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Abstract

This paper describes a novel application of feature preserving mesh
simplification to the problem of managing large, multidimensional
datasets during scientific visualization. To allow this, we view a sci-
entific dataset as a triangulated mesh of data elements, where the at-
tributes embedded in each element form a set of properties arrayed
across the surface of the mesh. Existing simplification techniques
were not designed to address the high dimensionality that exists in
these types of datasets. As well, vertex operations that relocate, in-
sert, or remove data elements may need to be modified or restricted.
Principal component analysis provides an algorithm-independent
method for compressing a dataset’s dimensionality during simplifi-
cation. Vertex locking forces certain data elements maintain their
spatial locations; this technique is also used to guarantee a mini-
mum density in the simplified dataset. The result is a visualization
that significantly reduces the number of data elements to display,
while at the same time ensuring that high-variance regions of po-
tential interest remain intact. We apply our techniques to a number
of well-known feature preserving algorithms, and demonstrate their
applicability in a real-world context by simplifying a multidimen-
sional weather dataset. Our results show a significant improvement
in execution time with only a small reduction in accuracy; even
when the dataset was simplified to 10% of its original size, average
per attribute error was less than 1%.

CR Categories: I.3.6 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—curve, surface, solid, and object rep-
resentation; geometric algorithms, languages, and systems

Keywords: dataset management, mesh simplification, principal
component analysis, scientific visualization

1 Introduction

Much of the work in scientific visualization deals with the intelli-
gent management and display of large, complex collections of data.
DatasetsD containing many millions of elementsei are not un-
common, moreover, each element may encode multiple attribute
valuesAj (e.g.,a weather dataset where each element represents
weather station readings forn = 9 attributes: latitude, longitude,
elevation, time, temperature, pressure, wind speed, humidity, and
precipitation). Our goal during visualization is to convert some or
all of these values into images that allow viewers toexplore, ana-
lyze, verify, anddiscover.

The problems of dataset size and dimensionality were identified
and discussed by the original NSF panel on scientific visualization
[9]. Although significant advances have been made in recent years
(e.g., with methods like spot noise and line integral convolution,
perceptual visualization, and feature extraction and data mining)
[10], even the most sophisticated techniques are often unable to dis-
play a dataset in its entirety [12]. A dramatic increase in our ability
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to collect and archive enormous amounts of raw data have further
emphasized the need to study the problem of dataset management.

Processing large sets of information for on-screen display is not
unique to visualization. One area of particular interest is the control
of geometry during rendering in computer graphics. Researchers
are studying how to generate mesh representations of 3D objects
that are highly detailed, yet small enough in their polygon count to
render at interactive frame rates. Initial work in this area proposed a
number of simplification techniques that characterize different parts
of an object by their level of geometric detail. The resolution of the
mesh is varied to be expressive in areas of high detail (i.e., high-
resolution, with many small triangles) and compact in areas of low
detail (i.e., low-resolution, with only a few large triangles). Recent
work has extended these techniques to consider surface properties
together with the object’s geometry. Thesefeature preserving mesh
simplificationalgorithms maintain a high-resolution mesh in loca-
tions with sharp variations in geometry or in surface details like
color and texture. The result is a model with a significant reduc-
tion in polygon count, yet with a visual appearance that is often
indistinguishable from the original, full-resolution mesh.

Our interest in feature preserving mesh simplification stems from
the belief that a 3D object and a multidimensional dataset have a
number of important parallels. The spatial coordinates used to po-
sition a data element during visualization form a set of vertices that
can be triangulated to produce an underlying mesh. The individual
attributes associated with each element can then be viewed as a set
of properties arrayed across the surface of the mesh. Conceptual-
izing the dataset in this manner suggests we may be able to apply
feature preserving simplification algorithms to reduce its size (i.e.,
the polygon and associated vertex count) based on attribute vari-
ability. Spatial regions with near-constant attribute values could be
reduced to only a few elements; areas with high levels of variation
would be densely populated. In addition to the absolute reduction
in dataset size, knowingwheresimplification occurs would provide
a viewer with valuable information about when attributes vary and
how they interact with one another.

Unfortunately, most feature preserving simplification algorithms
cannot be applied verbatim to a multidimensional dataset. These
techniques were designed for a 3D modeling environment, and were
not meant to be used for reducing the size of a high-dimensional
data collection. This can result in unanticipated problems, for ex-
ample:

• Many feature preserving techniques were optimized to han-
dle only a few surface properties (e.g.,(r, g, b) color, or tex-
ture (u, v) coordinates); performance and accuracy can de-
grade significantly in the presence of the tens or hundreds of
attributes that exist in many multidimensional datasets.

• Algorithm-specific methods for error estimation, vertex elim-
ination, and vertex relocation are employed; this necessitates
“respecifying” a dataset (often in non-trivial ways) to fit each
algorithm’s mesh and surface property assumptions.

• Certain vertex operations may not make sense in a multidi-
mensional visualization context; since vertices represent data
elements, it may not be allowable to arbitrarily add, remove,
or relocate them.

Our goal is a method that allows us to harness any of the current
(or future) simplification techniques without the need for extensive
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modifications to fit the algorithm, and with the expectation of an
accurate, high-quality result. In order to do this, we must address a
number of relevant problems:

1. Design algorithm-independent methods for allowing rapid
and accurate error estimation and vertex management for
high-dimensional datasets.

2. Develop algorithm-independent techniques to protect specific
data elements from certain types of modifications.

3. Ensure our extensions integrate seamlessly into existing fea-
ture preserving simplification algorithms.

The remainder of this paper describes our solutions to these prob-
lems. Section 2 provides an overview of related work in mesh
simplification and dataset management in visualization. Section 3
begins with an introduction to principal component analysis, fol-
lowed by a description of its use for rapid and robust error estima-
tion and vertex management. Section 4 explains how our new tech-
niques were applied to existing feature preserving simplification al-
gorithms. Section 5 demonstrates their application to a real-world
dataset of environmental weather readings. Section 6 concludes
with a summary of our results.

2 Related Work

We discuss briefly previous research in two areas most closely re-
lated to our own studies: (1) intelligent management of large, com-
plex datasets in scientific visualization, and (2) feature preserving
mesh simplification techniques from computer graphics.

2.1 Dataset Management

Although management of scientific datasets has been cited as an im-
portant area of current and future research [12], work to date in the
visualization community has been limited. Initial studies centered
around the use of a common data format that would feed through
data filters and on to high-level visualization tools [14]. Although
this is an important consideration, it does not addresshow to de-
sign filters and visualization techniques to compress and display a
dataset in an intelligent manner. Some recent systems were built
on top of a relational database, thereby harnessing its power to per-
form data organization and SQL operations (e.g.,in [13]). Unfortu-
nately, certain properties common to scientific datasets like errors,
noise, duplicate records, and missing values make them difficult to
integrate into a relational data model. Feature extraction has been
applied in certain cases to automatically identify and isolate regions
of interest in a large dataset (e.g.,in [5, 11]); only these extracted
regions are shown in the final visualization.

2.2 Mesh Simplification

Numerous techniques have been proposed to perform geometric
simplification on an underlying 3D mesh. Less work has studied
the problem of preserving geometry and surface properties together
during simplification. We focus our discussion of related work on
these feature preserving algorithms. In fact, many of these methods
are extensions of previous techniques that considered geometric er-
ror alone.

Bajaj and Schikore [1] apply vertex removal and reprojection to
simplify a 3D mesh with surface properties; the goal of this algo-
rithm is closest to our own: the simplification of a surface repre-
senting multivariate data. Unfortunately, this technique does not
address performance and accuracy issues that can occur during the
unrestricted simplification of a high dimensional dataset. Hoppe [7]
defines a progressive mesh structure, a series of edge collapses that

produce a monotonic reduction in mesh complexity; mesh geome-
try and scalar and discrete surface properties are preserved by min-
imizing an energy function that measures the deviation between the
simplified and the original mesh. Garland and Heckbert [3] contract
pairs of vertices to simplify a model; the error introduced during
each operation is estimated using quadrics. Surface properties are
treated as extensions to each vertex definition [4], and to the error
matrices used to process them. Hoppe [8] proposed a redefinition
of the quadric error matrix used in [4] to reduce storage cost and
improve accuracy; the new error metric separates geometric error
(based on the distance a simplified vertexv′

i strays from its pro-
jected positionvi on the original mesh face) and surface property
error (based on the deviation between properties assigned tov′

i and
the actual property values stored on the mesh face atvi) to improve
both efficiency and visual appearance. Cohen et al. [2] separate a
model into a geometric surface and one or more surface maps (e.g.,
a texture map and a normal map). Simplification envelopes are used
to identify a sequence of operations to reduce the model’s geome-
try; operations are ordered based on the the amount of deviation
they produce in each surface map.

3 Error and Vertex Management

Existing simplification algorithms specify mesh geometry in a con-
sistent fashion as a connected set of vertices inR

3 . Because of
this, it was not necessary to change how the basic geometry was
maintained. Our focus is on managing the surface properties that
sit on top of the underlying mesh. We seek a method to compress
ann-dimensional dataset intop new dimensions,p � n, while at
the same time ensuring this reduction does not remove important
details of interest to a viewer. We chose to use principal component
analysis to address this problem.

3.1 Principal Component Analysis

Principal component analysis (PCA) forms linear combinations of
the original attributesA1, . . . , An to construct a sequence of princi-
pal component axesZ1, . . . , Zn that span then-dimensional space
containing the data elements. The direction of eachZi is chosen
to maximize its capture of the varianceσ2 contained in a dataset
D. The axes are ordered such thatσ2(Z1) ≥ . . . ≥ σ2(Zn).
In practice, it often takes only a very few axesp, p � n, to ac-
count for the majority of the variance that exists in a dataset. A
viewer-specified cutoffτ is used to select the firstp axes such that
σ2(Z1) + · · · + σ2(Zp) ≥ τ (i.e., the smallest set of axes that
capture at leastτ of the variance inD).

Principal component analysis raises an interesting question:
“Why not simply transform a dataset to the firstp principal com-
ponent axes (thereby reducing the dimensionality fromn to p, yet
capturingτ of the variance), then visualize it?” Unfortunately, vi-
sualizing data in principal component space does not work well in
practice. In most cases viewers are unable to mentally transform the
data elements they see back to their originaln attribute values. We
can perform error estimation and vertex management in principal
component space, however. This requires little or no change to the
existing simplification techniques; from an algorithm’s perspective,
the only difference is a significant reduction in the number of sur-
face properties to consider. Viewers selectτ to guarantee that the
p new dimensions capture an appropriate percentage of the vari-
ance that exists inD. Results in principal component space are
transformed back to then-dimensional attribute space prior to vi-
sualization. This allows viewers to see the simplified dataset in its
original, expected context.

Principle component axes are constructed using eigenvalues and
eigenvectors. Given ann × n real, symmetric matrixA of rankn,
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there exist scalarsλi and vectorsZi such that:

AZi = λiZi,
(A − λiI)Zi = 0

�
i = 1, . . . , n (1)

The non-zeroλi andZi are theeigenvaluesandeigenvectorsof A.
The determinant|A − λI | is used to solve|A − λI | = 0; then so-
lutions ofλ for this polynomial equation are normally ordered and
assigned such thatλ1 ≥ . . . ≥ λn. Theλi are then used in Eq. 1 to
solve for the mutually orthogonalZi. GivenZ = [Z1 · · ·Zn] with
eachZi normalized, it follows thatZT Z = I , or ZT = Z−1. We
can use this result to rewrite Eq. 1 as:

AZ = ZL,
A = ZLZT (2)

whereL is the diagonal matrix of eigenvalues.
To solve for principal component axes, a datasetD is rewritten as

anm × n matrix of m data elements overn attributes. Individual
attributes are normalized to allow for relative comparisons. The
n×n covariance matrixC of the datasetD is then used to measure
the variance between all pairs of attributesi andj, 1 ≤ i, j ≤ n.
Specifically:

Ci,j = E(XY ) − E(X)E(Y )

=

Pn
k=1 Dk,iDk,j

n − 1
−
Pn

k=1 Dk,i

Pn
k=1 Dk,j

n

(3)

The eigenvectorsZi of C form the principal component axes of
D. The eigenvaluesλi measure the amount of variance eachZi

captures:

σ2(Zi) =
λiPn

j=1 λj
(4)

Thus, the firstp axes that satisfy(λ1 + · · · + λp)/
Pn

j=1 λj ≥ τ
form ap-dimensional space that capturesτ of the variance inD.

3.2 Reconstruction to Attribute Space

Vertex operations made by the simplification algorithms in princi-
pal component space represent the relocation of data elements in at-
tribute space. Appropriate attribute values for these relocated data
elements must be selected during the transformation back to the
original attribute space prior to visualization.

Z3

Z1= 
  z1,1A1 + ... + z1,nAn

Z2

u

v
w

êi

êi′ = êi + (u, v, w)T

A3

A2

A1

ei

ei′ = 
  ei + uZ1 + vZ2 + wZ3

Principal Component Space Original Attribute Space

Figure 1: An example of converting a pointe′i translated(u, v, w)
in principal component space back ton-dimensional attribute space

Consider a data elementei represented aŝei in principal component
space; its attribute values(ai,1, . . . , ai,n) form an anchor fromp-
dimensional principal component space back ton-dimensional at-

tribute space. After being translated by(u, v, w), the modified data
elementêi

′ is reconstructed ase′i in attribute space via:

e′i = ei + uZ1 + vZ2 + wZ3 (5)

whereZj is thej-th eigenvector stored as thej-th column inZ.
Intuitively, the coefficients inZj are used to estimate the change
for each attributeAj from its anchor pointai,j . This follows from
Eq. 2, which states:

êi = ZT ei

êi
′ = ZT e′i

(6)

This can be rewritten as:

êi
′ − êi = ZT (e′i − ei) (7)

If n = p thenZT = Z−1 (sinceZ is orthonormal), therefore:

Z(êi
′ − êi) + ei = e′i (8)

exactly as shown in Eq. 5. Ifp < n thenZT 6= Z−1, and results
from Eq. 7 represent estimates based on the amount of variability
captured byZ. Since we expectp � n, a small amount of error
is normally unavoidable. Thep axes we select will not capture all
of the variance contained inD, so they cannot be used to perfectly
reconstructe′i in attribute space.

Although reconstruction errors cannot be eliminated, they can be
controlled through the use ofτ . Large errors imply high spatial fre-
quency features that were missed during reconstruction. However,
such a feature should have been captured in one of the principal
component axes for any reasonable value ofτ . The dependence
on τ provides an intuitive method for controlling the tradeoff be-
tween speed and accuracy during simplification. From a viewer’s
perspective, increasingτ produces the expected result: the amount
of variance captured in principal component space increases, pro-
viding a corresponding increase in accuracy during simplification,
but at a potential cost in speed from an increase in the number of
principal component axes (or surface properties) that must be con-
sidered during simplification.

3.3 Vertex Locking

Each of the simplification algorithms apply some type of vertex
relocation, insertion, and removal. This makes sense for a 3D ob-
ject, since maintaining the starting position of a vertex is normally
unimportant. This is not necessarily true in a visualization envi-
ronment. We must ensure that vertex operations do not introduce
certain types of artifacts in the simplified dataset, for example:

1. Relocation Errors: Consider a weather dataset where some
elements represent weather stations, and others represent in-
terpolated values used to fill locations with no actual readings.
The highly accurate weather station elements could be locked
to prevent their relocation or removal (while still allowing the
interpolated elements to be modified during simplification).

2. Planing: In the absence of any preference for particular el-
ements, viewers should lock a structured subset of vertices
to guarantee a minimum element density in the simplified
dataset. This is important; without a minimum density large
holes will appear in areas of near-constant variation, leaving
no indication of the type of data that existed in the area prior
to simplification.

Although most algorithms provide methods for addressing discon-
tinuities or creases in a mesh, we wanted to build a simple, efficient
locking scheme that is algorithm-independent. To this end, we at-
tach a lock flag to each vertex. This flag is checked during each ver-
tex operation; if the flag is set, certain modifications are constrained

3
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or disallowed entirely. We chose to monitor edge collapses; over-
seeing this single operation has proven sufficient to guarantee the
protection of locked vertices for the algorithms we have extended
(this choice was motivated by Hoppe [7], who suggested that edge
collapses alone can produce effective mesh simplifications; the al-
gorithms we considered used edge collapses directly [2, 4], or used
vertex operations that can be easily respecified as an edge collapse
[1]). If one endpoint is locked, the edge must collapse to that end-
point. If both endpoints are locked, the edge collapse is not allowed
(note that this situation is rare; in most cases locked vertices are lo-
cated far from one another, so having both endpoints locked implies
a very long edge is being considered for collapse).

4 Extended Simplification Algorithms

In order to study our extensions, we integrated them into three ex-
isting simplification algorithms: progressive meshes [7], quadrics
with integrated geometry [4], and quadrics with separated geome-
try [8]. The speed and accuracy of the original and extended ver-
sions of each algorithm were then tested in the context of a large,
multidimensional weather dataset.

4.1 Progressive Meshes

The progressive mesh representation described by Hoppe [7] sim-
plifies a full-resolution meshMm with m vertices into progres-
sively coarser meshesMm−1, . . . , M1, M0 via a sequence of edge
collapses. The geometry of the mesh is stored as a tuple(K, V ),
whereK is a simplicial complex defining connectivity in the mesh,
andV is the set of mesh vertices positioned inR3 . A topological
realization|K| ⊂ R

m is built by associating vertices inK with
basis vectors inRm . The functionφV (|K|) : Rm → R

3 maps the
mesh back to 3D space. Discrete surface propertiesdf ∈ D are
associated with a facef = {j, k, l} ∈ K, while scalar properties
s(v,f) ∈ S are associated with the corners(v, f) ∈ K.

An edge collapse transforms two vertices(vi, vj) into a single
vertexv′

i. Vertexvj and its two adjacent faces are removed from the
mesh. The order of edge collapses is carefully chosen to minimize
the geometric and surface property errors they introduce. This goal
is redefined as an energy minimization problem:

E(M i) = Egeom(M i) + Escalar(M
i) + Edisc(M

i) (9)

whereEgeom measures the squared distance of vertices inMm to
the simplified meshM i, Escalar measures the difference between
scalar values at each vertex inMm and the estimated values at the
closest position onM i, andEdisc penalizes any edge collapse in
M i that modifies a discontinuity edge with different discrete at-
tributes on its adjacent faces.

The principal component and locking extensions are integrated
directly into the progressive mesh algorithm. Scalar attribute space
is reduced top dimensions based on a viewer-specifiedτ . All
Escalar minimization occurs within this space (note thatEgeom

andEdisc are unaffected by this change). The selection of a new
vertex position during an edge collapse(vi, vj) → v′

i is restricted
by vertex locks; if eithervi or vj is locked,v′

i snaps to that end-
point; if bothvi andvj are locked, the edge collapse is not allowed.

The progressive mesh algorithm begins by computing∆E (and
an associated optimal position for the survivingv′

i) for every valid
edge collapse inMm. The edge collapses are placed on a pri-
ority queue ordered by increasing∆E. The frontmost edge col-
lapse (with lowest∆E) is applied, and the priorities of edges in the
neighborhood of the collapse are updated. The next collapse can
then be selected from the front of the queue.

4.2 Quadrics with Integrated Geometry

Garland and Heckbert [3, 4] use quadric error matrices to define a
sequence of edge collapses that minimize error during simplifica-
tion. A vertexvi is characterized by the planespt that contain the
triangles incident atvi. The error associated with movingvi to a
new positionv′

i is defined as the sum of the squared distances ofv′
i

from each of the planes, that is:

∆E =
P

(pt
T v′

i)
2

= v′
i
T
(
P

ptpt
T )v′

i

(10)

wherept = [a b c d]T is a vector of coefficients for thet-th
plane representingvi. The quadric error matrix forvi is defined
as Qi =

P
ptpt

T . This error metric can be generalized to in-
clude scalar surface propertiessi by moving fromR3 to Rn ; each
vi now encodes(x, y, z) and (n − 3) scalar values. In this do-
main the vertices(vi, vj , vk) of a triangle form a planept ∈ R

n .
An (n + 1) × (n + 1) quadric error matrix can be constructed in
a manner similar to Eq. 10 to measure the squared distance of a
repositioned vertexv′

i from the plane. This distance captures both
geometric error and errors in estimated scalar surface properties.

During the collapse of edge(vi, vj) a new positionv′
i must be

selected. An optimal position that minimizes error can be found by
solving Q′−1, whereQ′ is the upper-leftn × n submatrix ofQ.
Since inverting the matrix is expensive (particularly asn grows),
selection can be restricted to the endpoints and their midpoint; the
position that produces the smallest error is used to locatev′

i.
Using principal component space to represent scalar attributes

reduces the size of the quadric error matrices ton = p + 3, where
p is the number of principal component axes (based on a viewer-
chosenτ ), and the remaining three entries store the 3D geometry of
the mesh. This produces a significant speed-up, particularly when
computing the matrix inverses needed to find optimized vertex po-
sitions. Vertex locking forces a reposition vertexv′

i to locate atvi

or vj (depending on which endpoint is locked); an edge with both
of its endpoints locked cannot be collapsed.

The quadric error algorithm begins by computingQi for eachvi

in the initial meshMm. All possible edge collapses(vi, vj) are
identified, a new position(vi, vj) → v′

i is selected, and the esti-
mated error∆E = v′

i
T
(Qi + Qj)v

′
i is calculated. As in Hoppe,

valid edge collapses are placed on a priority queue ordered by in-
creasing∆E, and removed one by one (with appropriate updates to
neighboring edges) to form an optimal sequence of edge collapses.

4.3 Quadrics with Separated Geometry

Hoppe proposed modifications to the quadric error metric intro-
duced by Garland and Heckbert to improve storage cost, execution
time, and accuracy [8]. Rather than measuring the distance between
v′

i and its projected position on a hyperplane inRn , error is com-
puted in two steps: (1)v′

i is projected to the closest pointp′ in R3

to measure geometric error, and (2) interpolated scalar valuess′ at
positionp′ are compared tov′

i to measure surface property errors.
Locatingp′ is identical to Garland and Heckbert’s original algo-
rithm [4]. A new function:

ŝf
j (p) = gf

j

T
p + df

j , j = 1, . . . , n − 3 (11)

is defined at each mesh facef for every surface propertyj; ŝf
j (p)

interpolates the scalar values stored atf ’s vertices, and ensures that
ŝf

j (p) = ŝf
j (p′), p ∈ R

3 (that is, anyp returns the scalar value at
its closest projected pointp′ on the underlying face). The resulting
quadric error matrix:

1. Reduces storage cost, since the number of coefficients for
each matrix is linear inn (previously, it was quadric inn).

4
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Figure 2: (a) Execution timet versus level of simplificationl for optimized and non-optimized integrated quadrics (OGQEM and GQEM,
respectively), both with and without the principal component analysis (PCA) extensions; (b)t versusl for separated quadrics and progress
meshes (HQEM and PM, respectively); (c, d) simplification error versusl; (e, f) average attribute error versusl

2. Reduces execution time, since the matrix is sparse.

3. Improves accuracy, since the new error metric explicitly se-
lects the geometrically nearest position on the mesh (previ-
ously, a geometrically farther point with closer attribute val-
ues might have been selected).

Principal component analysis is integrated into Hoppe’s algorithm
in a manner similar to the original quadric technique. The use of
p principal component axes reduces the number ofŝf

j to p and the
size of the quadric matrix ton = p + 3. As before, each edge
collapses is monitored to ensure it does not attempt to reposition a
locked vertex.

5 Real-World Results

In order to test our extended simplification algorithms in a real-
world context, we turned to a collection of monthly environmen-
tal and weather conditions. This dataset contains mean monthly
surface climate readings in1

2

◦
latitude and longitude steps for

the years 1961 to 1990 (e.g., readings for January averaged over
the years 1961-1990, readings for February averaged over 1961-
1990, and so on). We selected eleven attributes for visualization:
mean temperature(temp), vapor pressure(pressure), wind speed

(wind), wet day frequency(wet day), radiation(radiate), precipita-
tion (precip), minimum temperature(min temp), maximum temper-
ature(max temp), ground frost frequency(frost), diurnal tempera-
ture range(diurnal), and cloud cover(cloud). Each data element
ei containsn = 14 values: the eleven attributes listed above, plus
latitude, longitude, and elevation (amonthwas also associated with
eachei, but it was ignored during simplification).

We initially chose to visualize environmental conditions over
North America. This produced a starting meshMm with m =
10, 056 elements for each of the twelve months. We built separate
principal component axes for each month. Although it is possible
to build a single set of axes for the entire dataset, our method avoids
inter-month variation, producing smallerp. For example, principal
component analysis for January withτ = 0.9 reduced the attribute
space top = 4 axes (λ1 = 0.544, λ2 = 0.209, λ3 = 0.105,
andλ4 = 0.068). Results for the other months were similar (in all
cases,p = 3 or p = 4 for τ = 0.9). If the entire dataset is analyzed
in a single computation,p = 5 axes are needed to satisfyτ = 0.9.

Figs. 2a–d plot execution time and average simplification er-
ror (the squared distance between the original meshMm and the
simplified meshM i in R

p+3) as a function of the level of sim-
plification. Figs. 2e–f plot average attribute error (the difference
(
Pn

k=1 |v′
j,k − vj,k| )/n between the estimated attribute values at
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mesh (full resolution) precip(full resolution) frost (full resolution)

mesh (simplified) precip(simplified) frost (simplified)

Figure 3: Visualizing the full resolution elevation height field and perceptual color scales (dark blue for small values to bright pink for large
values) ofprecipandfrost (top) versus the same data simplified 90% with progressive meshes and PCA (bottom)

v′
j ∈ M i and the actual values at the projected positionvj ∈ Mm).

Tests were conducted both with and without principal compo-
nent analysis (PCA) for each of the four algorithms: integrated
quadrics with optimized vertex placement (OGQEM), integrated
quadrics with midpoint–endpoint vertex placement (GQEM), sepa-
rated quadrics with midpoint–endpoint vertex placement (HQEM),
and progressive meshes (PM). Our results showed:

1. PCA improved execution time for each of the four algo-
rithms (Figs. 2a–b); the relative improvement was largest for
O GQEM, and smallest for PM.

2. Although average simplification error was slightly higher with
PCA (Figs. 2c–d), in most cases the difference was not signif-
icant.

3. Average attribute error was low, even with PCA (Figs. 2e–f);
in no case did it exceed 0.9%.

Figs. 2a–b plot execution timet as a function of the level of sim-
plification l. For each algorithmt decreased when PCA was ap-
plied; the improvement was largest for OGQEM (4.7 times faster,
on average), and smallest for PM (1.06 times, on average); GQEM
and HQEM showed improvements of 2.07 and 1.45 times, respec-
tively. Although the absolute differences int are small, they rep-
resent the simplification of a compact dataset with relatively few
attributes (m = 10, 056 elements, each withn = 14 attributes).
For the entire dataset, the absolute improvement int increases ap-
proximately twelve-fold. Even this level of detail is sparse; datasets
with daily or hourly readings are not uncommon, and would require
hundreds or thousands of simplifications. Increasing the number of
attributes per element would cause an additional increase in com-
plexity. These factors highlight the cumulative nature of any reduc-
tion in t.

Figs. 2c–d plot average simplification error (the squared distance
betweenMm andM i) as a function ofl. Although the use of PCA
increased error, a difference of more than1×10−4 occurred in only

a few situations with largel. These include OGQEM atl = 70%
simplification, GQEM at 80 and 90%, HQEM at 90%, and PM at
50, 60, 70, and 80% (the PM differences appear as an obvious di-
vergence in the error curves in Fig. 2d; other variations are smaller
and more difficult to detect). Unlike execution time, increases in
simplification error are not necessarily tied to dataset size and di-
mensionality. We have observed that accuracy remains stable asτ is
held constant. A higher dimensionalityn may increase the number
of principal component axesp needed to captureτ of the variance,
but it does not result in a significant change in accuracy (indeed, this
is exactly the purposeτ was meant to serve). Similarly, increasing
the sizem of the dataset will increase execution time, but has little
or no effect on accuracy versus an algorithm that does not use PCA.

Figs. 2e–f plot average attribute error (the difference between es-
timated attribute values for elementv′

j ∈ M i and the actual values
at its projected position on the original meshMm) as a function of
l. Average error was less than 1% in all cases, moreover, the in-
crease in error when using PCA was relatively low (between 1.05
and 1.61 times). This supports our hypothesis that improved execu-
tion times can be achieved with only a minor reduction in accuracy.

5.1 Visualization

We concluded our investigations by visualizing our simplified re-
sults on-screen. Representing high-dimensional data in an effective
manner is a separate, and equally important, problem in visualiza-
tion. We used the color and texture techniques of Healey and Enns
[6] to display different parts of our weather dataset. In particular,
we wanted to see if our simplified results captured faithfully the
values stored in the original, full resolution dataset.

We began by studying how accurately the simplified attribute
fields characterize their original values. Results for two fields are
shown in Fig. 3. The top row of visualizes the original mesh, along
with full resolution versions of theprecip and frost attributes. A
luminance scale is used to encode the attributes: dark represents the
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smallest values, while bright represents the largest. The bottom row
shows the same data for a mesh reduced to 10% of its original size
using progressive meshes and principal component analysis. The
estimated attribute values at the simplified element positions do an
excellent job of capturing variations in the original data. Visually,
it is difficult to identify differences between the full resolution and
simplified fields. Some faceting can be seen along the high-to-low
precipboundary in the Pacific Northwest, and in thefrostpatterns in
the southern Rocky Mountains. The images in Fig. 3 reinforce the
results found in the graphs in Figs. 2e–f: average attribute errors are
small, even when simplification of the underlying dataset is high.

temp:cold hot

pressure:low high

wind: weak strong

precip: light heavy

Figure 4: Examples of mappingtemp→ color,pressure→ density,
wind→ coverage, andprecip→ orientation

We continue by visualizingtemp, wind, pressure,andprecip over
the entire map of North America (shown both in Fig. 5 and Fig. 6).
Small glyphs that look like painted brush strokes are used to rep-
resent each data elementei. Attribute values encoded withinei

control its stroke’s color and texture properties. Specifically, we
mapped:

• temp→ color: a perceptually balanced color scale represents
temperature (dark blue for cold to bright pink for hot),

• pressure→ density: the number of strokes packed into
the spatial region belonging toei represents vapor pressure
(sparse for low pressure to dense for high pressure),

• wind→ coverage: the amount ofei’s spatial region covered
by its strokes represents windspeed (low for weak winds to
high for strong winds), and

• precip→ orientation: the amount of rotation represent rainfall
(vertical for light to horizontal for heavy).

Results from psychophysical experiments conducted by Healey and
Enns [6] showed that proper use of these visual features will pro-
duce perceptually salient visualizations. Fig. 4 shows examples
of the corresponding colors (represented by luminance for print-
ing purposes), densities, coverages, and orientations each attribute
can produce. Figs. 5 and 6 show the same mappings applied to full-
resolution and simplified versions of our dataset (although we are
only visualizing four environmental conditions and three geometric
properties, the dataset was simplified using alln = 14 attributes).

Fig. 5a visualizes the original dataset (at full resolution) for Jan-
uary. Although this image represents certain attributes well (e.g.,
temperature gradients are visible via luminance, and regions of low

coverage with background showing through highlight areas of low
wind), others are more difficult to identify. Variations inpressure
(i.e., density) andprecip (i.e., orientation) are often hard to distin-
guish because of strokes overlapping with one another over much
of the map. A secondary concern is rendering speed: displaying
m = 10, 056 texture-mapped strokes can push refresh rates below
the acceptable minimum for effective interactivity.

Fig. 5b visualizes the same data simplified to 10% of its original
size using HQEM and principal component analysis. This demon-
strates our ability to simplify in regions with similar geometric and
environmental values, while maintaining detail in regions where
one or both properties vary sharply. For example, the high concen-
tration of tilted strokes in the Pacific Northwest capture the heavy
precipitation found in this part of the continent during January (see
the center column of Fig. 3 for a view ofprecip in isolation). Ge-
ographic features can also be seen as denser collections of strokes,
for example, the Rocky Mountains in the west, the Appalachian
Mountains in the east, and the Sierra Madre Occidental and Sierra
Madre Del Sur in Mexico. The visualization also shows a higher
overall density of data (i.e., less simplification) in the western half
of the United States. This is due not only to variations in eleva-
tion, but also to attributes with high spatial frequency components
in these regions. For example,windvalues vary significantly as they
pass over the mountains; this is shown as a change in stroke size
(smaller to larger) running west to east from the California coast,
and north to south from northern British Columbia along the Rocky
Mountain range.

Fig. 5b also highlights the problem ofplaning that can occur at
high levels of simplification. When every data element is free to
be relocated or removed, empty regions with very few elements can
form in areas with near-constant geometry and attribute values (e.g.,
in Nunavut and the Northwest Territories of Canada, or in the cen-
tral plains and southeastern coast of the United States). Although it
is useful to see where these regions occur, viewers also need a way
to determinewhich attribute values were present prior to simplifi-
cation.

Fig. 6a applies the same simplification techniques used in 5b, but
adds vertex locking. A regular2.5◦ × 2.5◦ grid of data elements
is locked to prohibit their relocation or removal. This underlying
array is clearly visible as a sparse, regular, repeating pattern of data
elements, particular in areas that previously caused planing. Fig. 6a
demonstrates the final results of our work, a technique that: (1)
uses feature preserving mesh simplification to significantly reduce
the size of a large, multidimensional dataset in an efficient manner,
(2) preserves high-variance areas of interest, (3) allows the protec-
tion of individual data elements as needed, and (4) guarantees a
minimum density of data to visualize all parts of the dataset. A
final example of these techniques is shown in Fig. 6b, which visu-
alizes simplifiedtemp, pressure, wind,andprecip during January
over Europe and Asia.

6 Conclusions

This paper describes a method of applying feature preserving mesh
simplification to the problem of managing large, multidimensional
datasets in scientific visualization. Algorithm-independent meth-
ods were developed to allow existing simplification techniques to
address properties unique to our problem environment. Principal
component analysis is used to temporarily reduce the dimension-
ality of a dataset during simplification; this ensures the algorithms
continued to produce accurate, high-quality results in a time effi-
cient manner. Vertex locking is applied to protect “important” data
elements from relocation or removal, and to guarantee a minimum
density of information in the simplified dataset. We used our new
techniques to simplify a large, multidimensional weather dataset.
Our results confirmed that: (1) the algorithms continued to gener-
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(a) (b)

Figure 5: Visualizingtemp, pressure, wind,andprecipover North America: (a) full-resolution dataset; (b) dataset simplified 90% with HQEM
and PCA, but no vertex locking

ate accurate results, (2) principal component analysis allowed the
algorithms to execute more efficiently, particularly in the presence
of large amounts of high dimensional data, and (3) any increase in
error relative to the original, unmodified algorithms was small. Our
simplification techniques allow us to maintain efficient runtime per-
formance without sacrificing the high level of accuracy demanded
during visualization. We are confident the same methods will be
applicable to future simplification algorithms with specific proper-
ties that make them attractive to a multidimensional visualization
domain.
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(a)

(b)

Figure 6: Visualizingtemp, pressure, wind,andprecip: (a) North America dataset withm = 10, 056 simplified 90% with HQEM, PCA, and
vertex locking; (b) Eurasia dataset withm = 30, 640 simplified 80% with HQEM, PCA, and vertex locking

9


