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Abstract

This paper presents a new method for using texture to visualize
multidimensional data elements arranged on an underlying three-
dimensional height field. We hope to use simple texture patterns in
combination with other visual features like hue and intensity to in-
crease the number of attribute values we can display simultaneously.
Our technique builds perceptual texture elements (or pexels) to rep-
resent each data element. Attribute values encoded in the data ele-
ment are used to vary the appearance of a corresponding pexel. Tex-
ture patterns that form when the pexels are displayed can be used to
rapidly and accurately explore the dataset. Our pexels are built by
controlling three separate texture dimensions: height, density, and
regularity. Results from computer graphics, computer vision, and
cognitive psychology have identified these dimensions as important
for the formation of perceptual texture patterns. We conducted a
set of controlled experiments to measure the effectiveness of these
dimensions, and to identify any visual interference that may occur
when all three are displayed simultaneously at the same spatial loca-
tion. Results from our experiments show that these dimensions can
be used in specific combinations to form perceptual textures for vi-
sualizing multidimensional datasets. We demonstrate the effective-
ness of our technique by applying it to two real-world visualization
environments: tracking typhoon activity in southeast Asia, and an-
alyzing ocean conditions in the northern Pacific.
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User Interfaces—ergonomics, screen design, theory and meth-
ods; I.3.6 [Computer Graphics]: Methodology and Techniques—
ergonomics, interaction techniques
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1 Introduction

This paper investigates the problem of visualizing multidimensional
data elements arrayed across a three-dimensional surface. We seek a
flexible method of effectively displaying large and complex datasets
that encode multiple data values at a single spatial location. Exam-
ples include visualizing geographic and environmental conditions
on topographical maps, representing surface locations, orientations,
and material properties in medical volumes, or displaying rigid and
rotational velocities on the surface of a three-dimensional object.
Currently, features like hue, intensity, orientation, motion, and iso-
contours are used to represent these types of datasets. We want to
combine these techniques with perceptual textures, thereby increas-
ing the number of data values that can be displayed simultaneously.
To do this, we must first design methods for building texture pat-
terns that support the rapid, accurate, and effective visualization of
multidimensional data elements.

We use perceptual texture elements (or pexels) to represent val-
ues in our dataset. Our texture elements are built by varying three
separate texture dimensions: height, density, and regularity. Den-
sity and regularity have been identified in the computer vision liter-

ature as being important for performing texture segmentation and
classification [12, 13, 17]. Moreover, results from cognitive psy-
chology have shown that all three dimensions are detected by the
low-level human visual system [1, 8, 18, 21]. We conducted a set of
controlled experiments to measure user performance, and to iden-
tify visual interference that may occur between the three texture di-
mensions during visualization. The result is a collection of pexels
that allow a user to visually explore a multidimensional dataset in a
rapid, accurate, and relatively effortless fashion.

Section 2 describes research in computer vision, cognitive psy-
chology, and computer graphics that has studied methods for iden-
tifying and controlling the properties of a texture pattern. Section
3 explains how we built our perceptual texture elements. Section 4
discusses the experiments we used to test our pexels, and the results
we obtained. Finally, in Section 5 we show how our work was ap-
plied to two real-world visualization environments.

2 Related Work

Texture has been studied extensively in the computer vision, com-
puter graphics, and cognitive psychology communities. Although
each group focuses on separate tasks (texture identification and tex-
ture segmentation in computer vision, displaying information with
texture patterns in computer graphics, and understanding low-level
human vision through psychophysical experimentation and model-
ing in cognitive psychology) they each need ways to describe pre-
cisely the textures being identified, classified, or displayed. Statisti-
cal methods (e.g., convolution filters that measure variance, inertia,
entropy, and energy) and perceptual techniques (e.g., identifying an
underlying direction, orientation, and regularity) are used to analyze
texture [14]. Our focus in this paper is on the perceptual features
that make up a texture. If we can identify and harness these features,
we can use attributes in a dataset to control them during visualiza-
tion, producing displays that allow users to rapidly and accurately
explore their data by analyzing the resulting texture patterns.

Researchers have used different methods to study the perceptual
features inherent in a texture pattern. Bela Julész [8] conducted nu-
merous experiments that investigated how a texture’s first, second,
and third-order statistics affect discrimination in the low-level hu-
man visual system. This led to the texton theory [9], which sug-
gests that early vision detects three types of features (or textons,
as Julész called them): elongated blobs with specific visual prop-
erties (e.g., hue, orientation, and width), ends of line segments, and
crossings of line segments. Tamura et al. [17] and Rao and Lohse
[12, 13] identified texture dimensions by conducting experiments
that askedsubjects to divide pictures depicting different types of tex-
tures (Brodatz images) into groups. Tamura et al. used their results
to propose methods for measuring coarseness, contrast, direction-
ality, line-likeness, regularity, and roughness. Rao and Lohse used
multidimensional scaling to identify the primary texture dimensions
used by their subjects to group images: regularity, directionality,
and complexity. Haralick et al. [4] built greyscale spatial depen-
dency matrices to identify features like homogeneity, contrast, and
linear dependency. These features were used to classify satellite im-
ages into categories like forest, woodlands, grasslands, and water.
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Liu and Picard [10] used Wold features to synthesize texture pat-
terns. A Wold decomposition divides a 2D homogeneous pattern
(e.g., a texture pattern) into three mutually orthogonal components
with perceptualproperties that roughly correspond to periodicity, di-
rectionality, and randomness. Malik and Perona [11] designed com-
puter algorithms that use orientation filtering, nonlinear inhibition,
and computation of the resulting texture gradient to mimic the dis-
crimination ability of the low-level human visual system.

Work in computer graphics has studied methods for using texture
patterns to display information during visualization. Schweitzer
[16] used rotated discs to highlight the orientation of a three-
dimensional surface. Pickett and Grinstein [2] built “stick-men”
icons to produce texture patterns that show spatial coherence in a
multidimensional dataset. Ware and Knight [20] used Gabor filters
to construct texture patterns; attributes in an underlying dataset are
used to modify the orientation, size, and contrast of the Gabor el-
ements during visualization. Turk and Banks [19] described an it-
erated method for placing streamlines to visualize two-dimensional
vector fields. Interrante [7] displayed texture strokes to help show
three-dimensional shape and depth on layered transparent surfaces;
principal directions and curvatures are used to orient and advect the
strokes across the surface. Finally, Salisbury et al. [15] used textur-
ing techniques to build computer-generated pen-and-ink drawings
that convey a realistic sense of shape, depth, and orientation.

3 Perceptual Textures

We want to design a technique that will allow users to visualize
multidimensional datasets with perceptual textures. To this end, we
used a method similar to Ware and Knight to build our displays.
Each data element is represented with a single perceptual texture el-
ement, or pexel. Our visualization environment consists of a large
number of elements arrayed across an underlying three-dimensional
height field. Each element contains one or more attributes to be dis-
played. Attribute values are used to control the visual appearance
of a pexel by modifying its texture dimensions. Texture patterns
formed by groups of spatially neighboring pexels can be used to vi-
sually analyze the dataset.

Our visualization technique should allow rapid, accurate, and rel-
atively effortless visual analysis on the resulting images. This can be
accomplishedby exploiting the human visual system. The low-level
visual system can perform certain exploratory analysis tasks (e.g.,
target identification, boundary detection, region tracking, and esti-
mation) very rapidly and accurately, without the need for focused
attention [5, 6]. These tasks are often called “preattentive”, because
their completion precedes attention in the visual system [18, 21].
More importantly, preattentive tasks are independentof display size;
an increase in the number of elements in the display causes little or
no increase in the amount of time required to complete the analysis
task. Unfortunately, preattentive visualization tools cannot be built
by mapping data attributes to visual features in an ad-hoc fashion.
Certain combinations of visual features will actively interfere with
the low-level visual system, making it much more difficult to com-
plete the corresponding visualization task. Any technique that de-
pends on the low-level visual system must be designed to avoid this
kind of interference.

Within this framework, we decided to focus on the following
three questions during our study:

� Which perceptual dimensions should we use to control the ap-
pearance of our texture patterns?

� How can we use a dataset’s attributes to control the values of
each perceptual dimension?

� How much visual interference occurs between each of the per-
ceptual dimensions when they are displayed simultaneously?

We chose to study three perceptual dimensions: density, regu-
larity, and height. Density and regularity have been identified in
the literature as primary texture dimensions [12, 13, 17]. Although
height might not be considered an “intrinsic textural cue”, we note
that height is one aspect of element size, and that element size is an
important property of a texture pattern. Results from psychophysi-
cal experiments have shown that differences in height are detected
preattentively by the low-level visual system, moreover, viewers
properly correct for perspective foreshortening when they perceive
that elements are being displayed in 3D space [1, 18]. We wanted to
build three-dimensional pexels that “sit up” on the underlying sur-
face. This allows the possibility of applying various orientations
(another important perceptual dimension) to a pexel. Because of
this, we chose height as our third texture dimension.

Short Medium Tall

Sparse Dense Very Dense

Regular Irregular Random

(a)

(b)

Figure 1: Groups of paper strips are used to form a pexel that sup-
ports variation of the three perceptual texture dimensions (height,
density and randomness): (a) each pexel has one of its dimensions
varied across three discrete values; (b) a map of North America,
pexels represent areas of high cultivation, height mapped to level
of cultivation, density mapped to ground type, greyscale mapped to
vegetation type

In order to support variation of height, density, and regularity, we
built pexels that look like a collection of paper strips. The user maps
attributes in the dataset to the density (which controls the number of
strips in a pexel), height, and regularity of each pexel. Unlike Gabor
filters or Wold features, which require some expertise to manipulate,
our elements allow a user to understand clearly how changing a par-
ticular texture dimension affects the appearance of a pexel. Exam-
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Figure 2: Three displays of pexels with different regularity and a 5� 3 patch from the corresponding autocorrelation graphs: (a) a completely
regular display, resulting in sharp peaks of height 1.0 at regular intervals in the autocorrelation graph; (b) a display with irregularly-spaced
pexels, peaks in the graph are reduced to a maximum height between 0.3 and 0.4; (c) a display with randomly-spaced pexels, resulting in a
completely flat graph except at (0; 0) and where underlying grid lines overlap

ples of each of these perceptual dimensions are shown in Figure 1a.
Figure 1b shows an environmental datasetbeing visualized with tex-
ture and greyscale. Locations on the map that contain pexels repre-
sent areas in North and Central America with high levels of cultiva-
tion. Three discrete heights show the level of cultivation (short for
50-74% cultivated, medium for 75-99%, and tall for 100%), density
shows the ground type (sparse for alluvial, dense for wetlands), and
greyscale shows the vegetation type (dark grey for forest, medium
grays for plains and shrubland, and white for woods). Users can eas-
ily identify medium height pexels that correspond to lower levels of
cultivation in the central and eastern plains. Areas containing wet-
lands can be seen as dense pexels in Florida, along the eastern coast,
and in the southern parts of the Canadian prairies.

3.1 Ordering Texture Dimensions

When we map attribute values to our perceptual dimensions, we
need a method for computing an ordinal ranking, that is, we need to
be able to compare two values of a particular dimension and order
them based on their perceived difference. Note that we only seek to
order values relative to one another. This ordering does not repre-
sent accurately the amount of perceived difference between the val-
ues (i.e., we can say that one value is greater than another, but not
how much greater). Building a metric to measure the amount of per-
ceived difference is a much more difficult task, and is beyond the
scope of our current experiments.

Height and density both have a natural ordering that can be used
for our purposes. Specifically, pexels with shorter strips come be-
fore pexels with taller ones, and pexels that are sparse (i.e., pexels
that contain fewer paper strips) come before pexels that are dense.

Ordering regularity requires a more complete explanation. Al-
though regularity is an intuitive concept, specifying it mathemat-
ically is not as straightforward. Researchers who used regularity
as one of their primary texture dimensions have shown that differ-
ences in regularity cause a difference in second-order statistics that
is detected by the visual system. Image correlation is one method
of measuring second-order statistics. Two images can be completely

correlated if there exists a translation that shifts one image into a po-
sition where its pixels exactly match the pixels in a second image.
The amount of correlation between two images at a given offset can
also be measured. An image A, with a width of N and a height of
M pixels, offset into a second image B with the upper left corner of
A at position (t; u) in B has a correlation:
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1
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withB and�2(B) computed in a similar fashion. Elements in A that
do not overlap with B are either ignored or wrapped to the opposite
side of B (i.e., elements in A lying above the top of B wrap back to
the bottom, elements lying below the bottom of B wrap back to the
top, similarly for elements to the left, right, or bottom of B).

The same technique can be used to measure regularity in a single
image, by correlating the image with itself (also known as autocor-
relation). Intuitively, if an image can be shifted in various ways so it
exactly matches with itself, then the image is made up of a regularly
repeating pattern. If this cannot be done, then the image is irregular.
Images that are more irregular will always be farther from an exact
match, regardless of the offset chosen. We define regularity to be the
highest correlation peak in an autocorrelated graph (not including
shift position (0; 0) since C(0; 0) = 1:0 for every autocorrelated
image).
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Figure 3: Two display types from the taller and regular pexel experiments: (a) a target of medium pexels in a sea of short pexels with a
backgrounddensity pattern (2�2 target group located left of center); (b) a target of regular pexels in a sea of irregular pexelswith no background
texture pattern (2 � 2 target group located 8 grids step right and 2 grid steps up from the lower-left corner of the array)

As a practical example, consider Figure 2a (pexels on a regular
underlying grid), Figure 2b (pexels on an irregular grid), and Fig-
ure 2c (pexels on a random grid). Autocorrelation was computed
on the orthogonal projection of each image. A 5� 3 patch from the
center of the corresponding autocorrelation graph is shown beneath
each of the three grids. Results in the graphs mirror what we see
in each display, that is, as randomness increases, peaks in the auto-
correlation graph decrease in height. In Figure 2a peaks of height
1.0 appear at regular intervals in the graph. Each peak represents
a shift that places pexels so they exactly overlap with one another.
The rate of increase towards eachpeak differs in the vertical and hor-
izontal directions because the elements in the graph are rectangles
(i.e., taller than they are wide), rather than squares. In Figure 2b the
graph has the expected sharp peak at (0; 0). It also has gentle peaks
at shift positions that realign the grid with itself. The peaks are not
as high as for the regular grid, because the pexels no longer align
perfectly with one another. The sharp vertical and horizontal ridges
in the graph represent positions where the underlying grid lines ex-
actly overlap with one another (the grid lines showing the original
position of each pexel are still regular in this image). The height of
each gentle peak ranges between 0.3 and 0.4. Increasing random-
ness reduces again the height of the peaks in the correlation graph.
In Figure 2c no peaks are present, apart from (0; 0) and the sharp
ridges that occur when the underlying grid lines overlap with one
another. The resulting correlation values suggests that this image is
“more random” than either of its predecessors.

4 Experiments

In order to test our perceptual dimensions and the interactions that
occur between them during visualization, we ran a set of psy-
chophysical experiments. Our experiments were designed to inves-
tigate a user’s ability to rapidly and accurately identify target pex-
els defined by a particular height, density, or regularity. Users were
asked to determine whether a small group of pexels with a particular
type of texture (e.g., a group of taller pexels, as in Figure 3a) was
present or absent in a 20 � 15 array. Conditions like target pexel
type, exposure duration, target group size, and background texture
dimensions differed for each display. This allowed us to test for
preattentive task performance, visual interference, and a user pref-
erence for a particular target type. In all cases, user accuracy was
used to measure performance.

4.1 Design

Each experimental display contained a regularly-spaced 20 � 15
array of pexels rotated 45� about the X-axis (Figure 3). All dis-

plays were monochrome (i.e., grey and white), to avoid variations
in color or intensity that might mask the underlying texture pattern.
Grid lines were drawn at each row and column, to ensure users per-
ceived the pexels as lying on a tilted 3D plane. After a display was
shown, users were asked whether a group of pexels with a particu-
lar target value was present or absent. In order to avoid confusion,
each user searched for only one type of target pexel: taller, shorter,
sparser, denser, more regular, or more irregular. The appearance of
the pexels in each display was varied to test for preattentive perfor-
mance, visual interference, and feature preference. For example, the
following experimental conditions were used to investigate a user’s
ability to identify taller pexels:

� two target-background pairings: a target of medium pexels in
a sea of short pexels, and a target of tall pexels in a sea of
medium pexels; different target-background pairings allowed
us to test for a subject preference for a particular target type,

� three display durations: 50 msec, 150 msec, and 450 msec; we
varied exposure duration to test for preattentive performance,
specifically,does the task become more difficult during shorter
exposures,

� three secondary texture dimensions: none (every pexel is
sparse and regular), density (half the pexels are randomly cho-
sen to be sparse, half to be dense), and regularity (half the pex-
els are regular, half are random); we added a “background”
texture feature to test for visual interference, that is, does the
task become more difficult when a secondary texture dimen-
sion appears at random spatial locations in the display, and

� two target group sizes: 2�2 pexels and 4�4 pexels; we used
different target group sizes to see how large a group of pexels
was needed before the target could be detected by a viewer.

Our experimental conditions produced 36 different display types
(two target-background pairings by three display durations by three
secondary features by two target group sizes). Users were asked to
view 16 variations of each display type, for a total of 576 trials. For
each display type, half the trials were randomly chosen to contain a
group of target pexels; the remaining half did not.

Examples of two display types are shown in Figure 3. Both dis-
plays include target pexels. Figure 3a contains a 2� 2 target group
of medium pexels in a sea of short pexels. The density of each pexel
varies across the array, producing an underlying density pattern that
is clearly visible. This display type simulates two dimensional data
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Figure 4: Graphs showing the percentage of correct target detection responses for the six target types, horizontal axis represents background
texture pattern, vertical axis represent percentage of correct responses (percentage correct averaged over all trials for the given target type and
background pattern): (a) results for taller and shorter targets; (b) results for denser and sparser targets; (c) results for regular and irregular
targets

elements being visualized with height as the primary texture dimen-
sion and density as the secondary texture dimension. Figure 3b con-
tains a 2�2 target group of regular pexels in a sea of random pexels,
with a no background texture pattern. The taller target in Figure 3a
is very easy to find, while the regular target in Figure 3b is almost
invisible.

The heights, densities, and regularities we used were chosen
through a set of pilot studies. Two patcheswere placed side-by-side,
each displaying a pair of heights, densities, or regularities. Viewers
were asked whether the patches were easily discriminable from one
another. We tested a range of values for each dimension, although
the spatial area available for an individual pexel during our experi-
ments limited the maximum amount of density and irregularity we
were able to display. The final values we chose could be rapidly and
accurately identified in this limited setting.

The experiments used to test the other five target types (shorter,
sparser, denser, more regular, and more irregular) were designed in
a similar fashion, with one exception. Experiments that tested reg-
ularity had only one target-background pairing: a target of regular
pexels in a sea of random pexels (for regular targets), or random pex-
els in a sea of regular pexels (for irregular targets). Our pilot studies
showed that users had significant difficulty discriminating an irreg-
ular patch from a random patch. As mentioned above, this was due
in part to the small spatial area available to each pexel. Although
restricting our regularity conditions to a single target-background
pairing meant there were only 18 different display types, users were
still asked to complete 576 trials. Thirty-two variations of each dis-
play type were shown, 16 of which contained the target pexels, 16
of which did not.

Thirty-eight users (10 males and 28 females) ranging in age from
18 to 26 with normal or corrected acuity participated as observers
during our studies. Twenty-four subjects (six per condition) com-
pleted the taller, shorter, denser, and regular conditions. Fourteen
subjects (seven per condition) completed the sparser and irregular
conditions. Subjects were told before the experiment that half the
trials would contain a target, and half would not. We used a Mac-
intosh computer with an 8-bit color display to run our studies. Re-
sponses (either “target present” or “target absent”) for each trial an
observer completed were recorded for later analysis.

4.2 Results

Each user response collected during our experiments was classified
by condition: target type, target-background pairing, exposure du-
ration, secondary texture dimension, target group size, and target
present or absent. Trials with the same conditions were combined,
and the results were tested for significanceusing a multi-factor anal-
ysis of variance (ANOVA). We used a standard 95% confidence in-
terval to denote significant variation in mean values. In summary,
our results showed:

� taller pexels can be identified at preattentive exposure dura-
tions (i.e., 150 msec or less) with very high accuracy (approxi-
mately 93%); background density and regularity patterns pro-
duce no significant interference,

� shorter, denser, and sparser pexels are more difficult to identify
than taller pexels, although good results are possible at both
150 and 450 msec; height, regularity, and density background
texture patterns cause interference for all three target types,

� irregular pexels are difficult to identify, although reasonable
accuracy(approximately 76%) is possibleat 150 and 450 msec
with no background texture pattern, and

� regular pexels cannot be accurately identified; the percentage
of correct results approachedchance (i.e., 50%) for every con-
dition.

Taller targets were identified preattentively with very high accu-
racy (Figure 4a). Background density and regularity patterns caused
no significant interference (F (2; 10) = 4:165, p = 0:292). Al-
though accuracy for shorter targets was somewhat lower, it was still
acceptable when there was either no background texture pattern or
a density texture pattern (83% and 75%, respectively). Both back-
ground regularity and density caused a statistically significant re-
duction in performance (F (2; 10) = 25:965, p = 0:0001). Re-
sults showing taller targets were “more salient” than shorter targets
was not unexpected; similar asymmetries have been documented by
both Triesman [18] and Aks and Enns [1].
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As with height, dense in sparse targets were easier to identify
than sparse in dense, particularly with a background regularity pat-
tern. Accuracy with no background texture pattern was as high as
for taller targets (Figure 4b). In both cases, a significant interference
effect occurred when a backgroundtexture was present (F (2; 10) =
77:007, p = 0:0001 and F (2; 10) = 43:343, p = 0:0001 for
denser and sparser targets, respectively). Height reduced accuracy
dramatically for denser targets, while both height and regularity in-
terfered with the identification of sparser targets.

Performance was poorest for regular and irregular targets. Accu-
racy for irregular targets was reasonable (approximately 76%) when
there was no background texture pattern. Results were significantly
lower for displays that contained a variation in either density or
height (F (2; 12) = 7:147, p = 0:0118, with correct responses
of 68% and 58%, respectively). Observers were completely unable
to detect regular targets in a sea of irregular pexels (see also Fig-
ure 3b). Even with no background texture pattern, correct responses
were only 49%. Similar near-chance results (i.e., correct responses
of 50%) occurred when height and regularity texture patterns were
displayed. We concluded that subjects resorted to guessing whether
the target was present or absent.

For target group sizes, results showed that 4 � 4 targets are sig-
nificantly easier to find than 2 � 2 targets for four target types:
taller, shorter, denser and sparser (F (1; 4) = 20:067, p = 0:0009,
F (1; 4) = 93:607, p = 0:0001, F (1; 4) = 26:506, p = 0:0003,
and F (1; 4) = 8:041, p = 0:014, respectively). There were no
significant within-condition F-values, suggesting the effect of target
group size (larger easier than smaller) was consistent for each dis-
play type. Finally, only shorter and sparser targets showed any sig-
nificant effect of display duration (F (2; 10) = 25:965, p = 0:0001
and F (2; 10) = 43:343, p = 0:0001, respectively). Again, there
were no within-condition F-values; increasing the display duration
for shorter or sparser targets resulted in a consistent increase in per-
formance, regardless of the display type being shown.

4.3 Improving Regularity

Our results for regularity were unexpected, particularly since algo-
rithms that perform texture segmentation and classification often
use some type of regularity as one of their primary texture dimen-
sion [10, 12, 13, 17]. We were initially concerned that our notion of
“regular” was different from those reported in the literature. How-
ever, at least for the work that we reviewed, our definition seems
to be appropriate. Julész [8, 9] described texture as a difference
in second-order statistics. Irregularity in our textures produces ex-
actly this difference, as shown in our autocorrelation graphs (Fig-
ure 2). Tamura et al. [17] characterized regularity as the variation of
a placement rule for locating individual texture elements in a global
texture pattern. Similarly, Hallett [3] showed that salient texture
patches can be constructed by jittering the locations of a group of
elements on an underlying regularly-spaced ground pattern. Irreg-
ularity in our displays is produced by perturbing strips in a pexel
from their initial anchor points by a random distance in a random
direction. Finally, Rao [12, 13] defines regularity as the presence of
repetitiveness or uniformity in a texture. Our targets can be viewed
as disrupting or introducing repetitiveness into an underlying tex-
ture pattern.

One way to make regularity targets easier to identify is by in-
creasing the size of the target patch. Figure 5a shows an 8�8 regular
target in a sea of random pexels. This target is much easier to find,
compared to the 2� 2 patch shown in Figure 3b. Unfortunately, we
cannot guarantee that the values in a dataset will form large, spa-
tially coherent patches during visualization, although there may be
cases where this restriction is acceptable. For example, a secondary
attribute displayed with regularity would allow a user to search for
large areas of coherence in that attribute’s value. This search would
normally occuronly when the values of a primary attribute (encoded

with a preattentively salient feature like height, density, or color)
cause the user to stop and perform more in-depth analysis at a par-
ticular location in the dataset.

The salience of a regular (or irregular) group of pexels can also
be improved by increasing every pexel’s density. Figure 5b shows
a 2�2 regular target in a sea of random pexels, where each pexel is
very dense. Again, this target is easier to find than the target in Fig-
ure 3b. However, this also restricts our visualization system, since
density must be constrained to be very dense across the array. In
essence,we have lost the ability to vary density over any easily iden-
tifiable range. This reduces the dimensionality of our pexels to two
(height and regularity), producing a situation that is no better than
when regularity was difficult to identify.

Although increasing target patch size or pexel density can make
variation in regularity more salient, both methods involve tradeoffs
in terms of the kinds of datasets we can visualize, or in the number of
attributes our pexels can encode. Because of this, we normally dis-
play an attribute with low importance using regularity. While differ-
ences in regularity cannot be detected consistently by the low-level
visual system, in many casesusers will be able to see changes in reg-
ularity when areas of interest in a dataset are identified and analyzed
in a focused or attentive fashion.

5 Real-World Visualization Testbeds

Although our theoretical results provide a solid design foundation,
it is equally important to ensure that these results can be applied
to real-world data. Our initial goal was a technique for represent-
ing multidimensional data on an underlying three-dimensional sur-
face. We tested our pexel technique by visualizing two environmen-
tal datasets: one representing typhoon activity in southeastAsia, the
other containing ocean conditions relevant to simulations being con-
ducted to study salmon growth and movement patterns.

5.1 Tracking Typhoon Activity

The names “typhoon” and “hurricane” are region-specific, and refer
to the same type of weatherphenomena: an atmospheric disturbance
characterized by low pressure, thunderstorm activity, and a cyclic
wind pattern. Land-based weather station measurements and open-
ocean windspeed readings were made available by the National Cli-
matic Data Center and the Global Hydrology and Climate Center.
We chose to visualize three environmental conditions related to ty-
phoons: windspeed, pressure, and precipitation. All three values
were measured on a daily basis at each land-based weather station,
but only daily windspeeds were available for open-ocean positions.
In spite of the missing open-ocean pressure and precipitation, we
were able to track storms as they moved across the Northwest Pa-
cific Ocean.

Localized areas of high windspeed are an obvious indicator of
storm activity. We chose to map increasing windspeed to an in-
creased pexel height. Our experimental results showed that taller
pexels can be identified preattentively, regardless of any background
density or regularity pattern that might be present. Windspeed has
two important boundaries: 17m/s (where tropical depressions be-
come tropical storms) and 33m/s (where storms become typhoons).
We mirrored these boundaries with height discontinuities. Pexel
height increases linearly from 0-17m/s. At 17m/s, height approx-
imately doubles, then continues linearly from 17-33m/s. At 33m/s
another height discontinuity is introduced, followed by a linear in-
crease for any windspeeds over 33m/s. Pressure is represented with
pexel density. Since our results showed it was easier to find dense
pexels in a sea of sparse pexels (as opposed to sparse in dense), an
increase in pressure is mapped to a decrease in pexel density (i.e.,
very dense pexels represent the low pressure regions associated with
typhoons). Pressure readings less than 996 millibars, between 996
and 1014 millibars, and greater than 1014 millibars produce very
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(a) (b)

Figure 5: Two displays with a regular target, both displays should be compared with the target shown in Figure 3b: (a) larger target, an 8� 8
target in a sea of sparse pexels; (b) denser background, a 2� 2 target in a sea of dense pexels (target group located below and left of center)

dense, dense, and sparse pexels, respectively. Precipitation is rep-
resented with pexel regularity. Pexel positions are held regular for
a daily rainfall of 0.13 inches or less (the median value for the time
period we visualized). Daily rainfall over 0.13 inches produces an
increased pexel irregularity. Because precipitation was not as im-
portant as either windspeed or pressure during visualization, it was
assigned to our least effective texture dimension.

One interesting result was immediately evident when we began
our analysis: typhoon activity was not represented by high wind-
speed values in our open-ocean dataset. The high levels of cloud-
based water vapor produced by these storms block the satellites that
are used to measure open-ocean windspeeds. Rather than appearing
as a local region of high windspeeds, typhoons on the open-ocean
are displayed as a “hole”, an ocean region without any windspeed
readings. This absence of a visual feature (i.e., a hole in the texture
field) is large enough to be salient in our displays, and can be preat-
tentively identified and tracked over time. Therefore, users have lit-
tle difficulty finding storms and watching them as they move across
the open ocean. When a storm makes landfall, the weather stations
along the storm’s path provide the proper windspeed, as well as pres-
sure and precipitation.

Color Plate 1a-d shows typhoon Amber (one of the region’s ma-
jor typhoons) moving through Okinawa and Taiwan during August,
1997. Color Plate 1a, looking south, tracks Amber approaching
along an east to west path on August 26, 1997. Color Plate 1b shows
Amber two days later as it moves through Taiwan. Weather stations
within the typhoon show the expected strong winds, low pressure,
and high levels of rainfall. These results are easily identified as tall,
dense, irregular pexels. Compare these images to Colour Plate 1c-
d, where windspeed was mapped to regularity, pressure to height,
and precipitation to density (a mapping that our experiments predict
will perform poorly). Although viewers can identify areas of lower
and higher windspeed, it is difficult to identify a change in lower or
higher windspeeds(e.g., the change in windspeedas typhoonAmber
moves onshore over Taiwan). In fact, viewers often searched for an
increase in height that represents a decrease in pressure, rather than
an increase in irregularity.

5.2 Oceanography Simulations

Our second visualization testbed is a set of simulations being run
in the Westwater Research Centre at the University of British
Columbia. Researchers in oceanography are studying the growth
and movementpatterns of different species of salmon in the northern
Pacific Ocean. Underlying environmental conditions like plankton
density, sea surface temperature (SST), and current strength affect
where the salmon live and how they move and grow. In order to test
their migration hypotheses, the oceanographers have constructed a

database of plankton densities, SSTs, and ocean currents for the re-
gion 35� north latitude, 180� west longitude to 62� north latitude,
120� west longitude. Measurements within this region are available
at 1��1� grid spacings. The oceanographersneed to visualize their
database, in part to search for trends in and relationships between
different environmental conditions, and in part to validate informa-
tion stored in the database.

We visualized plankton density, SSTs, and current strengths with
height, density, and regularity, respectively. The oceanographers
ranked their attributes in terms of importance; these rankings were
used to choose appropriate texture dimensions. The oceanographers
need to traverse their database over time. Our visualization system
was designed to allow users to scan rapidly forwards and backwards
through their dataset. This makes it easy to compare changes in the
value and location of any of the environmental variables being dis-
played. The oceanographers can track seasonal changes in current
strength, SST, and plankton density as they move through a partic-
ular year. They can also see how interannual variability affects the
environmental conditions and corresponding plankton densities for
a particular time frame across a range of years.

Color Plate 1e-f, looking northwest, show two frames from the
oceanography dataset for January 1 and July 1, 1956. Height repre-
sents the variation in plankton densities (taller for denser blooms).
SSTs and currents are displayed with density (denser for warmer)
and regularity (irregular for stronger). In January almost all the
plankton densities are less than 28 g/m3 (i.e., short strips). Most of
the ocean is cold (sparse pexels), although a region of higher tem-
peratures can easily be seen as dense pexels in the south. Currents
are low in the north-central Pacific; a region of weak currents also
sits off the south coastof Alaska. In July denseplankton blooms (tall
strips) are present across much of the northern Pacific, although two
regions of low plankton density are clearly visible: one displayed as
a ribbon of short pexels lying west to east across the centerof the dis-
play, and a second, smaller region in the southeast. Warmer SSTs
have pushed north, although the ocean around Alaska and north-
ern British Columbia is still relatively cold. The positions of the
strong currents have shifted (viewing the entire dataset shows this
current pattern is relatively stable for the months March to August).
In August and September this cyclic pattern reverses: plankton den-
sities decrease, warm ocean temperatures recede to the south, and
the northern loop of stronger ocean currents pushes north.

6 Conclusions

This paper describes a method for combining the three texture di-
mensions height, regularity, and density to form perceptual texture
elements (or pexels) for multidimensional data visualization. Both
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Typhoon Amber

(a)

Typhoon Amber

(b)

(c) (d)

(e) (f)

Color Plate 1: (a) windspeed mapped to height, pressure mapped to density, precipitation mapped to regularity: looking south, typhoon Amber moves east to
west across the Northwest Pacific (August 26, 1997); (b) typhoon Amber makes landfall on the island of Taiwan (August 28, 1997), the typhoon’sextent includes
land-based locations containing tall, dense pexels and neighboring open-ocean regions without pexels (i.e., regions obscured by clouds and precipitation); (c,
d) same data as for (a, b) but with windspeed mapped to regularity, pressure mapped to height, precipitation mapped to density: the use of regularity makes it
significantly more difficult to track typhoons when they make landfall; (e) northern Pacific Ocean conditions for January 1, 1956: looking northwest, plankton
density mapped to height, SST mapped to density, current strength mapped to regularity; (f) July 1, 1956
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experimental and real-world results showed that our pexels can be
used to rapidly, accurately, and effortlessly analyze large, multi-
element displays. Care must be taken, however, to ensure that the
data to texture mapping builds upon the fundamental workings of
the low-level human visual system. An ad-hoc mapping will often
introduce visual artifacts that actively interfere with a user’s abil-
ity to perform their visual analysis tasks. Our experimental results
showed that taller, shorter, denser, and sparser pexels can be eas-
ily identified, but that certain background texture patterns must be
avoided to ensure accurate performance. These findings were fur-
ther validated when we visualized typhoon activity and open ocean
environmental conditions. Our visualization tools were designed to
satisfy findings from our experiments. Attributes were mapped in
order of importance to the texture dimensions height, density, and
regularity, respectively. The range of attribute values we were most
interested in identifying was assigned to taller and denser pexels,
since these were easier to locate than their shorter and sparser coun-
terparts. The result was a visualization system that allows users to
locate and track regions of interest in their datasets as they form, dis-
sipate, and move over time and space.

Clearly, we would like to combine our pexels with other visual
features like orientation, color, intensity, motion, and isocontours.
For example, previous work in our lab [5] described a method for
selecting perceptually balanced colors. As with our texture dimen-
sions, we need to considervisual interference and feature preference
when colored pexels are displayed. We are also interested in using
orientation to encode additional data attributes. Since our pexels are
three-dimensional, they can be oriented in various ways. We are de-
signing experiments to investigate the effectiveness of orientation
for encoding information, and the interactions that occur when mul-
tiple texture and color dimensions are displayed simultaneously.

Acknowledgments

We would like to thank the National Climatic Data Center, and
Sherry Harrison and the Global Hydrology Resource Center for gen-
erously providing typhoon-related weather data. Dr. Peter Rand
and Dr. Michael Healey made available their database and their ex-
pertise from the salmon growth simulations. We would also like
to thank Jeanette Lum for coordinating and running our experiment
sessions. Maryann Simmons offered important feedback which im-
proved the organization and presentation of this paper. This re-
search was funded in part by the National Science and Engineering
Research Council of Canada, and by the Office of Naval Research
(Grant N00014-96-1120) and the Ballistic Missile Defense Organi-
zation through the Multiuniversity Research Initiative.

References

[1] AKS, D. J., AND ENNS, J. T. Visual search for size is in-
fluenced by a background texture gradient. Journal of Ex-
perimental Psychology: Perception and Performance 22, 6
(1996), 1467–1481.

[2] GRINSTEIN, G., PICKETT, R., AND WILLIAMS, M. EXVIS:
An exploratory data visualization environment. In Proceed-
ings Graphics Interface ’89 (London, Canada, 1989), pp. 254–
261.

[3] HALLETT, P. E. Segregation of mesh-derived textures eval-
uated by resistance to added disorder. Vision Research 32, 10
(1992), 1899–1911.

[4] HARALICK, R. M., SHANMUGAM, K., AND DINSTEIN, I.
Textural features for image classification. IEEE Transactions
on System, Man, and Cybernetics SMC-3, 6 (1973), 610–621.

[5] HEALEY, C. G. Choosing effective colours for data visual-
ization. In Proceedings Visualization ’96 (San Francisco, Cal-
ifornia, 1996), pp. 263–270.

[6] HEALEY, C. G., BOOTH, K. S., AND ENNS, J. T. High-speed
visual estimation using preattentive processing. ACM Trans-
actions on Computer-Human Interaction 3, 2 (1996), 107–
135.

[7] INTERRANTE, V. Illustrating surface shape in volume data via
principle directon-driven 3d line integral convolution. In SIG-
GRAPH 97 ConferenceProceedings(Los Angeles, California,
1997), T. Whitted, Ed., pp. 109–116.
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