
Flexible Web Visualization for
Alert-Based Network Security Analytics

Lihua Hao
Department of Computer Science

North Carolina State University
lhao2@ncsu.edu

Christopher G. Healey
Department of Computer Science

North Carolina State University
healey@ncsu.edu

Steve E. Hutchinson
Adelphi Research Center

U.S. Army Research Laboratory
steve.hutchinson@us.army.mil

ABSTRACT
This paper describes a web-based visualization system de-
signed for network security analysts at the U.S. Army Re-
search Laboratory (ARL). Our goal is to provide visual sup-
port to the analysts as they investigate security alerts for
malicious activity within their systems. Our ARL collab-
orators identified a number of important requirements for
any candidate visualization system. These relate to the an-
alyst’s mental models and working environment, and to the
visualization tool’s configurability, accessibility, scalability,
and “fit” with existing analysis strategies. To meet these
requirements, we designed and implement a web-based tool
that uses different types of charts as its core representation
framework. A JavaScript charting library (RGraph) was
extended to provide the interface flexibility and correlation
capabilities needed to support analysts as they explore dif-
ferent hypotheses about a potential attack. We describe key
elements of our design, explain how an analyst’s intent is
used to generate different visualizations, and show how the
system’s interface allows an analyst to rapidly produce a se-
quence of visualizations to explore specific details about a
potential attack as they arise. We conclude with a discus-
sion of plans to further improve the system, and to collect
feedback from our ARL colleagues on its strengths and lim-
itations in real-world analysis scenarios.

Categories and Subject Descriptors
[Security and Privacy]: Network security; [Human Cen-
tered Computing]: Visualization—visualization applica-
tion domains, visualization systems and tools

General Terms
Design, Security

1. INTRODUCTION
This paper describes a collaboration between visualization

researchers at North Carolina State University (NCSU) and

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor
or affiliate of the national government of United States. As such, the Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
VizSec ’13 October 14, 2013, Atlanta, GA, USA
Copyright 2013 ACM 978-1-4503-2173-0/13/10 ...$15.00.

network security analysts at the U.S. Army Research Lab-
oratory (ARL). We are designing a prototype visualization
system to improve an analyst’s efficiency and effectiveness
when exploring potential network security incidents.

Discussions with a wide range of security analysts led to an
interesting conclusion. The analysts overwhelming agreed
that, intuitively, visualizations should be very useful. In
practice, however, they had rarely realized significant im-
provements by integrating visualizations into their workflow.
A common comment was: “Researchers come to us and say,
Here’s a visualization tool, let’s fit your problem to this tool.
But what we need is a tool built to fit our problem.” This
is not unique to the security domain, but it suggests that
security analysts may be more sensitive to deviations from
their current analysis strategies, and therefore less receptive
to general-purpose visualization tools and techniques.

This is not to say, however, that visualization researchers
should simply provide what the security analysts ask for.
Our analysts have high-level suggestions about how they
would like to visualize their data, but they do not have the
visualization experience or expertise to design and evaluate
specific solutions to meet their needs. To address these, we
initiated a collaboration between the two groups to build
visualizations that: (1) meet the needs of the analysts, but
also (2) harness the knowledge and best practices that exist
in the visualization community.

Again, this approach is not unique, but it offers an oppor-
tunity to study its strengths and weaknesses in the context
of our network security domain. In particular, we were curi-
ous to see which general techniques (if any) we could begin
with, and how significantly these techniques needed to be
modified before they would be used by our analysts. Seen
this way, our approach does not focus explicitly on network
security data, but rather on network security analysts. By
supporting the analysts’ needs, we are implicitly addressing
a goal of effectively visualizing their data.

Based on our discussions with ARL personnel, we defined
an initial set of requirements for a successful visualization
tool. Interestingly, these do not inform explicit design deci-
sions, for example, they do not define which data attributes
we should visualize and how those attributes should be rep-
resented. Instead, they implicitly constrain a visualization’s
design through a high-level set of suggestions about what a
real analyst is (and is not) likely to use. We summarized
these comments into six general categories:

• Mental Models. A visualization must “fit” the men-
tal models the analysts use to investigate problems.
Analysts are unlikely to change how they attack a

problem in order to use a visualization.

• Working Environment. The visualization must in-
tegrate into the analyst’s current working environment.
Our analysts use a web browser to view data stored in
formats defined by their network monitoring tools.

• Configurability. Static, pre-defined presentations of
the data are typically not useful. Analysts need to look
at the data from different perspectives that are driven
by the alerts they are currently investigating.

• Accessibility. The visualizations should be familiar
to an analyst. Complex representations with a steep
learning curve are unlikely to be used, except in very
specific situations where a significant cost–benefit ad-
vantage can be found.

• Scalability. The visualizations must support query
and retrieval from multiple data sources, each of which
may contain very large numbers of records.

• Integration. Analysts will not replace their current
problem-solving strategies with new visualization tools.
Instead, the visualizations must augment these strate-
gies with useful support.

The analysts’ requirements meant that we could not fol-
low our normal strategy of defining the analysts’ data and
tasks, designing a visualization to best represent this data,
then modifying the design based on analyst feedback. Work-
ing environment, accessibility, and integration constraints,
as well as comments from colleagues at ARL, suggested that
a novel visualization with unfamiliar visual representations
would not be appropriate. Since no existing tools satisfied
all of the analysts’ needs, we decided to design a frame-
work of basic, familiar visualizations—charts—that runs in
the analysts’ web-based environment. We applied a series
of modifications to this framework to meet each of the ana-
lysts’ requirements. Viewed in isolation, each improvement
often seemed moderate in scope. However, we felt, and our
colleagues agreed, that the modifications were the difference
between our system possibly being used by the analysts ver-
sus never being used. In the end, the modifications afforded
a surprising level of expressiveness and flexibility, suggest-
ing that some parts of our design could be useful outside the
network security domain.

2. BACKGROUND
Visualization has been proposed as an important com-

ponent of network security analytics [2, 13, 20]. It allows
for interactive exploration and analysis of large amounts of
data, and can help analysts detect unexpected patterns more
efficiently and effectively than traditional, text-based repre-
sentations.

Standard visualization techniques have been customized
to support visual analysis of network security data. Node–
link graphs [11, 14] are widely employed to display commu-
nications in a network. Picviz [16] uses parallel coordinates
to present relationships between multiple data dimensions
like IP, port, packet number, TTL, and time. Treemaps [20]
have been used to visualize hierarchical structures in net-
work data, for example, in the NFlowVis system proposed
by Fischer et al. [3]. Scatterplots in PortVis and NVisionIP
[8, 10] highlight correlations between data dimensions. Phan

et al. proposed event plots and event timelines to represent
patterns and aggregated values visualized in scatterplot-like
charts with time on the x-axis and IP address on the y-axis
[12]. Basic pie, bar and line charts [4, 15] are used to display
aggregate results for a single data dimension. Researchers
have also extend security visualization into three dimensions,
for example, INetVis [17] uses animated 3D scatterplots to
visualize destination IP, source IP, and protocol (TCP or
UDP) for a network traffic stream. In practice, however, 3D
views must deal with issues of interaction, item comparison
and occlusion [9, 13].

Effective security analysis normally requires integration
of various data sources, often starting from an overview of
the data, with additional details provided on demand. Se-
curity visualization systems support different visualization
techniques and multiple representations to allow analysis at
different scales and from different perspectives. NVisonIP
[8] provides visualizations at three levels of detail: galaxy,
small multiple, and machine views. Similarly, VisFlowCon-
nect [19] supports global, domain, internal, and host statis-
tics views. Commercial security visualization systems such
as VIAssist [5], Code DX [1] and NDVis [18] combine tools
to support the analysis of different types of security data,
and to integrate the analytic roles of the tools. They employ
traditional visualization techniques like charts and node–link
graphs with flexible zooming and data filtering.

Although these security visualization systems aim to sup-
port more flexible user interactivity and to correlate various
data sources, many of them still force an analyst to choose
from a fairly limited set of static representations. For ex-
ample, Phan et al. uses charts, but with fixed attributes
on the x and y-axes. General purpose visualization systems
like Tableau or ArcSight offer charts similar to ours. These
systems do not include visualization and human perception
guidelines, however, so representing data effectively requires
visualization expertise on the part of the analyst. Finally,
many systems lack a scalable data management architecture
[9]. This means an entire dataset must be loaded into mem-
ory prior to filtering and projection, increasing data transfer
cost and limiting dataset size.

3. DESIGN
The configurability, accessibility, scalability, and integra-

tion requirements of our design demand flexible user in-
teraction that combines and visualizes multiple large data
sources. The working environment requirement further dic-
tates that this happen within the analyst’s current work-
flow. To achieve this, our system combines MySQL, PHP,
HTML5, and JavaScript to produce a web-based network
security visualization system that uses combinations of user-
configurable charts to analyze suspicious network activity.

3.1 Data Management
To provide improved scalability, data management occurs

on a remote server running MySQL and PHP. This is a com-
mon approach to provide efficient data filtering and projec-
tion. Although a SQL server does not guarantee better per-
formance or unlimited scalability, proper database and query
construction do provide significant improvements over file-
based data management, especially in web applications. Our
SQL databases can support gigabytes of data. We maintain
configurability in the visualizations by making no assump-
tions about the types of data in the database. The analyst

(a)

(b)

Figure 1: Database, table, and attribute selection

chooses the database tables and data attributes to visualize,
which sets the necessary constraints for table correlation and
data filtering (Fig. 1).

Our system loads only the data we need to render a given
query’s results. If the analyst later requests additional at-
tributes, the system automatically generates queries to re-
trieve the new data. Another important accessibility re-
quirement is that analysts do not need to construct SQL
queries. Based on the tables, constraints and attributes in-
volved in an analysis, and the use case of the visualization,
the system will dynamically construct SQL queries to ex-
tract correlated information from the database.

3.2 Web-Based Visualization
Based on our integration requirement, we implement our

visualizations as a web application using HTML5’s canvas
element. This works well, since it requires no external plug-
ins and runs in any modern web browser.

We visualize network data using 2D charts. Basic charts
are one of the most well known and widely used visualization
techniques. This supports our accessibility requirement, be-
cause: (1) charts are common in other security visualization
systems our analysts have seen, and (2) charts are an effec-
tive visualization method for presenting the values, trends,
patterns, and relationships our analysts want to explore.

Numerous JavaScript-based libraries exist to visualize data
as 2D charts, for example, HighCharts, Google Charts, Flot
Charts, and RGraph. Unfortunately, these libraries are de-
signed for general information visualization, so they do not
support analysis at multiple levels of abstraction or correla-
tion between multiple charts. To address this, we extended
RGraph [7] to generate security visualizations with flexible
user interaction, data retrieval via MySQL, and the ability
to correlate between multiple charts.

RGraph cannot automatically choose chart types based
on the data to visualize. This capability might be useful,
since analysts do not want to manually select the chart type
if this decision is obvious. On the other hand, the analysts
do not want to be restricted to specific, pre-defined visual-
izations. To support these conflicting needs, we classify our
charts based on the different use cases in Fig. 2: (1) pie and
bar charts for proportion and frequency comparison over a
single attribute, (2) bar charts for value comparison over a
secondary attribute, (3) scatterplots for correlation between
two attributes, and (4) Gantt charts for range value compar-

(a)

(b)

(c)

(d)

Figure 2: Charts classified by use case: (a) pie and bar
chart, analysis of proportion; (b) bar chart, value com-
parison along one dimension; (c) scatterplot, correlation
analysis; (d) Gantt chart, range in at least one dimension

isons. In our system a visualization is created based on anal-
ysis goals, and not on the specific data being visualized. The
analyst is free to change this initial selection, and more im-
portantly, to interactively manipulate which data attributes
are mapped to the primary and secondary dimensions.

Once a request is finalized, the system: (1) generates SQL
queries to extract the target data from the database, (2)
initializes chart properties like background grids and glyph
size, color, and type, and (3) visualizes the data.

(a)

(b)

Figure 3: Scatterplot and Gantt chart: (a) connection
counts over time by destination IP; (b) time ranges for
flows by source IP

3.3 Analyst-Driven Charts
In a general information visualization tool, the viewer nor-

mally defines exactly the visualization they want. In our vi-
sualization system, we automatically choose an initial chart
type based on: (1) existing knowledge on the strengths, lim-
itations, and uses of different types of charts, and (2) the
data the analyst asks to visualize. For example, if the an-
alyst asks to see the distribution of a single data attribute,
the system recommends a pie chart or bar chart. If the an-
alyst asks to see the relationship across two data attributes,
the system recommends a scatterplot or a Gantt chart.

The axes of the charts are initialized based on properties
of the data attributes, for example, a categorical attribute
on a bar chart’s x-axis and an aggregated count on the y-
axis. If two attributes like source and destination IP are
selected, the attributes are mapped to a scatterplot’s x and
y-axes, with data points shown for flows between pairs of
values (Fig. 2d). Or, if the attributes were event timestamp
and destination IP, time would be assigned to the x-axis and
destination IP to the y-axis of a scatterplot (Fig. 3a). Vi-
sualizing start and end times for flows across destination IP
produces a Gantt chart with time on the x-axis, destination
IP on the y-axis, and rectangular range glyphs representing
different flows (Fig. 3b).

Data elements sharing the same x and y values are grouped
together and displayed as a count. For example, in a scat-
terplot of traffic between source and destination IPs, the size
of each tick mark indicates the number of connections be-
tween two addresses. In a Gantt chart, the opacity of each
range bar indicates the number of flows that occurred over
the time range for a particular destination IP.

More importantly, the analyst is free to change any of
these initial choices. The system will interpret their modi-
fications similar to the processing we perform for automat-
ically chosen attributes. This allows the analyst to auto-
matically start with the most appropriate chart type (pie,
bar, scatterplot, or Gantt) based on their analysis task, the
properties of the attributes they assign to a chart’s axes, and
on any secondary information they ask to visualize at each
data point.

3.4 Interactive Visualization
To realize analyst-driven charts, we implemented a user

interface with event handling on the canvas element and
the jQueryUI JavaScript library for higher-level UI widgets
and operations. Our design allows for full control over the
data attributes to assign to a chart’s axes. This capability
turns out to be fairly expressive, and can be used by an
analyst to generate an interesting range of charts and chart

(a)

(b)

Figure 4: Tooltips: (a) for bar charts; (b) for scatterplots

Figure 5: Default zooming in RGraph

types. Analysts can also attach additional data attributes
to control the appearance of the glyphs representing data
elements within a chart. For example, a glyph’s color, size,
and shape can all be used to visualize secondary attribute
values.

3.4.1 Tooltips
Tooltips define data-drive notes attached to elements in a

chart. For example, we commonly use tooltips to display the
exact attribute values encoded in a chart element (Fig. 4),
providing access to quantitative data on demand.

3.4.2 Zooming
RGraph’s default zooming is not powerful enough to sup-

port level-of-detail visualization. RGraph zooms an area of
a chart by simply increasing the size of a pre-selected re-
gion (Fig. 5). For an area in a chart with numerous data
elements, this type of zooming does not provide any addi-
tional information to allow a deeper understanding of the
sub-region of the chart.

To solve this, we rewrote RGraph’s zooming function for
scatterplots and Gantt charts. When an analyst selects an
area in the original chart, we redraw the chart to include
only the selected elements. For example, Fig. 6a shows a
scatterplot created by an analyst, where the size of each
tick mark encodes the number of flows for a corresponding
source and destination IP (plotted on the chart’s x and y-
axes). Fig. 6b is the result of zooming in on the sub-region
selected in Fig. 6a. In the original scatterplot the differ-
ence between the flow counts for the selected region cannot
be easily distinguished. After zooming, the size of the tick
marks are re-scaled for the currently visible elements, high-
lighting differences in the number of flows, particularly for
destination IP 172.16.79.132 in the bottom row. The same
type of zooming can be applied to Gantt charts (Fig. 6c, d).
After zooming into a selected area, the flows that occlude

(a)

(b)

(c)

(d)

Figure 6: Chart zooming: (a) original scatterplot with
zoom region selected; (b) zoom result; (c) original Gantt
chart with zoom region selected; (d) zoom result

one another in the original chart are separated, helping the
analyst differentiate timestamps.

3.4.3 Toolbars
Option toolbars at the top of each chart allow the analyst

to customize glyph size, color, and shape, as well as other
properties like title and size. Toolbars for scatterplots and
Gantt charts also offer zooming, as well as the display or
creation of correlated charts and spreadsheets of the raw
data in the chart. Fig. 7 illustrates the use of a toolbar to
change the shape of tick marks in a scatterplot.

3.5 Correlation Over Multiple Views
Our analysts normally conduct a sequence of investiga-

tions, pursuing new findings as they are uncovered by corre-
lating multiple data sources and exploring the data at mul-
tiple levels of detail. This necessitates visualizations with
multiple views and flexible user interaction. In our system,
we correlate multiple data sources by generating correlated
SQL queries and extending the RGraph library to support
dependencies between different charts.

As an analyst examines a chart, they will form new hy-
pothesis about the cause or effect of activity in the network.
Correlated charts allow the analyst to immediate generate
new visualizations from the current view to explore these
hypotheses. In this way, the system allows an analyst to
conduct a series of analysis steps, each one building on pre-
vious findings, with new visualizations being generated on
demand to support the current investigations.

3.5.1 Correlated Charts
Similar to zooming, analysts can create correlated charts

for regions of interest by selecting the region and requesting
a sub-canvas. The system generates a constraint to extract

(a)

(b)

Figure 7: Toolbar-based tickmark shape selection: (a)
cross; (b) circle

Figure 8: New constraints to create a correlated chart

Figure 9: Pie chart with a raw data spreadsheet

the data of interest in a separate window. The analyst can
then select new attributes to include or new tables and con-
straints to add to the new chart (Fig. 8).

3.5.2 Raw Data Spreadsheets
Text-based examination is a conventional approach widely

used in security analysis. In our system, we allow users to
retrieve the raw data attached to a selected visual element

or chart area. In pie or bar charts the system can automat-
ically generate a SQL query to extract the corresponding
rows from the database and display them as a spreadsheet
in a new window (Fig. 9). In scatterplot or Gantt charts,
a similar query can be performed to display raw data for
selected regions in the chart.

4. TRAP DATA
An important requirement for testing our system is to ap-

ply it to real-world data. For security reasons, it is not pos-
sible to use data from ARL during testing. Because of this,
we built a trap server to capture anonymized network flows
from network switches housed on one floor of our Computer
Science building.

The trap server collects network traffic by enabling the
span ports on the network switches. Network data are sent
to a separate switch dedicated to data collection. The collec-
tion switch transmits the data to a Snort sensor to perform:
(1) intrusion detection using a Snort ruleset distributed by
SourceFire and customized by our network security research
group, and (2) extraction of network packets. Personal iden-
tification information is either anonymized or removed at
this stage, with the original IP addresses and packet pay-
loads being maintained (e.g., an IP address involved in an
intrusion alert). This remaining information is further ob-
fuscated in a consistent manner prior to being visualized.

The trap server stores two types of data representing net-
flow data and Snort alerts. Net flows contain source and
destination IP, port, start and end time, TCP flags, and
packet information. Alerts contain source and destination
IP, port, time of the alert, and alert type. A flow and
(possibly multiple) alerts are correlated when they share the
same source and destination, and when the alerts occur be-
tween the flow’s start and end time. This produces fairly
large datasets with real-world traffic patterns. An example
file for 24 hours of data contained approximately 17.4GB
of packet headers with 938K unique source IPs and 168K
unique destination IPs, representing 1.6M flows containing
615K alerts.

5. EXAMPLE ANALYSIS SESSION
To demonstrate our system, we obtained trap data being

used by network security colleagues at NCSU to act as in-
put for their automated intrusion detection algorithms. This
provided us with a real-world dataset, and also offers the
possibility of comparing results from an automated system
to a human analyst’s performance, both with and without
visualization support. One of our NCSU colleagues served as
the analyst in this example scenario. Visualization starts at
an abstract level (distribution of alerts at different destina-
tion IP addresses), then follows the analyst’s explorations of
different hypotheses as he highlights and zooms into subre-
gions of interest, creates correlated charts to drill down and
analyze data at a more detailed level (visual analysis for
alerts to a specific destination IP), and imports additional
supporting data into the visualization (port and source IP).
By including a new database flow table, the analysis of a
subset of interest is extended to a larger set of data sources
(analysis of flows related to interesting alerts). The visual-
ization system supports the analyst by generating different
types of charts on demand, based on the analyst’s current
interest and needs. The analyst can view the data both

visually and in raw text form to examine qualitative and
quantitative aspects of the current region of interest. The
tables used in this example include:

• event. Signature id and timestamp for each alert.

• flows. Network flow information, including source and
destination IP, port, and start and end time.

• iphdr. Source and destination IP and other informa-
tion related to packet headers.

• tcphdr. TCP related information such as source and
destination port.

The analyst begins by selecting the database and the ta-
bles to use for the first visualization, as well as the con-
straints needed to correlate the tables and filter the rows to
explore. Based on these tables and constraints, the analyst
can choose the types of analysis he wants to pursue and the
data attributes to visualize. The analyst initially chooses to
visualize the number of alerts for each destination IP, select-
ing ip dst from table iphdr as the “aggregate for” attribute.
A SQL query is automatically generated to extract data for
the chart:

1 SELECT iphdr.ip_dst, COUNT(*)
2 FROM event, iphdr, tcphdr
3 WHERE event.sid = iphdr.sid
4 AND event.cid = iphdr.cid
5 AND event.sid = tcphdr.sid
6 AND event.cid = tcphdr.cid
7 GROUP BY iphdr.ip_dst
8 ORDER BY COUNT(*) DESC

Choosing “Draw Charts” displays the aggregated results
as pie and bar charts (Fig. 10). This supports visual analysis
of the data from different perspectives. Pie charts highlight
the relative number of alerts for different destination IPs,
while bar charts facilitate a more effective comparison of the
absolute number of alerts by destination IP. The charts are
linked: highlighting at a bar in the bar chart will highlight
the corresponding section in the pie chart, and vice-versa.

By default, we sort the aggregation results by the number
of alerts for different destination IPs in reverse order, and
allow the analysts to choose to visualize the first few rows.
This is based on the assumption that analysts are more in-
terested in addresses where a significant amount of traffic or
number of alerts occurs. The analysts can reverse the sort
order if they want to search for low-occurrence alerts.

The pie and bar charts indicate that the majority of the
alerts (910) happen for destination IP 172.16.79.134. Choos-
ing “Show Data” displays all 910 rows as a spreadsheet in
a new window. To further analyze alerts associated with
this destination IP, the analyst chooses “Sub Canvas” to
open a new window with the initial query information (the
database, tables, and constraints) predefined. The constraint
iphdr.ip dst = 172.16.79.134 is added to restrict the query
for further analysis over this target destination IP. The an-
alyst can continue to add new constraints or tables to the
query as he requests visualizations to continue his analysis.

Next, the analyst chooses to visualize alerts from different
source IPs attached to the target destination IP. He uses
destination port to analyze the correlation between source
and destination through the use of a scatterplot. Fig. 11a
shows there is only one source IP with alerts related to the

Figure 10: Aggregated results visualized as a pie chart
and horizontal and vertical bar charts

(a)

(b)

Figure 11: Detail analysis: (a) scatterplot of relation-
ships between source IP and destination port correlated
to destination IP 172.16.79.134; (b) raw data spreadsheet

target destination IP, and that most alerts are sent to port
21, shown in the spreadsheet in Fig. 11b.

The analyst looks more closely at traffic related to the
target destination IP on port 21 by visualizing netflows and
their associated alerts in a Gantt chart. Collections of over-
lapping flows are drawn in red with endpoints at the flow
set’s start and end times. Alerts appear as black vertical
bars overlaid on top of the flows at the time the alert was
detected. Fig. 12a shows most of the flows are distributed
over two time ranges. By zooming in on each flow separately

(a)

(b)

(c)

Figure 12: Gantt chart with alerts for network flows at
the destination IP and port of interest; (a) two flows;
(b) zoom on the left flow, showing numerous alerts; (c)
zoom on the right flow, showing one alert

(Fig. 12b, c), the analyst realizes that the vast majority of
the alerts occur in the left flow (Fig. 12b). The alerts in
this flow are considered suspicious, and are flagged for more
detailed investigation.

This example demonstrates how our system allows an an-
alyst to follow a sequence of steps based on their own strate-
gies and preferences to investigate alerts. Although it is pos-
sible to filter the raw data to “highlight” this result directly,
our colleagues suggested it might be difficult to recognize
that the majority of the alerts occur for a specific destina-
tion IP, source IP, port, and time range from a 910-line alert
spreadsheet. The visualizations allow an analyst to follow
this pattern step-by-step, uncovering more detailed informa-
tion as they progress.

Our system attempts to be more accessible and more flex-
ible than existing systems that use pre-selected data and
predefined visualization techniques. Our web-based visual-
izations are recognized and understood by the analysts, al-
lowing them to focus on the data they are most interested in
at a given point in an investigation. They can easily request
follow-on visualizations and modify them to pursue new hy-
potheses and investigate new findings as they are uncovered.
We believe our system meets all of the analysts’ original re-
quirements, and forms a good starting point for a set of
visualizations that will augment our analysts’ capabilities.

6. FUTURE WORK
Future work focuses on three areas: (1) an analysis sand-

box to augment an analyst’s working memory, (2) identify-
ing preferences for individual analysts, and (3) asking net-
work security analysts to evaluate our visualizations.

Analysis Sandbox. Our analysts described how they
examine a set of Snort alerts, normally over a short time win-
dow (e.g., five minutes), then choose any suspicious alerts for
further examination. When this happens, they request data
from additional data sources, analyze the data, and con-
struct hypotheses about how the data might be related, and
how those relationships either support or refute the likeli-
hood of an attack on their systems. Currently, each analysis
is conducted independently, forcing analysts to track and
correlate information manually by remembering the data
they’ve seen and the relationships the data form across the
different sources. One very useful opportunity is the ability
to build a sandbox-like environment, where the individual
analyses can be performed, stored, reviewed, and compared.
This could significantly improve an analyst’s “working mem-
ory” capacity, allowing them to focus more on specific de-
tails of each analysis, and less on remembering the results

or tracking them across independent applications to see how
they relate to one another. Our system already includes the
ability to query multiple data sources and visualize the data
as a set of correlated charts. We anticipate combining this
functionality into a sandbox-like environment with an ap-
propriate user interface will be relatively straight-forward.

Analyst Preferences. Our analysts emphasized that
although they may work on similar tasks, their approaches
are often quite different (e.g., each analyst has their own
customized scripts to extract and aggregate raw alert data).
We anticipate these analyst-level preferences will extend to a
visualization system. To support this, the system should, at
a minimum, allow analysts to define individual preferences.
A better solution would be to track an analyst’s actions to
better anticipate their strategies for specific types of tasks,
for example, what types of data are they likely to request,
how do they prefer that data to be visualized, and so on. We
have previously used preference elicitation algorithms from
artificial intelligence to track an analyst’s interests within a
visualization session [6]. We believe a similar approach can
be used to determine analysts’ preferences across multiple
sessions. These preferences could have other important ad-
vantages, for example, to bootstrap junior analysts by pro-
viding them with a senior analyst’s “preferred approaches”
to investigating specific types of potential network attacks.

Real-World Integration. In order to properly evaluate
our system, we need network analysts to provide feedback
on its strengths and limitations. This is critically important
in our domain, where analysts demand that a visualization
tool “fit” their environment and analysis strategies. Unfor-
tunately, it is also particularly difficult for us to complete
this evaluation, since security restrictions do not allow us to
speak directly with the analysts. Instead, we will coordinate
with IT staff who support the analysts. These individuals
are excellent collaborators, since they understand the ana-
lysts and how they work, and are themselves computer ex-
perts who know what a visualization system is reasonably
capable of supporting. We will improve our system based
on IT staff feedback, have them present it to the analysts,
then use anonymized analyst comments to further enhance
our visualizations.

7. ACKNOWLEDGMENTS
This work was supported by an ARO MURI on Computer-
Aided Human Centric Cyber Situation Awareness.

8. REFERENCES
[1] Applied Visions. Code DX: Software assurance visual

analysis tool.

[2] T. K. Dang and T. T. Dang. A survey on security
visualization techniques for web information systems.
International Journal of Web Information Systems,
9(1):6–31, 2013.

[3] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, and
M. Waldvogel. Large-scale network monitoring for
visual analysis of attacks. In 5th International
Workshop on Visualization for Cyber Security (VizSec
2008), pages 111–118, Cambridge, MA, 2008.

[4] D. Fisher, D. Maltz, A. Greenberg, X. Wang,
H. Warncke, G. Robertson, and M. Czerwinski. Using
visualization to support network and application
management in a data center. In Internet Network

Management Workshop (INM 2008), pages 1–6,
Orlando, FL, 2008.

[5] J. Goodall and M. Sowul. VIAssist: Visual analytics
for cyber defense. In IEEE Conference on
Technologies for Homeland Security (HST ’09), pages
143–150, Boston, MA, 2009.

[6] C. G. Healey and B. M. Dennis. Interest driven
navigation in visualization. IEEE Transactions on
Visualization and Computer Graphics,
18(10):1744–1756, 2012.

[7] R. Heyes. RGraph: HTML5 and JavaScript charts.

[8] K. Lakkaraju, W. Yurcik, and A. J. Lee. NVisionIP:
NetFlow visualizations of system state for security
situational awareness. In Workshop on Visualization
and Data Mining for Computer Security
(VizSEC/DMSEC ’04), pages 65–72, Washington,
DC, 2004.

[9] R. Marty. Applied security visualization.
Addison-Wesley, Upper Saddle River, NJ, 2009.

[10] J. McPherson, K. Ma, P. Krystosk, T. Bartoletti, and
M. Christensen. PortVis: A tool for port-based
detection of security events. In Workshop on
Visualization and Data Mining for Computer Security
(VizSEC/DMSEC ’04), pages 73–81, Washington,
DC, 2004.

[11] P. Minarik and T. Dymacek. NetFlow data
visualization based on graphs. In Visualization for
Computer Security, pages 144–151. Springer, 2008.

[12] D. Phan, J. Gerth, M. Lee, A. Paepcke, and
T. Winograd. Visual analysis of network flow data
with timelines and event plots. In 4th International
Workshop on Visualization for Cyber Security (VizSec
2007), pages 85–99, Sacramento, CA, 2007.

[13] H. Shiravi, A. Shiravi, and A. Ghorbani. A survey of
visualization systems for network security. IEEE
Transactions on Visualization and Computer
Graphics, 18(8):1313–1329, 2012.

[14] R. Tamassia, B. Palazzi, and C. Papamanthou. Graph
drawing for security visualization. In Graph Drawing,
pages 2–13, 2009.

[15] Threat Stack, Inc. Snorby.

[16] S. Tricaud, K. Nance, and P. Saadé. Visualizing
network activity using parallel coordinates. In 44th
Hawaii International Conference on System Sciences
(HICSS 2011), pages 1–8, Poipu, HI, 2011.

[17] J.-P. van Riel and B. Irwin. INetVis, a visual tool for
network telescope traffic analysis. In 4th International
Conference on Computer Graphics, Virtual Reality,
Visualisation and Interaction in Africa (AFRIGRAPH
’06), pages 85–89, Cape Town, South Africa, 2006.

[18] VisiTrend. NDVis.

[19] X. Yin, W. Yurcik, Y. Li, K. Lakkaraju, and C. Abad.
VisFlowConnect: Providing security situational
awareness by visualizing network traffic flows. In 23rd
IEEE International Performance, Computing, and
Communications Conference (IPCCC 2004), pages
601–607, Phoenix, AZ, 2004.

[20] Y. Zhang, Y. Xiao, M. Chen, J. Zhang, and H. Deng.
A survey of security visualization for computer
network logs. Security and Communication Networks,
5(4):404–421, 2012.

