
Assisted Navigation for Large Information Spaces

Brent M. Dennis and Christopher G. Healey
Department of Computer Science, North Carolina State University

Abstract

This paper presents a new technique for visualizing large, complex
collections of data. Thesizeanddimensionalityof these datasets
make them challenging to display in an effective manner. The im-
ages must show the global structure of spatial relationships within
the dataset, yet at the same time accurately represent the local de-
tail of each data element being visualized. We propose combining
ideas from information and scientific visualization together with a
navigation assistant,a software system designed to help users iden-
tify and explore areas of interest within their data. The assistant
locates data elements of potential importance to the user, clusters
them into spatial regions, and builds underlying graph structures to
connect the regions and the elements they contain. Graph traversal
algorithms, constraint-based viewpoint construction, and intelligent
camera planning techniques can then be used to design animated
tours of these regions. In this way, the navigation assistant can help
users to explore any of the areas of interest within their data. We
conclude by demonstrating how our assistant is being used to visu-
alize a multidimensional weather dataset.

CR Categories: G.2.2 [Discrete Mathematics]: Graph Theory—
Graph algorithms; I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

Keywords: camera planning, information visualization, multidi-
mensional visualization, navigation, scientific visualization

1 INTRODUCTION

The analysis of large, complex information spaces is an impor-
tant problem for researchers from numerous application domains.
Advances in technology have allowed the construction of massive
data collections in wide-ranging areas like environmental science,
network security, e-commerce, and digital libraries. One promis-
ing approach is to construct visual representations that allow re-
searchers to identify important properties and make new discov-
eries within their data. Unfortunately, thesizeanddimensionality
of large datasets make them challenging to visualize. Techniques
specifically designed for these types of datasets are needed to assist
users in managing, viewing, and navigating their results [14].

In order to understand the properties of an information space,
some formal definitions are presented. A datasetD is logically di-
vided into a finite number of data elementsei, D = {e1, . . . , en},
wheren is the size of the dataset.D represents a set of data at-
tributesA = (A1, . . . , Am), wherem is the dimensionality of the
dataset. Every data elementei = (ai,1, . . . , ai,m) encodes a value
ai,j for every data attributeAj in D.

Datasets are normally composed of large numbers of elements.
As the size grows, visualizingD in its entirety becomes increas-
ingly difficult. A number of novel approaches have been pro-
posed to address this problem, for example, interactive navigation

methods from scientific visualization, or hierarchicalfocus+context
and overview+detail algorithms from information visualization
[5, 9, 11, 13]. Although these techniques offer significant improve-
ments, they cannot fully solve the problem of dataset size. Tradi-
tional local-detail displays that rely on interactive navigation pro-
vide a “window into the world” that hides off-screen information
and forces users to maintain their sense of location and direction
within the dataset (Fig. 1). Hierarchical displays can still be over-
whelmed by datasets with a sufficiently largen.

The issue of dataset dimensionality further complicates the prob-
lem of display and analysis. Each additional data attribute to visual-
ize produces increasingly complex images. Techniques are needed
to ensure that the resulting displays support a viewer’s exploration
and analysis needs. Different methods have been developed to man-
age dimensionality, including data simplification, multidimensional
glyphs, and perceptually controlled visualizations [2, 6, 7, 8, 15].
Although these techniques allow multiple data attributes to be
shown in a single image, they do not support an arbitrarily large
m (in fact, the visual system itself imposes a hard limit on the total
amount of information it can process in a fixed period of time). As
well, most multidimensional visualization algorithms ignore the is-
sue of dataset size, assuming implicitly that some method exists to
navigate the dataset, or to view it as a single on-screen image.

Multidimensional visualizations provide users with coherent
representations of high-dimensional datasets.overview+detailand
focus+contexttechniques help users study both the global structure
and the local detail of their data. Unfortunately, neither method
alone provides a complete solution to the problem of displaying
multidimensional local detailand areas of potential interest in the
global structure of the dataset. We hope to combine techniques
from scientific and information visualization with anavigation as-
sistant,a software system that allows users to identify, locate, track,
and explore regions of interest within their data. A navigation assis-
tant can help users identify “interesting” data, then structure those
elements into global spatial patterns that highlight the locations of
and relationships between different regions of interest. The assis-
tant can also help users move to a region of interest and visit the
elements that make up that region. This allows users to focus on
exploring their data by reducing the burden of deciding where to
search and what to look at.

All of the navigation operations remain under user control, guar-
anteeing full interactivity during the visualization session. A brief
overview of how the navigation assistant operates is as follows:

1. The user specifies how to identify individual data elements of
interest (EOIs).

2. The EOIs are spatially clustered into areas of interest (AOIs).

3. A graph is constructed to connect the EOIs within each AOI;
this graph serves as a framework for navigating the AOI.

4. The AOIs are themselves connected into a high-level global
network; this network allows navigation between different
AOIs.

5. Multidimensional visualizations from the user’s current view-
point are combined with an inset display of the AOI network;

this offers a high level-of-detail local view together with the
structure of areas of potential interest within the entire dataset.

6. Optimal view construction and camera planning techniques
are used together with graph traversal algorithms to build
tours of the areas of interest within the dataset.

The remainder of this paper describes the details of our naviga-
tion assistant, and presents results from its use in a practical visu-
alization environment. Section 2 provides background information
on the scientific and information visualization algorithms related
to our work. Section 3 discusses how the EOIs are identified and
segmented to form AOIs. It also explains how the local AOI graphs
and global AOI network are built. In section 4, we describe the view
construction and camera planning algorithms we apply to navigate
the AOIs. Section 5 shows how our navigation assistant was used
to explore an environmental dataset of North America. Finally, we
present conclusions and future work in Section 6.

2 RELATED WORK

Our discussion of related work concentrates on two important top-
ics: techniques from information visualization for displaying com-
plex information spaces, and techniques from scientific visualiza-
tion for displaying multidimensional data.

Card, Mackinlay, and Shneiderman define information visu-
alization as “the general application of assembling data objects
into pictures, revealing hidden patterns” [3]. Two techniques
from this field are closely related to our goal of visualizing large,
complex information spaces:overview+detailand focus+context.
overview+detailmethods present a global overview of an informa-
tion space, together with ways to request increased levels of detail
for subregions within the space.focus+contexttechniques display
the global context of an information space, together with ways to
interactively focus on a full-detail representation of specific loca-
tions in the space.

Different algorithms use different methods to represent the
global structure and local detail within their displays. For exam-
ple, the treemap [13] decomposes a datasetD into a rectangular
image whose individual regions are hierarchically partitioned based
on different properties (or attributes) of the data withinD. Later re-
visions to the treemap allow users to select individual regions; this
expands the region to fill the screen and show a higher level of de-
tail, but at the expense of maintaining a view of the region’s location
and context withinD. The fisheye lens [5] presents a low level-of-
detail display of the entire dataset, together with an interactive lens
that “zooms in” about its center, providing a higher level-of-detail
display of the data directly beneath the lens. The hyperbolic tree [9]
structures information in a dataset as a tree embedded in the surface
of a sphere. A portion of the sphere facing outward uses hyperbolic
geometric to form a lens, zooming the information being displayed
as the sphere is rotated. A cone tree [11] visualizes a hierarchi-
cal information space as a tree of semi-transparent 3D cones, one
for each category in the hierarchy. Elements within a category are
located around the base of the appropriate cone.

overview+detailand focus+contexttechniques offer significant
advantages for the visualization of large information spaces. In
spite of this, we believe further improvements could increase our
ability to manage the size and dimensionality that exist in many vi-
sualization domains. Potential problems with existing algorithms
include:

1. Few techniques address the issue of visualizing multidimen-
sional data elements; those that do (e.g., treemaps) produce
displays that may not be well-suited for the user’s exploration
and analysis needs.

2. Many techniques are not appropriate for spatial datasets that
require specific locations for their elements (i.e., the data can-
not be arbitrarily repositioned to fit spatial structures required
by the visualization algorithm).

3. Mostoverview+detailand focus+contexttechniques are still
sensitive to dataset size; a sufficient increase inn can degrade
their ability to display data in a coherent manner.

Certain methods from scientific visualization were designed to ad-
dress the first two issues noted above: visualizing multidimensional
data elements that are anchored at fixed spatial locations. One com-
mon technique is to use properties of different visual features like
color, texture, and motion to represent the different attributes em-
bedded in a dataset [2, 6, 15]. The resulting displays form visual
patterns that are used to explore the underlying data (Figs. 1, 5a).
More recent work has studied the perceptual properties of the dif-
ferent visual features [7, 8], in an attempt to produce displays where
important information can be seen “at a glance.” Theseperception-
based visualizationsare carefully designed to harness the strengths
and avoid the limitations of the human visual system. This cre-
ates visualizations that can be analyzed very rapidly and accurately,
often in a few tenths of a second or less. Unlikeoverview+detail
and focus+contextalgorithms, these multidimensional techniques
do not deal explicitly with the need to display both local detail and
global structure simultaneously. In most cases, interactive cam-
era navigation (e.g., translation, rotation, and zoom) is used to
change the viewer’s location and focus on different subregions in
the dataset.

Taken together, ideas from information and scientific visualiza-
tion could be used to construct a system capable of representing
both global structure and high-dimensional local detail. To address
the final issue, datasets with very largen, we propose a navigation
assistant, a software system designed to help users navigate within
their data. Rather than trying to display the entire datasetD on-
screen, we provide two separate views: a high level-of-detail local
view of a subset ofD, and a global overview showing a connected
network of regions of interest withinD. The navigation assistant
constructs the global overview based on user-specified rules that
identify “properties of interest.” The global network allows users to
situate themselves relative to regions of interest, while at the same
time visualizing the multidimensional data elements within their
field-of-view. As well, the graphs that make up the regions of inter-
est can be used to construct animated tours to help viewers explore
the areas ofD most likely to contain important data.

3 BUILDING AREAS OF INTEREST

Every dataset contains a subset of data elements that the user con-
siders “interesting.” Users need methods to successfully locate
these elements of interest (EOIs), then efficiently navigate between
them. Typically, users can describe EOIs based on their attribute
values. We allow users to create a set of explicit rules using standard
mathematical and boolean operators. These rules are then applied
to filter a dataset and identify its EOIs For example, during the visu-
alization of a weather dataset, a user might enter a rule of the form
temperature> avg(temperature) + 2 ∗ stdev(temperature) (where
avg represents the average temperature over all data elements, and
stdevrepresents the standard deviation). If an element satisfies any
rule, the navigation assistant considers it to be of potential interest
to the user (Fig. 2a).

We assume the set of EOIs will be small relative to the size of the
dataset. A large EOI set suggests that the user’s rules are too broad,
and thus do a poor job of filtering the data into interesting and un-
interesting subsets. Although allowed, such a set of rules normally
make the exploration task more difficult and time consuming. Our

(a) (b)

Figure 1: An example visualization of a weather dataset withm = 4 attributesA = (temperature, wind speed, cloud coverage, precipitation)
represented with color (dark blues and greens for colder to bright reds and pinks for warmer), height (taller for stronger winds), density (denser
for higher cloud coverage), and regularity (more irregular for heavier precipitation): (a) a close-up of Florida shows the details of individual
data elements, but no global context; (b) a view of the United States shows interesting global structure, but makes it difficult to identify the
attribute values assigned to individual data elements

technique for identifying EOIs works well, both for static and for
dynamically changing datasets. Users can easily add, remove, or
modify their rules to update their current interests during visual-
ization. This allows them to quickly refocus as new or unexpected
avenues of investigation unfold.

Once an initial set of EOIs has been identified, a navigation
framework must be constructed. This process begins by clustering
spatially neighbouring EOIs into areas of interest, or AOIs (Fig. 2b).
The clustering algorithm works as follows:

• An element of interestei is selected to begin a new AOI.

• From the set of EOIs that do not yet belong to any cluster,ej

is selected such that it is closest to the convex hull of the new
AOI.

• If the distance fromej to the convex hull is below a user-
defined threshold,ej is added to the new AOI. Otherwise, the
new AOI is closed andej becomes the initial member of the
next AOI to be constructed.

• This process is repeated until every EOI belongs to an AOI.

The number and size of the AOIs that are formed can provide im-
portant insight into the nature of the elements of interest. A few
large AOIs suggests that interesting elements are spatially coherent
with one another, while a large number of very small AOIs suggests
the interesting elements are randomly located within the dataset. A
spatial partitioning of the dataset into areas with many AOIs, or
with no AOIs, might also indicate important spatial dependencies
inherent to the EOIs.

There are several parameters that the user can specify during
clustering to control the structure of the AOIs. Specifically:

• proximity: the maximum allowable distance between a can-
didate EOIej and the convex hull of its AOI. This is used to
tradeoff the physical size and density of each individual AOI
against the total number of AOIs in the dataset.

• area: the maximum spatial area an AOI is allowed to occupy.
This is used to control the physical size of the AOIs.

• population: the maximum number of EOIs that are allowed
within a single AOI. This is used to control the logical size of
the AOIs.

Although our clustering technique has worked well in practice,
we are now studying more traditional hierarchical clustering algo-
rithms (e.g.,agglomerative methods with various distance metrics)
that may improve efficiency, flexibility, and robustness.

Once the AOIs are defined, a graph-based framework is built
within each AOI. This framework is used to support efficient navi-
gation, and to visualize the locations of and relationships between
the EOIs that make up an AOI. We use a Delaunay triangulation of
the EOI positions to achieve these goals (Fig. 2c). The maximum
number of edges in a Delaunay triangulation is linear in the number
of vertices (3n− 6 for n vertices), preventing dramatic increases in
the graph size as an AOI grows. Given no more than3n − 6 edges,
the average degree of each vertex is at most six. This guarantees
a low-complexity branching factor that is independent of the num-
ber of vertices in the graph. Finally, the edge count and branching
properties, together with the planar nature of a Delaunay triangula-
tion, allow for the construction of polynomial time graph-traversal
algorithms.

The last step in our AOI construction involves linking the AOIs
together. The centroids of each AOI are connected via a mini-
mum spanning tree built with edge weights set to edge lengths
(i.e., the Euclidean distances between the AOIs). This produces
a low-complexity graph that connects the AOIs (Fig. 2d). Since the
graph minimizes the sum of its edge weights, it guarantees efficient
paths between the AOIs. This acts as our global network, visu-
ally representing both the locations of and connectivity between the
AOIs. Just as the Delaunay triangulations are used to navigate lo-
cally within an AOI, the minimum spanning tree is used to navigate
globally from one AOI to another.

4 ASSISTED NAVIGATION

With the graph framework in place, users have the ability to man-
age their visualization sessions, both by locating areas of potential

(a) (b) (c) (d)

(e)

Figure 2: Areas of interest constructed in an example weather dataset: (a) individual elements of interest (shown as shaded solids with
highlighted borders) are selected via user specified rules; (b) the elements are spatially clustered into areas of interest; (c) elements within
each area are connected with a Delaunay triangulation; (d) areas of interest are connected with a minimum spanning tree; (e) a global view of
six areas of interest within the continental United States

interest, and by asking the navigation assistant to help them to ex-
plore within those areas For example, a user might ask the assistant
to move to a particular AOI and present a tour that visualizes its
EOIs. Another example might move a user from the closest EOI
to the furthest EOI within the same AOI, and visualize any inter-
mediate EOIs the camera passes close to during the traversal. The
assistant handles these requests by constructing an animated cam-
era path based an AOI’s underlying Delaunay triangulation. The
camera path visualizes the elements of interest as follows:

1. Use graph traversal algorithms to generate the sequence of
EOIs to visit, in order.

2. Use an optimal viewpoint algorithm to generate the camera
coordinates from which to visualize each EOI in the sequence.

3. Generate camera motion parameters to animate smoothly be-
tween the EOI view positions.

4. Begin the tour, allowing the user to stop at any point and re-
acquire control of the camera.

4.1 Graph Traversal

Each navigation request applies a graph traversal algorithm to an
AOI’s Delaunay triangulation to generate a sequence of EOIs to vi-
sualize. Two different algorithms are currently being used: a short-
est path technique to move between two EOIs, and an approxima-
tion of a Hamiltonian cycle to tour within an AOI. The properties of
the Delaunay triangulation support efficient traversal algorithms. A
shortest path can be computed in timeO(E), whereE is the num-
ber of edges in the graph. An approximation of a Hamiltonian cycle
can be computed inO(E lgE).

Dijkstra’s algorithm is used to construct a shortest path from a
starting EOIe0 to a targetej . A brief description of the algorithm
is provided here; interested readers are directed to [10] for a more
complete explanation and formal proof. The algorithm begins by
identifying edges of the form(e0, ei) to define the set of elements
connected toe0. Eachei has its path length set to the weight of the
edge(e0, ei), and its predecessor set toe0. These paths are incre-
mentally extended from eachei; every new element encountered

has its length and predecessor set in a similar fashion. This process
continues until all EOIs are visited. At this point, the predecessors
define the shortest path betweene0 and any target EOIej .

In order to tour the EOIs in an AOI, we need to construct a span-
ning cycle, a path that starts and ends at a common elemente0 and
visits everyei 6= e0 exactly once. Finding a Hamiltonian cycle, a
minimum cost spanning cycle (where cost is the sum of the edge
weights in the cycle), is NP hard. We instead use the algorithm of
Rosenkrantz et al. [12] to build an approximation of the Hamilto-
nian cycle for a Delaunay triangulation. Given a minimum span-
ning treeT of a Delaunay triangulation (computed inO(E lgE)
time using Kruskal’s algorithm [10]), we createT ′ by doubling ev-
ery edge inT . SinceT ′ is a connected Euler graph, an Euler cycle
w can be constructed to visit eachei at least once. It can be shown
that the cost ofw is no more than two times the cost of the Hamil-
tonian cycle. To avoid visiting elements more than once, we assign
an arbitrary direction tow and begin a tour ate0, marking elements
as visited when they are first seen. Any element alongw that was
already visited is skipped. Sincew is built from a Delaunay tri-
angulation, all edge weights must obey the triangle inequality, so
skipping edges will never increase the cost of the cycle. There-
fore, the final tour must also have a cost of no more than twice the
Hamiltonian cycle.

4.2 Optimal Views

Once the sequence of EOIs is known, an appropriate camera co-
ordinate (i.e., position and viewing direction) must be selected for
each EOI. One simple choice would be to ask the user to define
a preferred camera position, a default location in three-space cen-
tered about each element to be visualized. Unfortunately, in certain
cases an element may not be visible from its preferred camera posi-
tion. This is especially true when elements are visualized using 3D
glyphs that vary in height. In these situations, a different technique
must be applied to guarantee an “optimal” camera position that is
not occluded by other elements in the scene.

Figure 3: An example of optimal viewpoints, shown as locations
in three-space together with the camera’s look-at and up vectors at
each location, for 24 EOIs in an AOI in California

We use a partial constraint solver to choose each element’s cam-
era coordinates. Our solver is loosely based on the work of Drucker
and Zeltzer [4] and Bares and Lester [1]. Three separate constraints
are specified to control the visualization of an element:

• occlusion:the ability to “see” the EOI from the camera’s view
position,

• view angle: the preferred range of relative orientations be-
tween the camera and the EOI, and

• view distance:the preferred range of distances between the
camera and the EOI.

A spherical coordinate system centered about the EOI is used to
identify regions in space that satisfy each constraint. For view an-
gle, this is a simple decomposition of the upper hemisphere into
allowable and restricted areas. For occlusion, a camera is placed
at the EOI’s location, and visible object boundaries are projected
onto the hemisphere around the element. The hemispheres are then
unioned together, to search for regions that satisfy both constraints.
If such regions exist, an optimal camera coordinate within one of
the regions is selected (the optimal position is chosen based on a
number of criteria, for example, it must lie in the preferred range of
distances from the EOI, it should minimize variations between the
camera coordinates of neighbouring EOIs in the tour, and so on).

If no non-empty regions exist after intersection, we must relax
our constraints to find an acceptable camera coordinate. Currently
we always choose to relax the view angle constraint, since we deem
this less important that the occlusion constraint (i.e.,we prefer to be
able to see an element, rather than guaranteeing the camera never
moves outside a fixed range of viewing angles). A camera coordi-
nate is selected from the first acceptable region we find, with the
additional requirement that this coordinate minimize the amount of
constraint relaxation it requires.

Our constraint-based solver works well in practice, and has
proven to be reasonably efficient, allowing us to recompute cam-
era coordinates in real-time for our dynamic visualization environ-
ments. Because it is easy to add, remove, or change the constraints
our system uses, we have the added advantage of a simple, flexible
method to control how optimal views are constructed.

4.3 Camera Motion

After the navigation assistant constructs an ordered set of camera
coordinates for each EOI, it must build a camera path through these
locations. Spline curves are used to move between the EOIs’s op-
timal viewpoints. The camera’s view direction is defined by its
position on a segment, and by the segment’s two endpoints. The
spline curveSi with endpointsei andei+1 is parameterized such
that the camera looks atei on the range[0, 1

3
), and atei+1 on the

range[2
3
, 1]. The camera pans smoothly betweenei andei+1 on

the range[1
3
, 2

3
).

As the camera path for each curve is built, the assistant tries to
guarantee shots that are fluid and free from distortion. Previous
work has investigated techniques for visually coherent camera mo-
tion [1, 4]. Although we have found no fully automated or complete
set of rules to guarantee perfect camera placement, these studies
suggest a number of common guidelines, including: (1) maintain-
ing alignment between the camera and the world up vector; (2) fo-
cusing the camera’s view on the subject of a shot, and (3) construct-
ing camera motion that does not collide with objects in the scene.
Each of these issues was addressed when we built our camera paths.

For a camera path alongSi, if the angle between the camera up
vector and the world up vector becomes too large, additional control
points are inserted to force the camera to maintain a consistent ori-
entation. This prevents intermediate shots that look directly down
onto the data elements. The allowable difference between the two
vectors is a function of the camera’s position alongSi and the opti-
mal views defined atSi’s endpoints. The camera must conform to
the coordinates specified at the endpoints, regardless of how poorly
the up vectors diverge. Because of this, the up vector requirement
is also considered during optimal view selection; when a choice of
view angles is available, views with a lower angle are preferred over
higher, look-down views.

Figure 4: An example of a camera path through a set of camera
coordinates for 24 EOIs in an AOI in California

Each camera path is built to focus on an EOIei for 1
3
ti−1 + 1

3
ti,

whereti is the time needed to traverse a curve segmentSi (1
3
ti−1

as the camera approachesei, and 1
3
ti as it moves away). Although

ei may not be fully visible for this entire period, the existence of
an optimal view guarantees the user will be able to seeei as the
camera passes near it. Any occlusion that might exist will smoothly
disappear (or reappear) as the camera moves through its tour.

We check for collision with elements along the camera path for
each curve segment when it is built. Any collision forces us to raise
the height of the camera at that point along the path to avoid the
element in question. We identify all potential collisions prior to
building any part of the path. This allows us to construct a path
that rises monotonically to its highest point, then descends back to
ei+1 as necessary. Although this may violate the user’s preferred
viewing angle, the assistant treats this requirement as less important
than the need to avoid passing through elements during a tour.

4.4 Moving Between Areas of Interest

Just as users want to tour within an AOI, they may also ask to move
between AOIs. We can apply exactly the same algorithms to ad-
dress these navigation requests.

The simplest way to move a user to a target area of interestaj

is via a straight-line camera translation to the center ofaj . We do,
in fact, support this type of traversal. However, we have found an
equally useful request takes the form: “Move me toaj , but show
me all the other AOIs that are nearby during that move.” We use the
global AOI network to build this type of tour as follows:

1. Locate the center of the AOIa0 closest to the user’s current
view positionvcur.

2. Identify the shortest path through the minimum spanning tree
from a0 to aj using Dijkstra’s algorithm.

3. Construct optimal views for the center of each AOI along the
path(vcur, a0, . . . ,aj) using our optimal view algorithm.

4. Build camera paths through the optimal views that focus on
each AOI in turn using our camera planning algorithms.

5. Execute the tour by animating the camera along the camera
paths.

The tour we produce moves the user fromvcur to aj , while at the
same time focusing on AOIs along the navigation path.

5 VISUALIZING WEATHER DATA

In order to test our navigation assistant in a real-world context, we
turned to a collection of monthly environmental and weather condi-
tions. This dataset contains mean monthly surface climate readings
in 1

2

◦
latitude and longitude steps for the years 1961 to 1990 (e.g.,

readings for January averaged over the years 1961-1990, readings
for February averaged over 1961-1990, and so on). We chose to
visualize four weather conditions: mean temperature(temp), wind
speed(wind), cloud coverage(cloud), and precipitation(precip).
Each data elementei containsm = 7 values: the four attributes
listed above, plus latitude, longitude, and month.

We used three-dimensional perceptual texture elements (or pex-
els) to visualize data in our high-detail local view. Our pexels look
like rectangular solids sitting up off the surface of an underlying
map (Fig. 5a). Colour representstemp: dark blues and greens for
low temperatures to bright reds and pinks for high temperatures.
Height representswind: taller pexels for stronger winds. Density
representscloud: higher density (i.e., more pexels packed into a
unit area of screen space) for denser cloud coverage. Finally, regu-
larity representsprecip: in areas with little or no rainfall, pexels are
positioned in a regular, grid-like fashion; in areas with high rainfall,
pexels are allowed to walk randomly from these anchor points.

Fig. 5 shows the dataset with six AOIs built using the following
rules (the AOIs can be seen in the global overview in Fig. 5b; see
also Fig. 2e):

• precip> avg(precip) + stdev(precip) && cloud< avg(cloud)
− 1

2
∗ stdev(cloud)

• precip> avg(precip) + stdev(precip) && wind > avg(wind)
+ stdev(wind)

• precip> avg(precip) + stdev(precip) && temp< avg(temp)

These rules focus on areas of high precipitation that correlate with
secondary weather conditions that are interesting (e.g.,high wind
speeds) or unexpected (e.g., low cloud coverage). Intuitively, the
three rules correspond to regions of: (1) high rainfall and low cloud
coverage; (2) high rainfall and high winds, and (3) high rainfall and
low temperatures.

Fig. 5b visualizes data elements at the start of a tour through
an AOI located in the Pacific Northwest (the EOIs were selected
because of highprecip and low cloud, and highprecip and high
wind). This camera shot focuses on EOIs near the Washington-
British Columbia border. The user has asked to highlight the EOIs
with blue borders, and to display the camera path as a grey curve in
the local view. The global overview in the upper-left corner of the
screen visualizes the locations of all the AOIs in the dataset. It also
displays the user’s current position and view direction, shown as a
green view frustum. The view frustum allows users to determine
their location and orientation. This is particularly helpful when the
navigation assistant is animating the camera. Ten additional camera
views from the tour are shown in sequence in Figs. 5c-l. Each view
focuses on a new element of interest in the AOI.

Although not shown in this example, users can also request tours
between EOIs within an AOI, or between the AOIs themselves.
These tours are similar to the one shown in Fig. 5: a path through
a set of optimal views is constructed, allowing the assistant to nav-
igate smoothly from the user’s current position to the final EOI or
AOI, viewing each area of interest as it pass near the camera.

6 CONCLUSIONS

This paper describes a new method for visualizing large, multidi-
mensional datasets. Our technique combines the local details of

cold temp (dark green)

warm temp (bright red)

strong wind (taller)

high precip (irregular)

dense cloud (denser)

(a)

global overview

camera path

EOIs

(b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 5: Visualizations and a tour from the weather dataset: (a) visualizing data in the northeastern United States to demonstrate different
weather conditions and the visual features they form; (b) the start of a tour of an AOI in the Pacific Northwest, showing EOIs highlighted
with blue borders, the camera path rendered as a grey curve, and the global overview in the upper-left corner with the user’s current location
and view direction displayed as a green arc; (c-l) an ordered sequence of ten camera shots along the tour

individual data elements together with a global overview of the lo-
cations and structure of areas of potential interest within the dataset.
A navigation assistant identifies these areas of interest (AOIs), then
offers users different ways to explore them. Graphs based on De-
launay triangulations are used to connect elements within an AOI.
A minimum spanning tree is built to link the AOIs together. Vi-
sual tours can then be constructed with graph traversal algorithms,
optimal viewpoint construction, and intelligent camera planning.

Data is visualized using a combination of assisted navigation and
traditional interactive camera placement. Since the AOI graphs can
be dynamically recomputed, the rules that define elements of in-
terest can be easily changed. This allows users to try various ap-
proaches to search for unexpected results in their data, and to study
the relationships that exist between the attribute values stored in
each data element. We showed how our navigation assistant is be-
ing used to visualize multidimensional weather data. We are not
limited to this particular problem domain, however. The navigation
assistant was designed to be application independent, and can be
applied to a wide range of practical visualization environments.

Although we have not completed controlled validation experi-
ments to measure the performance of our system against existing
visualization techniques, anecdotal feedback from our users has
highlighted a number of potential advantages and limitations. In
particular:

+ The global overview is very useful, both for navigating within
the data, and for rapidly identifying the locations of EOIs in
the dataset as a whole.

+ The ability to add, remove, and modify rules of interest allows
“what if” analyses to be performed by studying how different
rules generate different EOIs in the global overview.

+ The navigation assistant can be used to quickly relocate to an
off-screen AOI, and to tour EOIs within an AOI.

– Explicitly specifying the rules of interest can be time con-
suming, moreover, it is sometimes difficult to define rules that
capture exactly the combinations of attributes that identify a
particular set of EOIs.

– More choices are needed in the types of tours the navigation
assistant provides.

We are pursuing a number of new ideas to expand and improve our
navigation framework. One project is studying the use ofimplicit
indicators to identify elements of interest. This will allow users
to select EOIs directly from the high-detail local view. Learn-by-
example algorithms (e.g., data mining classification) can then be
applied to build rules that define the specific combinations of at-
tribute values that make these elements different from others in the
dataset. Users will be able to modify the implicit rules exactly as
before, allowing them to manage any suggestions made by the navi-
gation assistant. A second project is focusing on new types of tours
that may provide additional insight into the makeup of a dataset.
One example is a tour that follows a path around the boundary of
an AOI while looking in on the EOIs; this could help to better de-
fine the shape of the AOI and the relative positions of the EOIs. We
are studying guidelines from computer animation and virtual cine-
matography to construct tours of this type. Finally, we are design-
ing a set of formal validation studies that compare the performance
of our navigation assistant to existing visualization techniques. Our
plan is to implement severalfocus+contextand overview+detail
algorithms, extend them to support multidimensional glyphs, and
then measure their performance for a set of representative visual-
ization tasks. The navigation assistant will be tested on the same
set of tasks. The results will be used to identify the strengths and
limitations of each technique.

In summary, our navigation assistant combines ideas from scien-
tific and information visualization, graph theory, and camera plan-

ning to support effective exploration and analysis of large, complex,
multidimensional datasets. The result is a technique that offers a
number of unique and useful improvements over existing visualiza-
tion systems, for a wide range of problem domains.

References

[1] BARES, W. H., AND LESTER, J. C. Intelligent multi-shot vi-
sualization interfaces for dynamic 3D worlds. InProceedings
Intelligent User Interfaces ’99(Redondo Beach, California,
1999), pp. 119–126.

[2] BERGMAN, L. D., ROGOWITZ, B. E., AND TREINISH,
L. A. A rule-based tool for assisting colormap selection.
In Proceedings Visualization ’95(Atlanta, Georgia, 1995),
pp. 118–125.

[3] CARD, S. K., MACKINLAY , J. D.,AND SHNEIDERMAN, B.
Readings in Information Visualization: Using Vision to Think.
Morgan Kaufmann Publishers, Inc., San Francisco, Califor-
nia, 1999.

[4] DRUCKER, S. M.,AND ZELTZER, D. Intelligent camera con-
trol in a virtual environment. InProceedings Graphics Inter-
face ’94(Banff, Canada, 1994), pp. 190–199.

[5] FURNAS, G. W. Generalized fisheye views. InProceedings
CHI ’86 (Boston, Massachusetts, 1986), pp. 16–34.

[6] GRINSTEIN, G., PICKETT, R.,AND WILLIAMS , M. EXVIS:
An exploratory data visualization environment. InPro-
ceedings Graphics Interface ’89(London, Canada, 1989),
pp. 254–261.

[7] HEALEY, C. G., AND ENNS, J. T. Large datasets at a
glance: Combining textures and colors in scientific visual-
ization. IEEE Transactions on Visualization and Computer
Graphics 5, 2 (1999), 145–167.

[8] HEALEY, C. G., ST. AMANT, R., AND CHANG, J. Assisted
visualization of e-commerce auction agents. InProceedings
Graphics Interface 2001(Ottawa, Canada, 2001), pp. 201–
208.

[9] L AMPING, J., AND RAO, R. The hyperbolic browser: A fo-
cus+context technique for visualizing large hierarchies.Jour-
nal of Visual Languages and Computing 7, 1 (1996), 33–55.

[10] PREPARATA, F. P.,AND SHAMOS, M. I. Computational Ge-
ometry. Springer-Verlag, New York, New York, 1985.

[11] ROBERTSON, G. G., MACKINLAY , J. D.,AND CARD, S. K.
Cone trees: Animated 3D visualizations of hierarchical infor-
mation. InProceedings CHI ’91(New Orleans, Louisiana,
1991), pp. 189–194.

[12] ROSENKRANTZ, D. J., STEARNS, R. E.,AND LEWIS, P. M.
An analysis of several heuristics for the traveling salesman
problem.SIAM Journal on Computing 6(1977), 563–581.

[13] SHNEIDERMAN, B. Tree visualization with tree-maps: A
2D space filling approach.Transactions on Graphics 11, 1
(1992), 92–99.

[14] SMITH , P. H., AND VAN ROSENDALE, J. Data and visu-
alization corridors report on the 1998 CVD workshop series
(sponsored by DOE and NSF). Tech. Rep. CACR-164, Cen-
ter for Advanced Computing Research, California Institute of
Technology, 1998.

[15] WARE, C., AND KNIGHT, W. Using visual texture for infor-
mation display.ACM Transactions on Graphics 14, 1 (1995),
3–20.

