrate into an analyst’s working environ-
ment,

• visualizations must be configurable by the analyst,

• visualizations must be easily understandable to the analyst,

• visualizations must scale to large data sources, and

• visualizations must support an analyst’s existing problem solving
strategies.

Meeting these requirements ensures a network ensemble visualiza-
tion is consistent and compatible with our existing security visualiza-
tions. More importantly, it significantly improves the likelihood that
the system can provide useful information to improve cyber situation
awareness, but without interrupting or conflicting with an analyst’s
current workflow or problem solving approaches.
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2 BACKGROUND

Visualization converts data into visual forms that support exploration,
discovery, validation, presentation, and rapid and effective compre-
hension over large amounts of data. Network security and ensemble
analysis are two research areas that benefit from this approach.

2.1 Network Security Visualization
A wide range of visualization techniques have been applied to sup-
port visual analytics of network security data. This type of data is
often large, time-dependent, and contains multiple correlated data el-
ements (e.g., alerts and flow traffic). A common technique is to start
by aggregating large amounts of data into an overview, then providing
additional details on demand.

Various survey papers discuss systems that use this approach (e.g.,
[5, 25]). Additional examples include Roberts use of bar charts and
geographic heatmaps to visualize network health over time, with a ret-
icle view to probe individual machines [22], Phan’s Isis system that
uses histogram timelines with event plots to visualize individual events
[19], McPherson’s PortVis system that summarizes data on a timeline,
then allows individual ports to be explored in detail [16], Kan’s NetVis
system that uses treemaps to subdivide a company’s network by de-
partment, then host, then alerts by host [12], Lakkaraju’s NVisionIP
system that visualizes an overview of network state, then collections
of suspicious machines, then details on an individual machine [14],
Taylor’s FlowVis system that visualizes netflows as host activity plots,
connected bundles of interactions between hosts, and flow data for a
single host [26], Conti’s use of semantic zooming, interactive encod-
ing, and querying of network packets [4], or our own system that al-
lows an analyst to aggregate and filter through a back-end SQL server
to visualize data using different types of charts, then to drill down
within the charts to reveal increasing levels of detail [8].

These types of overview+detail systems rely on analysts to identify
correlations between network traffic. Detailed information is often lost
in a high-level visualization, making it difficult for analysts to gain
the in-depth understanding of data properties or relationships between
traffic flows that are needed to help them choose more detailed views.

2.2 Ensemble Visualization
Researchers from various scientific disciplines are actively construct-
ing ensembles: collections of related datasets built from a series of
runs of a simulation or an experiment, each with slightly varying initial
conditions or parameters. Data collected from each run—an ensemble
member—is typically both spatial and temporal. Compared with tra-
ditional scientific data, ensembles are difficult to analyze and visualize
due to their large size and high complexity [29].

Different techniques have been proposed to analyze relationships
within and between members of a scientific ensemble. Many systems
provide either simple overviews of an entire ensemble using aggrega-
tion, or comparative visualizations that are limited to small numbers
of members. Potter’s Ensemble-Vis system analyzes weather and cli-
mate models through linked views built from means and standard devi-
ations [21]. Sanyal’s Noodles system uses spaghetti plots, a technique
for uncertainty visualization in meteorology that displays a series of
contours to highlight specific attribute boundaries, together with more
sophisticated statistical aggregation [23]. Alabi’s ensemble surface
slicing approach combines surface slices to highlight subtle variations
in member surfaces [1]. Phadke’s pairwise sequential animations use
color, shape, and size to compare data between pairs of members [18].

More recently, Piringer designed a system to interactively compare
2D function ensembles using a domain overview and a member de-
tail view [20]. Matkovic developed an interactive system to com-
pare multi-run simulation results as families of 2D data surfaces [15].
Whitiker and Mirzargar proposed contour and curve boxplots to vi-
sualize statistical properties, outliers, and variability in ensembles of
contours or curves [17, 28]. Band depth statistically summarizes the
centrality of members of an ensemble, which are visualized using spe-
cialized boxplots. Demir developed multi-charts, an overlay of bar and
line charts to present statistical properties of ensemble members [6].
Köthur studied temporal properties of ensembles, generating temporal

profile clusters for different members [13], then consolidating them to
identify profiles representing specific features of interest.

In this paper, we chose to apply our most recent ensemble visual-
ization algorithms to network security data. Our system starts with
an overview of inter-member relationships. We mathematically mea-
sure dissimilarity between pairs of ensemble members, applying time-
series data comparison techniques when members are time dependent.
We use the dissimilarity matrix to perform agglomerative clustering,
then visualize the results as a level-of-detail cluster tree, where each
cluster contains members that are similar. Clusters higher in the tree
relax the similarity threshold required to associate their members.

Analysts interact with the cluster tree to choose which subsets of
members to visualize. The key to the system is that it allows an ana-
lyst to choose how similar (or how different) a group of members must
be during analysis. This removes the need for the system to choose an
“appropriate” similarity threshold. It also allows the analyst to inter-
actively vary the level-of-detail as they study their data.

2.3 Visual Perception
Stepping back from the specifics of network and ensemble visualiza-
tion, design choices must be made regarding the basic presentation of
different data attribute values. For example, how should properties like
time, IP addresses, numbers of alerts, and time windows for netflows
be represented in a visualization?

To meet the requirements of “fitting” an analyst’s mental models
and providing easily understandable visualizations, we chose to use
basic charts as a framework for our visualizations. Line graphs, pie
charts, and scatterplots are already used extensive by our analysts, and
therefore are well understood.

The second goal is how to effectively integrate information into a
chart. For example, consider an analyst who wants to explore the num-
ber of Snort alerts that occur between different source IP–destination
IP pairs over a given time window. This can be visualized as a scat-
terplot with source IP on the x-axis, destination IP on the y-axis, and
square “glyphs” in each source IP–destination IP cell where alerts oc-
cur. The size of the glyph represents alert frequency: larger for more
alerts. This leads to two important questions: (1) Which sizes should
we assign to different alert counts? and (2) Is size the best choice in
this situation to visually encode the number of alerts for a given source
IP–destination IP pair?

Answering these questions requires an understanding of human vi-
sual perception. Visual properties like size, color, and brightness are
interpreted by the visual system first at a physical, and then at a cog-
nitive or perceptual level [7, 27]. We have conducted numerous con-
trolled psychophysical experiments in our laboratory to study how the
visual system perceives color, texture, and motion, both in isolation
and in combination with one another [9, 10, 11]. Results from these
experiments provide guidelines for choosing the best combination of
visual features to represent different data attributes. This allows us to
design perceptually optimal visualizations, where the most perceptu-
ally salient visual features are assigned to the data properties the ana-
lyst deems most important. The choice of visual features is also guar-
anteed to avoid visual interference, a situation where less important
data values can hide or obscure more important patterns and results.

Our knowledge of visual perception was applied when we chose
which visual features to use to represent different data attributes, and
how to map the given feature to the attribute’s values (e.g., how
to choose sizes that accurately represent alert courts, or colors that
best differentiate line graphs representing different destination IP ad-
dresses).

3 NETWORK ENSEMBLE DATA

To apply ensemble visualization to network security data, the first
challenge is terminology mapping. How can we define a network en-
semble from security datasets, and how can we divide the data into a
series of related network traffic, analogous to members in an ensem-
ble? We focus on two common types of network security data: Snort
alerts and flows. The Snort alert dataset contains source and destina-
tion IP, port, time, protocol, message, and classification. The flows
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dataset contain source and destination IP, port, flags, start time, end
time, protocol, number of packets, and number of bytes. An alert be-
longs to a flow if it is detected within the time range of the flow and
has the same source and destination IP. Given these input sources, we
support analysis and visualization of two types of ensembles: an alert
ensemble and and a flow ensemble.

To maintain the design requirement of configurability, we propose
a general framework to construct a network data ensemble. This al-
lows analysts to configure details of the ensemble definition, if they
choose to do so. A network ensemble consists of related network traf-
fic (analogous to ensemble members), each representing a temporal
sequence of alerts or flows that fall within equal-sized time windows.
Analyzing relationships (similarities) between this network traffic is
one important goal of cyber situation awareness.

Specifically, we offer two ways to define members in a network en-
semble. The first method correlates data properties to identify mem-
bers. For example, we could define source IP and source port to spec-
ify members. Now, alerts or flows sent from each source IP/port com-
bination form a network ensemble member. The second method di-
vides the ensemble time window into a number of smaller time win-
dows, each identifying a member in the ensemble. For example, if the
dataset consists of network traffic for a 24-hour period, hourly traffic
can represent an ensemble member. Finally, analysts can control the
data values stored within each member. For example, we can analyze
inter-member relationships in an alert ensemble by comparing changes
in the of numbers of alerts over the time dimension.

4 VISUALIZATION DESIGN

Our ensemble visualization system is built to meet the design require-
ments outlined in the Introduction. Based on this, we implemented the
system as a web application, to integrate it into our analysts’ work-
ing environment, using HTML5 and Javascript for the user interface
and visualization components, and MySQL and PHP for server-side
data management. This approach is compatible with our security vi-
sualization system discussed in [8]. Our approach supports config-
urability by allowing analysts to build an alert or flow ensemble that
meets their specific task requirements. Visualizations are based on 2D
charts, providing accessibility through a common visualization frame-
work. Level-of-detail techniques allow us to scale to large network
datasets. Results suggest it is feasible to employ ensemble visualiza-
tion for analyzing network traffic, and to integrate this approach into
existing network security visualization systems in ways that maintain
flexibility and effectiveness.

4.1 Analyst-Driven Ensemble Definition

In scientific domains, an ensemble is collected as a set of related
datasets, each forming an ensemble member of data collected at dif-
ferent time-steps. Investigation of individual members and compari-
son between members are two of the most important analysis tasks.
To perform ensemble visualization on network security data, the first
and most essential step is to structure the network data as an ensemble,
based on the needs of network traffic analysis and comparison.

There are different ways to view network data as an ensemble. We
support analysis of two types of network data—alert ensembles and
flow ensembles. The user interfaces to configure alert and flow en-
sembles are nearly identical, with only slight variations in alert or
flow-specific details.

Fig. 1 shows the interface used to define an alert ensemble. Network
data is contained in multiple SQL tables, forming a large number of
data columns. Since the ensemble may only use a few columns and
a subset of the data, an analyst can define the SQL tables that con-
tain the alert data of interest, the time dimension column, correlations
between the tables (if more than one table is selected), and any addi-
tional constraints to form the ensemble. The system will automatically
identify the time window that covers the ensemble’s data. The analyst
can choose one or more table columns to define ensemble members, or
evenly subdivide the ensemble’s time window into a number of smaller
time periods, each representing a member.

Fig. 1: A user interface to to define an alerts ensemble

Fig. 2: Flow ensemble, time on the x-axis, destination IP plus port on
the y-axis, each red bar represents an individual flow’s start and end
time, black tick marks within a flow identify Snort alerts

To analyze relationships between members in an alert ensemble,
we subdivide the time range of every member into a user-specified
number of time-steps and aggregate alerts within each time-step. In
Fig. 1 the alert ensemble contains alert data sent from source IP
64.120.250.242. Each destination IP+port combination forms
a member in the ensemble. The time window is divided into 30 time-
steps, with the number of alerts calculated at every time-step. Compar-
ing alert members is performed by comparing changes in the number
of alerts over time.

The user interface to define a flow ensemble is very similar. Flow
ensembles contain both flow and alert data (Fig. 2). An analyst
chooses the SQL tables that contain the data, defines how to correlate
alerts and flow traffic, identifies time dimension columns for the alerts
and flows, and provides any additional constraints to extract the data
to analyze. A flow has start and end times and contains a number of
alerts, so comparing pairs of flows is more complicated than compar-
ing numbers of alerts. Instead of aggregating data across time-steps,
we view every member in a flow ensemble as a sequence of individual
flows. Calculating member similarity correlates flows between pairs
of members prior to comparison using dynamic time warping.

4.2 Member Comparison

One advantage of ensemble visualization is its ability to focus on rela-
tionships between ensemble members. This is often important during
exploration to identify related or unusual members (e.g., network traf-
fic). To provide an overview of inter-member relationships, we must
measure the dissimilarity between members. We chose Manhattan dis-
tance to compare members that are exactly aligned in the time dimen-
sion, and dynamic time warping [2, 24] to build an optimal matching
between members that may not be aligned over time.

4.2.1 Alert Member Comparison

A member mi in an alert ensemble is a sequence of aggregated val-
ues (i.e., a number of alerts) collected at t analyst-specified time-steps
mi = (ni,1,ni,2, . . . ,ni,t).

A simple comparison of alert members uses Manhattan distance,
where we assume exact alignment in the time dimension. Let disi, j
be the dissimilarity between members mi and m j. The Manhattan dis-
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tance is calculated in O(t) time as:

disi, j =
t

∑
p=1

∣∣ni,p−n j,p
∣∣/t (1)

Unfortunately, real-world network traffic is not necessarily an ide-
ally aligned ensemble. Changes in alert traffic (e.g., the numbers of
alerts) can happen at different time-steps, and across different periods
of time. To shift or warp over time to get the “best” alignment, we
use dynamic time warping (DTW) [2, 24]. DTW is designed to iden-
tify an optimal matching between two temporal sequences that vary
in time and velocity. It compares sequences by finding a non-linear
alignment that minimizes the summed distance between members in
the sequences. This is done by calculating the minimum distance be-
tween mi and m j to form a t× t matrix W where W (u,v) encodes the
dissimilarity between ni,u and n j,v (i.e., the u-th time-step of mi and
the v-th time-step of m j). Dynamic programming is then used to build
the shortest warping path through W .

It requires O(t2) time and space to calculate the DTW distance be-
tween mi and m j . Let D′(mi,u,m j,v), 1≤ u,v≤ t, be the minimum dis-
tance between two subsequences mi,u = (ni,1,ni,2, . . . ,ni,u) and m j,v =
(n j,1,n j,2, . . . ,n j,v). The DTW dissimilarity disi, j = D′(mi,t ,m j,t)/ t
between mi and m j is calculated via dynamic programming on the re-
cursion:

D′(mi,u,m j,v) = dis(ni,u,n j,v)+min
(
D′(mi,u−1,

m j,v),D′(mi,u−1,m j,v−1),D′(mi,u,m j,v−1)
) (2)

where
dis(ni,u,n j,v) =

∣∣ni,u−n j,v
∣∣ (3)

4.2.2 Flow Member Comparison
A member mi in a flow ensemble is a sequence of li flows mi =
( fi,1, fi,2, . . . , fi,li). Each flow has start time t i

s and end time t i
e, and

contains zero or more alerts. This makes the comparison of flow traf-
fic more complicated than aggregated alerts. Manhattan distance is not
applicable for flow sequence comparison because the sequences may
have different lengths and may not be aligned in time. To calculate the
DTW distance between flow members, we must first calculate the dis-
similarity between pairs of flows. Let dis( fu, fv) be the dissimilarity
between flows fu and fv. We propose a simple flow comparison that
calculates dis( fu, fv) based on three metrics:

1. Duration. Given fi’s duration duri = t i
e−t i

s, the duration dissim-
ilarity between fu and fv is

disu,v
dur =

|duru−durv |
max(duru,durv)

(4)

2. Density. Given fi containing ni alerts, the density of alerts in fi
is deni = ni /duri. The density dissimilarity between fu and fv is

disu,v
den =

|denu−denv|
max(denu,denv)

(5)

3. Distribution. Given start and end times t i
s and t i

e for a flow fi
that receives ni alerts at times t i

1, t
i
2, . . . , t

i
ni

, the intervals between
alerts are Ii = {t i

s− t i
1, t

i
2− t i

1, . . . , t
i
e− t i

ni
}. We use σi = ∑

ni
i=1(Ii−

Iµ )
2 /ni, the variance of the intervals between alerts, to compute

distribution dissimilarity between fu and fv as

disu,v
dist =

|σu−σu|
max(σu,σv)

(6)

The individual dissimilarities are averaged and normalized to gen-
erate an overall dissimilarity between fu and fv. We allow an analyst
to tune the weights wdur, wden, and wdist during averaging:

dis( fu, fv) = wdurdisu,v
dur +wdensdisu,v

dens +wdistdisu,v
dist

0≤ wdur,wdens,wdist ≤ 1
wdur +wdens +wdist = 1

(7)

Fig. 3: Dissimilarity matrix for a 100-member alert ensemble, darker
for more dissimilar

The DTW recursion is equivalent to Eq. 3, substituting dis( fu, fv)
for dis(ni,u,n j,v).

4.3 Inter-Member Relationships
For an alert or flow ensemble with N members, member comparison
(Section 4.2) produces an N×N dissimilarity matrix encoding differ-
ences between all member pairs. Fig. 3 is a grayscale visualization
of an alert ensemble dissimilarity matrix with N = 100 members. Lu-
minance is used here, since it is one of the most perceptually salient
visual properties, and because it allows viewers to identify subtle dif-
ferences in the underlying data values. The brightness of cell (i, j)
represents the DTW dissimilarity between the i-th and j-th members.
Darker cells indicate larger dissimilarities. The matrix in Fig. 3 has a
large number of white and light gray cells. This highlights that a large
number of the ensemble members are very similar to one another. The
small number of black or dark gray columns (or rows) show that some
alert members are very different from all the others, however.

The dissimilarity matrix visualization presents a high-level
overview of the relationships between members, but it is not detailed
enough for analysts to quickly choose useful subsets of members. To
support more in-depth exploration of the relationships between mem-
bers, we use the dissimilarity matrix to perform agglomerative clus-
tering, organizing similar alerts or flow traffic into groups according
to their optimal DTW matchings. Agglomerative clustering works in
a bottom-up fashion, first assigning each member to its own cluster,
then iteratively merging the two most similar clusters and updating the
dissimilarity matrix. This produces a level-of-detail clustering result
that assign members into k = N,k = N− 1, . . . ,k = 1 clusters. Fig. 4
shows a cluster tree visualization of agglomerative clustering on the
dissimilarity matrix in Fig. 3. Orange nodes represent the new clus-
ter created at each level. Alerts members that are very different from
the others remain separated until close to the root of the tree (e.g., the
members circled by the red oval).

One important issue is the ability to scale the cluster tree to large
numbers of alerts or flows. There are different ways to do this. One
easy alternative is to combine more members at each agglomerative
step: for example, the four most similar members rather than the two
most similar. Another approach, which we have found effective, is to
allow analysts to choose subsets of the cluster tree by selecting start
and end levels with a slider above the tree (Fig. 4). This allows them
to vary the level of detail within each cluster in the visualization. A
selection near the top of the tree produces a small number of clus-
ters, where each cluster contains numerous members that span a wide
similarity range. A selection near the bottom of the tree will produce



HAO et al.: ENSEMBLE VISUALIZATION FOR CYBER SITUATION AWARENESS OF NETWORK SECURITY DATA

Fig. 4: Cluster tree for the alert ensemble in Fig. 3

Fig. 5: Smallest dissimilarity at each level of the cluster tree

smaller clusters containing members that are very similar, but at the
expensive of a large tree with more total clusters. The ability to con-
trol the initial clustering, and the subset of the cluster tree to explore,
fits the requirement of allowing analysts to dynamically configure their
visualizations.

To make it easier for analysts to choose where in the cluster tree
they want to explore, we visualize the smallest dissimilarity (i.e., the
smallest disi, j or dis( fi, f j)∀i, j) at each k. Fig. 5 visualizes the small-
est dissimilarity at each level of the cluster tree in Fig. 4, showing three
general phases:

1. As clustering begins, many members contain the same number
of alerts in their time windows, producing a dissimilarity of zero
for the two most similar clusters.

2. In the middle levels, clustering has combined all equivalent
members, so new members are generated with different numbers
of alerts from one another.

3. As clustering ends at the top few levels in the cluster tree, mem-
bers with very different numbers of alerts are clustered.

Analysis of inter-member relationships in alert or flow ensembles is
the same. Prior to detailed visualizations of the alerts or flow traffic,
analysts use the level-of-detail cluster tree to select clusters that com-
bine similar alerts or flow members in ways that match their needs.
The cluster tree overview allows analysts to quickly choose different
subsets of alerts or network traffic to compare, analyze and visualize
based on similarity.

4.4 Ensemble Member Visualization
Ensemble visualization often contains detailed representations of one
or more ensemble members. These detailed member visualizations
may be very different depending on the types of members contained
in a ensemble. To maintain consistency with our existing network se-
curity visualization system [8], we use 2D charts to visualize network
traffic. Specifically, we generate line charts to visualize members in
an alert ensemble and Gantt charts for members in a flow ensemble.

4.4.1 Alert Member Visualization
An alert ensemble member is a sequence of aggregated alert counts
calculated at every time-step. Fig. 6a visualizes the 100-member alert
ensemble shown in Fig. 3. Time unfolds on the x-axis, and the number
of alerts at each time step is plotted on the y-axis. Color represents the
destination IP of each alert’s parent flow.

Color was chosen since it is perceptually effective at identifying
nominal values that are categorized to differentiate them from one an-
other. Here, each destination IP is viewed as a unique category. One
issue to consider is that color can be perceived as ordered by a viewer.
To address this, we assigned clusters in order to the common rain-
bow color map that runs from red, through orange, yellow, and green,
ending with blue and purple. Such a color map is not appropriate for
visualizing continuous values, since it includes perceived color imbal-
ances and false color boundaries [3]. As noted above, however, it is
well suited to categorical data.

Fig. 6a highlights a number of similar patterns: flows that start with
numerous alerts but end with few alerts; flows with two spikes in alerts
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(a)

(b)

(c)

Fig. 6: Alert member visualization: (a) a 100-member ensemble; (b)
visualization of members assigned to k = 20 clusters; (c) visualizing
each alert member in a cluster containing 65 members with similar
alert patterns, but from different flows

near their center; and an outlier flow (in orange) with numerous alerts
over its center.

Given the cluster tree in Fig. 4 and the dissimilarity visualization
in Fig. 5, an analyst could choose to assign the 100 alerts members
to k = 20 clusters. Fig. 6b visualizes the 20 clusters, averaging the
number of alerts within each cluster at every time-step. It provides a
general understanding of changes in the numbers of alerts over time.
The highlighted purple line at the bottom of the graph represents a
large cluster (cluster 173) that contains 65 members. A follow-on vi-
sualization of this cluster’s members (Fig. 6c) confirms that changes
in the number of alerts over time among the 65 members are similar.

4.4.2 Flow Member Visualization

Similar to [8], we use Gantt charts to visualize flow traffic and associ-
ated alerts. The x-axis represents time, and the y-axis represents mem-
ber (e.g., a combined IP plus port). Flows are visualized as colored
bars with endpoints at the flow’s start and end times. Alerts appear as
black vertical tick marks at the time the alert was detected.

Analysts choose clusters of flow members to visualize using the

Fig. 7: Visualization of four flow ensemble members from two differ-
ent clusters shown in blue and red

cluster tree visualization. Fig. 7 visualizes two clusters, each with two
flow members. Color (red and blue) identify the two clusters, and each
row represents a flow member. Zooming into a group of correlated
flows from different members produces a detailed visualization that
shows the flows in each cluster are similar based on time duration,
alert density, and alert distribution. Without DTW, the flows in the
red cluster would not be considered similar, since they start and end at
different times.

5 EXAMPLE ANALYSIS SESSION

We built a web-based system that implements our ensemble visual-
ization framework for network security analytics. Consistent with our
previous network data visualization system [8], data management oc-
curs on a remote server running MySQL and PHP. The visualization
is based on interactive 2D charts using HTML5 and Javascript. We
used anonymized Snort alert and netflow traffic from one floor of our
Computer Science building to test our system on real-world alert and
flow patterns.

Section 4 illustrates an ensemble visualization of alerts data. Unfor-
tunately, it is currently not possible for us to interact directly with the
network security analysts at ARL. To address this, we took our alerts
dataset and recruited a network security researcher in our department
to act in the role of an analyst. His goal was to identify destination IPs
that contain similar patterns of alerts for a target source IP. The analyst
starts by selecting the SQL database and tables containing the alerts
data, and setting constraints (source IP 64.120.250.242) to filter
the alerts and build an alert ensemble (Fig. 1). The analyst chooses
destination IP and port to define alerts sent to a common destination as
a member in the ensemble. Since the analyst is not interested in traffic
with a small number of alerts, they sort ensemble members by number
of alerts and analyze only the top 100 members. The system generates
SQL queries to extract the relevant data and calculate dissimilarities
between pairs of members. It generates a dissimilarity matrix visual-
ization (Fig. 3), an agglomerative cluster tree visualization (Fig. 4) and
a line chart characterizing dissimilarity for different numbers of clus-
ters k (Fig. 5). Based on the overview of inter-member relationships,
the analyst combines the 100 members into k = 20 clusters (Fig. 6b).
Fig. 6c visualizes the largest cluster, containing 65 members with sim-
ilar changes in the number of alerts over time. Ensemble visualization
makes it easier to automatically detect similar changes in alerts pat-
terns, something that is not as obvious from a general visualization of
alert traffic.

To gain a more in-depth understanding of the alert traffic covered by
the 65-member cluster, the analyst takes flow traffic into consideration
by requesting a flow ensemble visualization. The alert visualization
system exports SQL queries to extract the alerts in the 65-alert mem-
ber. The analyst uses these constraints to retrieve associated flows to
define a flow ensemble. Members in the ensemble are also defined by
destination IP and port. Equal weights are assigned to the three metrics
wdur, wdens, and wdist during flow comparison (Eq. (7)). In this way,
every member in the flow ensemble is correlated with the member in
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(a)

(b)

Fig. 8: Flow ensemble: (a) visualizing ensemble members in a Gantt
chart; (b) dissimilarity matrix for the 65 members

the alert ensemble that is sent to the same destination.
Fig. 8a visualizes the 65 members in the flow ensemble as 65 indi-

vidual Gantt charts with time on the x-axis and destination IP and port
on the y-axis. At this level of detail, flow traffic for most members
looks similar, making it difficult to visually distinguish the flows with-
out zooming in. The dissimilarity matrix (Fig. 8b) indicates that the
network traffic sent to different destinations are further differentiated
when we include the flow data (i.e., there are more dark cells versus
the dissimilarity matrix in Fig. 3).

Fig. 9 visualizes the cluster tree and the dissimilarity graph for each
cluster tree level. The analyst decides that members of the ensemble
are similar if their dissimilarities are smaller than 0.21. This combines
the 65 members into k = 38 clusters. As expected, flows in members
from the same cluster are similar. For example, in Fig. 10, the flows in
a cluster with six members have very similar density and distributions
of alerts, and relatively similar durations (as shown in the top-right
overview visualization).

The analyst concludes that this particular pattern of alerts is a can-
didate for further, more detailed investigation. At this point he would
turn to additional analysis tools or scripts that are specifically designed
to investigate these types of alert patterns. The strength of the visual-
ization is its ability to focus the analyst on a small, manageable subset

(a)

(b)

Fig. 9: Flow ensemble cluster tree: (a) cluster tree visualization; (b)
dissimilarity graph at each level of the cluster tree

Fig. 10: A cluster of six members in the flows ensemble. Correspond-
ing flows has very similar patterns

of alerts and flows for follow-on analysis.

6 CONCLUSION AND FUTURE WORK

We propose an ensemble visualization system to enhance cyber situa-
tion awareness of network security data. This is based on the hypoth-
esis that network security data and ensemble data have many similar
characteristics and face similar challenges. We see an important op-
portunity to build a connection between these two areas, allowing us
to leverage on-going and future ensemble visualization techniques to
enhance network security analytics. To test this hypothesis, we ap-
plied an ensemble visualization framework to the network security do-
main. Our network ensemble visualization system is implemented as
a web-based application that is compatible with our existing security
visualization system, and consistent with the requirements of our ARL
colleagues.

We define a terminology mapping to transform network security
data into an ensemble format. An ensemble of network data contains a
number of alerts or flow traffic, represented as members in the ensem-
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ble. We provide analysts with the flexibility to configure how alerts or
flow traffic are converted into members within the ensemble. Dynamic
time warping is used to align ensemble members. Different metrics
are then employed to compare pairs of alerts or flows. Based on the
dissimilarities that result, clustering is applied to produce a level-of-
detail cluster tree overview that highlights inter-member relationships
in both alert and flow ensembles. Analysts interact with the cluster
tree to more efficiently choose subsets of related alerts or flow traffic
for detailed visualization and analysis. To provide accessibility, mem-
bers in a network data ensemble are visualized as 2D charts. Ensemble
visualization improves scalability in security analytics, allowing ana-
lysts to start from a large amount of alert or flow data, and rapidly drill
down to a useful subset of interest. The system is designed to provide
additional useful information without interfering with an analyst’s cur-
rent problem solving strategies and work flows.

Future work focuses on enhancing our collaborations with network
analysts to tune details of the ensemble visualization. We intend to
explore more flexible analyst-controlled definitions of network ensem-
bles that are not limited to alerts and flows traffic. The current compar-
isons are fairly simple, so we will coordinate with network analysts to
explore more sophisticated comparison metrics that improve the qual-
ity and practicality of inter-member relationship analysis. We also
intend to design visualizations that summarize key features and high-
light differences in a cluster of network traffic. Currently, the visual-
ization of alert and flows ensembles are managed separately from our
flexible network data visualizations, even though they are consistent
with one another. We will improve the user interface to integrate the
ensemble visualization system with the general security visualization
system. We also intend to employ additional ensemble visualization
techniques, to further demonstrate the feasibility of applying ensem-
ble visualization to enhance cyber situation awareness.
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