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Abstract
Ensembles are large, multidimensional, multivariate

datasets generated in areas like physical and natural science to

study real-world phenomena. Simulations or experiments are run

repeatedly with slightly different initial parameters, producing

members of the ensemble. The need to compare data and spatial

properties, both within an individual member and across multiple

members, makes analysis challenging. Initial visualization tech-

niques focused on ensembles with a limited number of members.

Others generated overviews of larger ensembles, but at the

expense of aggregating potentially important details. We propose

an approach that combines these two directions by automatically

clustering members in ways that help scientists locate interesting

subsets, then visualize members within the subset. Our ensemble

visualization technique includes: (1) octree comparison and

clustering to generate a hierarchical level-of-detail overview

of inter-member shape and data similarity; (2) a glyph-based

visualization of an ensemble member; and (3) a method of

combining multiple glyph visualizations to highlight similarities

and differences in shape and data values across a subset of

ensemble members. We apply our approach to a Relativistic

Heavy Ion Collider ensemble collected by nuclear physics col-

leagues at Duke University studying quantum chromo-dynamics.

Our system allows the physicists to interactively choose when

to explore inter-member relationships, and when to visualize

fine-grained details in individual member datasets.

Introduction
An ensemble is formed by executing a simulation or an ex-

periment repeatedly, with slightly different initial conditions or

parameterizations for each run. Data produced from a run forms

one member of the ensemble. Researchers from a wide range of

disciplines are now using ensembles to investigate complex sys-

tems, explore a system’s sensitivity to its input parameters, mea-

sure uncertainty, and compare both spatial and data characteristics

of the resulting models.

Not surprisingly, ensembles are difficult to analyze due to

their size and complexity. Wilson et. al. compared ensembles to

traditional scientific data and summarized the characteristics and

challenges unique to ensemble visualization [25]. Different tech-

niques have been developed for ensemble analysis. One approach

creates concise overview visualizations, but these may hide po-

tentially important details in the original data [3, 20]. Another

method extends existing scientific visualization techniques to sup-

port comparison between members [1, 17]. This can offer an im-

proved view of individual members, but often cannot scale be-

yond small member sets. This suggests the two main approaches

to ensemble visualization are currently: (1) generate an overview

that scales but may not maintain detail, or (2) present a visualiza-

tion that maintains detail but can only analyze a small number of

members at one time. More recent systems try to support interac-

tive ensemble analysis at different levels of detail [12, 18]. These

systems rely on the scientists to select a subset of members for

detailed visualization, however. Currently, little work has investi-

gated ways to automatically capture inter-member relationships.

We propose an approach that combines the two directions

of ensemble analysis. A key strength of our method is the au-

tomatic construction of hierarchical representations of ensembles

based on their shape and data similarity. The hierarchy is visual-

ized to the scientists, allowing them to use their current interests

and domain expertise to control the trade-off between individual

member detail versus the number of members being visualized.

Our technique reveals hierarchical inter-member relationships and

supports visualization of both a single member and multiple mem-

ber subsets.

We use an octree representation to compress the data and

extract shapes from the ensemble [9, 21]. The hierarchical struc-

ture of the octree naturally encodes shapes and variations between

members at multiple levels of detail. We extend the similarity

matching in [26] to mathematically measure shape dissimilarity

between member pairs by comparing their octrees. Based on

these estimates, we apply hierarchical clustering to collect sim-

ilar members into common groups. The result is a level-of-detail

cluster tree visualization that allows scientists choose where to

perform comparative analysis by interactively selecting individ-

ual member datasets or clusters of members with varying levels

of similarity.

Next, we represent member and inter-member relationships

with a visualization technique that displays the members within

a cluster. We merge member data using statistical aggregation

into a visual presentation that highlights shape and data differ-

ences through the use of size, colour, and motion. In this way,

we extend traditional multivariate visualization to support general

shape visualization and region-by-region comparative visualiza-

tion across multiple ensemble members. This provides a detailed

view of shape, data element distributions, and important attribute

value differences across the members in a cluster.

Related Work
In the past decade, different visualization techniques have

been proposed to facilitate interpretation and analysis of 2D or

3D ensemble data using volume rendering, multidimensional vi-

sualization, and comparative visualization [2, 10, 16].

Noodles is a visualization technique designed to analyze me-

teorological ensembles [22]. It includes statistical aggregation

and uncertainty measurements, visualizing results with circular



glyphs, ribbons, and spaghetti plots, a visualization method that

uses contours to represent attribute value boundaries. Ensemble-

Vis also focuses on statistical data visualization for analyzing

weather forecast and climate model ensembles [19]. Ensemble-

Vis presents data using a collection of visualizations connected

through linked views. Data from multiple member sets are

summarized with means and standard deviations, then visual-

ized using colour maps, contours, height fields, trend charts, and

spaghetti plots.

Follow-on research extends ensemble visualization to ex-

plicitly support member comparison. Ensemble Surface Slicing

(ESS) compares surfaces extracted from n ensemble members in

a single view by colour-coding the members, then slicing them

into equal-width strips [1]. A combined representation is built

by abutting strips member-by-member, where every n-th strip be-

longs to a common member, and visual discontinuities between

strips highlight surface shape differences. Phadke et. al. pro-

posed: (1) pairwise sequential animation, and (2) screen door

tinting for 3D ensemble visualization [17]. Pairwise sequential

animation extracts data elements from a member, visualized as

glyphs whose colour and shape represent attribute value and par-

ent member, respectively. Screen door tinting divides a projected

ensemble visualization into equal sized cells whose colour and lu-

minance identify a cell’s parent member and differences versus a

user defined reference member, respectively.

Recently, Matkovic et. al. developed a visualization tool

to interactively investigate ensembles as families of 2D data sur-

faces. [12]. The system presents projections and aggregations

of the data surfaces at three different levels: a parallel coordi-

nate and scatterplot level to explore correlations and trends in

data attributes; a parallel coordinates level to explore relationships

across surfaces through aggregated profiles and function graphs;

and 2.5D or 3D height fields to to support in-depth analysis of a

selected surface. Piringer et. al. designed a system for compar-

ative visual analysis of 2D function ensembles [18] using: (1) a

domain-oriented overview that aggregates features across an en-

semble using a heatmap; (2) a member-oriented overview that

visualizes members as icons in a scatterplot; and (3) a detailed

member view that presents small subsets of members in a 3D scat-

terplot.

Whitiker and Mirzargar developed specialized contour and

curve boxplots to accurately visualize statistical properties, out-

liers, and variability in ensembles of contours or 2D and 3D

curves [13, 24]. They statistically summarize the centrality of

members in an ensemble, visualized using specialized boxplots.

Demir developed a method of overlaying bar and line charts to

present statistical summaries and variations in ensemble members

[4]. Köthur focused on temporal aspects of ensembles, generating

clusters from temporal profiles of different members to support

feature identification and ensemble comparison [11].

Past research shows numerous examples of ensemble visu-

alization research built on previous techniques like glyphs, com-

parative visualization, charts, and linked views. We adopt a sim-

ilar approach in our work, which is perhaps most similar to the

contour and curve boxplots of Whitaker and Mirzargar [13, 24].

Their goals differ from ours, however. Contour boxplots visual-

ize contours and functional level sets within an ensemble. We are

focused on defining a hierarchical representation of 3D ensemble

members that support both shape and value comparison across

Figure 1: A calculated transition from ordinary nuclei to free

quarks and gluons, where protons and neutrons within the nuclei

disintegrate at extremely high temperature or density

multiple members.

To achieve this goal, we focus on two critical issues in en-

semble visualization: (1) scalability to larger member sets; and

(2) visualizations that allows scientists to make informed deci-

sions about how to trade-off individual member detail against the

number of members being compared. We measure shape dissim-

ilarities between ensemble members, hierarchically combining

members with similar shapes into clusters for more detailed ex-

ploration. Clustering uses an octree-based ensemble visualization

framework that offers: (1) a mathematical measure of shape simi-

larity between 3D spatial ensemble members; (2) a cluster tree vi-

sualization that provides a level-of-detail hierarchical overview of

inter-member relationships prior to the need for detailed compar-

isons; (3) more concise visual representations for multiple mem-

bers to improve scalability; and (4) glyph-based visualization of a

single member or multi-member subsets that highlight similarities

and differences in both shape and attribute value.

RHIC Ensemble
We are collaborating with nuclear physicists from Duke

University to study quark–gluon formation from the Relativistic

Heavy Ion Collider (RHIC) at Brookhaven National Laboratory1.

Heavy ion collisions at very high energies are used by physicists

to investigate interacting matter under extreme conditions[15].

Real-world and simulation results are used to estimate quan-

tum chromo-dynamics (QCD), a quantum field theory of strong

interactions. Calculations confirm QCD matter transition from

hadronic gas to quark–gluon plasma (QGP) occurs at extremely

high temperature and energy densities. In the QGP phase, protons

and neutrons in the nuclei break up, releasing quarks and gluons

(Figure 1).

Interest in quark–gluon plasma revolves around the belief

that this energy existing in the universe during the first few mi-

croseconds of the Big Bang. The RHIC allows our scientists to

collide two opposing gold nuclei head-on at relativistic speeds

[14]. These collisions produce very hot, very dense bursts of mat-

ter and energy that simulate conditions in the very early universe

during the QGP phase. This is often termed “the little bang in the

1www.bnl.gov/rhic/



Figure 2: A system diagram showing the cluster tree overview and the multivariate member visualizations

laboratory.” A key requirement is assigning proper initial condi-

tions and input parameters for the collisions. The results from dif-

ferent inputs are compared to identify similarities and differences

in hydrodynamic evolution. One main goal during the analysis is

to identify the critical point where the QGP state transitions to a

hadronic final state.

Availability limits the number of RHIC experiments the

physicists can perform. Because of this, results from real-world

RHIC collisions are used to build models that simulate hydrody-

namic evolution. Based on a hydrodynamic calculations of a gold

on gold collision, the full ensemble contains hundreds of mem-

bers from simulation runs with varying: (1) quantum fluctuations

of protons and neutrons; (2) start times for the hydrodynamic cal-

culations; and (3) granularities of the initial energy–density de-

posit that enters the hydro field. Each member contains a large

number of 3D spatial data elements with the attributes: (1) tem-

perature; (2) energy density; (3) net baryon density (baryons are

particles made up of three quarks); (4) baryo-chemical potential;

(5) pressure; (6) fraction of quark–gluon plasma; and (7) velocity.

Our physicists are interested in how varying the initial pa-

rameters affects the evolution of shape and data dissimilarities

throughout the simulation. Differences among RHIC simulations

(i.e., ensemble members) contain important information related to

these asymmetries. Our hierarchical clustering ensemble visual-

ization allows the physicists to look at different levels of ensemble

aggregation and isolate subclasses of simulations that may contain

interesting or unique information.

Design
We define an ensemble E = {m1,m2, . . .mN} with N mem-

bers mi ∈ E. Our system analyzes and visualizes E at two lev-

els: (1) as an overview of shape similarity-based inter-member

relationships, visualized as a cluster tree; and (2) as a glyph vi-

sualization for detailed exploration and comparison of ensemble

members (Figure 2).

We begin with an octree construction that extracts ensemble

member shapes at different levels of detail. We measure shape

differences between all pairs of members by comparing their oc-

tree representations, then apply hierarchical clustering to build a

cluster tree visualization that reveals inter-member relationships.

This is done prior to performing detailed visual comparisons, al-

lowing for rapid overview construction. Scientists interact with

the cluster tree to determine which subsets of members to examine

in detail. Each subset is visualized using a multivariate 3D glyph

visualization that highlights similarities and differences between

members. We discuss these techniques, including a description

of the original approaches and how we extended them to support

ensemble analysis and visualization.

3D Shape Octrees
Octrees are widely used for memory reduction in 3D model

storage. An octree is a 3D analogy of a quadtree, where each node

is recursively subdivided into eight children [9, 21]. Subdivision

terminates when a stopping condition is reached, for example,

when the height of the octree reaches a user defined maximum

level.

We use a single octree to extract the shapes—or more specifi-

cally, the spatial distribution of a member’s data elements—for all

N members in the ensemble. The octree is then used to perform

shape-based member comparison and aggregation. Traditionally,

an octree is built for a single 3D model. To support inter-member

shape comparison, we construct an octree that encodes data for

multiple members. Octree construction begins with a root node

representing the minimum bounding cube that covers all the data

elements in E. For each member mi we recursively subdivide the

root octant into eight equal-sized, non-intersecting child octants

until the number of elements within an octant is less than or equal

to a user defined upper bound Pmax or the height of octree reaches

a user defined maximum depth Hmax. To save memory and reduce

compute time, we do not create empty octants that contain no data

elements from any mi.

Once construction is complete, each octant contains data

from q members, 1 ≤ q ≤ N. Data from each member mi is ag-

gregated to encode the following information in an octant: (1) q

summarized data points representing the average spatial location

of each mi’s data elements; and (2) q average–variance pairs (µi,

σi) representing the average and variance of the attribute values

stored in each mi’s data elements.

Several features of the octree inspire us to use it in ensemble

analysis. An ensemble member normally contains a large number

of unorganized data elements. For example, RHIC members con-

tain between 180,000 and 3,300,000 data elements. This makes



them expensive to store and render, especially when rotation,

translation, or animation are involved. Some method to reduce

the size of the data is needed. Existing ensemble visualization al-

gorithms (e.g., pairwise sequential animation [17]) use clustering

algorithms to select a subset of data elements that match a spatial

distribution of attribute values, but they do not correlate elements

from different members and cannot easily perform similarity cal-

culations. An octree representation not only reduces data size by

aggregating data elements in an octant, but it also links spatially

related elements from different members by assigning them to a

common octant. This enables octant-by-octant shape comparison.

Additionally, octrees naturally extract 3D shapes at multiple lev-

els of detail, adding flexibility to the resulting visualization and

shape comparison. For instance, a RHIC member with 712,740

data elements represented by an octree with Pmax = 300 contains

5,872 octants.

Shape Dissimilarity
Previous ensemble visualizations rely on humans to intu-

itively measure differences or correlations between ensemble

members. We provide a mathematical measure of pairwise mem-

ber shape dissimilarity based on the members’ octree represen-

tations. We define the shape of a member as the distribution of

its data elements in 3D space, and not simply its outer surface

position. Our shape dissimilarity measure lays a foundation for

hierarchical overviews of inter-member relationships. Scientists

do not have to predict relationships between members ahead of

time to decide which subset of members to analyze and visualize.

Our member shape comparison algorithm is inspired by

Zhang and Smith’s work on octree shape similarity matching for

3D shape retrieval [26]. Where they built octrees independently

for each object, we generate a single, consistent octree represen-

tation whose root covers data elements from all members of E.

With independent octrees, data elements for a member may dis-

tribute in a small subregion of the root octant. In this case, two

members with significantly different shapes will be incorrectly

assigned a high similarity because they have numerous empty oc-

tants in common. This is one reason why we exclude empty oc-

tants from our octree. Additionally, to ensure an upper similar-

ity bound simi, j of 1 between members mi and m j, each octant

in Zhang’s algorithm always contains eight children. This may

not be true in our octree, so we adjust the similarity algorithm to

maintain this upper bound guarantee.

To support follow-on shape clustering, we measure dissim-

ilarity between members, as opposed to similarity. We modify

Zhang’s algorithm to maintain dissimilarity accuracy for octrees

with large common empty regions. To compare the shapes of mi

and m j ∈ E, we calculate dis r
i, j, the dissimilarity score between

mi and m j in the r-th octant o l
r at level l in the octree. cnt r

i and

cnt r
j represent the number of data elements of mi and m j that

lie within o l
r . The calculation ignores any octant that is empty

for both members. It considers mi and m j as equivalent at o l
r if

cnt r
i = cnt r

j (dis r
i, j = 0), as completely different if either cnt r

i or

cnt r
j is 0 (dis r

i, j = 1), and as partially different otherwise, mea-

sured as:

dis r
i, j =

∣

∣

∣
cnt r

i −cnt r
j

∣

∣

∣

max
(

cnt r
i ,cnt r

j

) (1)

dis l
r ranges from 0 to 1, with higher scores representing larger

relative differences in point counts between mi and m j.

Given Eq. 1 for a single octant, we must we aggregate dis-

similarities between mi and m j across all octants in the octree.

For octree level l with N l non-empty octants, the dissimilarity

between mi and m j is:

dis l =
∑N l

r=1 dis r
i, j

N l
(2)

Since the maximum value of dis r
i, j is 1 (Eq. 1), N l is the maximum

value for ∑N l

r=1 dis r
i, j, producing 0 ≤ dis l ≤ 1.

Finally, we aggregate dissimilarities over all levels, starting

at the root, to create an overall dissimilarity score. Given octree

height H, the final dissimilarity score disi, j between mi and mi is:

disi, j =
∑H

l=1 w ldis l

∑H
l=1 w l

(3)

w l = 1/γ l is used to weight the dissimilarities at different levels in

the octree according to a shape comparison factor γ . If 0 < γ < 1,

larger weights are assigned to more detailed octree levels (i.e.,

levels farther from the root). If γ > 1, larger weights are assigned

to more abstract levels (i.e., levels closer to the root). Setting

γ = 1 weights all levels equally. The range of disi, j is [0,1] where

disi, j = 0 indicates full similarity and disi, j = 1 indicates complete

dissimilarity.

In practice, we may not always want to compare the octree at

all levels. A point number comparison at the root is probably too

abstract and a shape comparison at the leaves may be too detailed.

To provide more flexibility, we allow the dissimilarity calculation

to start at a user-specified level Hstart and stop at level Hstop, 1 ≤
Hstart ≤Hstop ≤H, so that abstract shape information above Hstart

and detailed shape information below Hstop will be ignored.

Our octree comparison counts the number of data elements

for each member in an octant and measures their relative differ-

ences. Higher dissimilarity scores imply a higher percentage of

differences. Multiple levels of shape detail are considered, and

comparisons can be focused on more abstract or more detailed

levels in the octree with starting and stopping levels, and weights

based on the shape comparison ratio γ . This flexibility allows sci-

entists to adjust the shape measurement strategies to fit to their

interests.

Cluster Trees
The shape dissimilarity calculations produce an N ×N dis-

similarity matrix encoding shape differences between all mem-

ber pairs. We use the dissimilarity matrix to perform hierarchical

clustering, organizing members into groups with similar shapes.

Cluster results are visualized as a cluster tree to provide scientists

with a better understanding of inter-member shape relationships

in the ensemble.

We initially implemented two clustering techniques: min-

imum spanning tree (MST) clustering, a top-down hierarchical

clustering procedure, and agglomerative clustering, a bottom-up

hierarchical clustering procedure. MST clustering is intuitive,

easy to implement, and works well on a variety of datasets, partic-

ularly when clusters do not exhibit spherical shapes. Agglomera-

tive clustering iteratively merges the two most similar clusters and



(a) (b)

Figure 3: Cluster trees, red nodes highlight clusters for k = 7: (a) agglomerative clustering results for a 20-member RHIC ensemble; (b)

MST clustering results for the same 20-member RHIC ensemble

updates the dissimilarity matrix until the members are assigned to

k clusters, or the dissimilarity between the two most similar clus-

ters falls below a predefined threshold τ .

Our comparison of the two techniques showed that agglom-

erative clustering results are often better than MST results, since

agglomerative clustering updates dissimilarity between clusters at

each iteration. This produces more balanced cluster trees (ag-

glomerative cluster tree, Figure 3a versus MST cluster tree, Fig-

ure 3b). Because of this, we focused on agglomerative clustering,

although the option of MST clustering is still available to the user.

A key procedure in agglomerative clustering is updating the

dissimilarity matrix when two clusters are merged, to measure the

dissimilarity between new and existing clusters. Let mi and m j

be any members in clusters S and T , disi, j be the dissimilarity

between mi and m j, disS,T be the overall dissimilarity between

clusters S and T , and |S| and |T | be the number of members in S

and T . We considered three different methods to measure dissim-

ilarity between clusters:

1. Complete-linkage chooses the maximum dissimilarity be-

tween all possible member pairs: disS,T = max(disi, j)∀ i ∈
S, j ∈ T .

2. Single-linkage chooses the minimum dissimilarity between

all possible member pairs: disS,T =min(disi, j)∀ i∈ S, j ∈ T .

3. Group average linkage calculates the mean dissimilarity be-

tween all member pairs: disS,T = 1
|S|·|T | ∑

i∈S
∑

j∈T
disi, j .

In practice, group average linkage normally provides better

cluster dissimilarities than the other two methods, but at the cost

of a more expensive calculation.

Applying agglomerative clustering until all members belong

to a single cluster produces a series of clustering results that assign

members into k = N, k = N − 1, . . ., k = 1 clusters. Figure 3a

shows the agglomerative cluster tree visualization of a 20-member

RHIC ensemble. The red nodes highlight the clustering result

defined by k = 7.

The resulting cluster tree visualization (Figure 3a) provides

a hierarchical level-of-detail overview of inter-member relation-

ships, making it easier for scientists to choose a subset of mem-

bers to compare, analyze, and visualize.

User Interaction

Our system initially presents the cluster tree to allow users to

interactively choose which sets of members to explore. Selecting

nodes higher in the tree presents an overview of numerous mem-

bers, while selecting nodes lower in the tree visualizes similarities

and differences between only a few members. This allows users to

trade off the number of members being visualized versus present-

ing details for individual members. More importantly, it allows

users to apply their domain expertise and knowledge of context

to choose appropriate member sets. In this way, the cluster tree

forms a hierarchy that allows users to visualize members at the

desired level-of-detail as their investigations unfold.

Once a member or a set of members is selected, their shape

and attribute values are visualized with a glyph-based technique.

The volume can be manipulated in the standard ways: translation

to move around and through the volume, rotation to view the vol-

ume from different perspectives, and zoom to focus on subsets of

interest within the volume.

Ensemble Member Visualization
We designed two glyph-based visualizations to display 3D

ensemble members represented by octrees: a single member vi-

sualization and a cluster visualization. The single member visual-

ization displays detailed distributions of shape and attribute value

for one ensemble member. The cluster visualization displays a

summarization and comparison of shapes and attribute value dis-

tributions for multiple members.

The basic foundation for both visualizations was inspired

by previous work on perceptual and nonphotorealistic visualiza-

tion techniques [7, 23]. Low-level cognitive vision occurs in two

stages: orientation, where the visual system chooses to orient to a

particular location in an image, and engagement, when the visual

system may choose to linger and obtain visual details at that lo-

cation. Although we know how to orient a viewer, understanding

what causes the visual system to engage is still an open prob-

lem. One hypothesis we have been studying is that the perception

of aesthetic beauty may promote engagement. Preliminary re-

sults have been promising, suggesting that the increased cost of

creating nonphotorealistic visualizations may be justified by an

increased memory for detail versus a more traditional representa-

tion.



(a)

(b)

Figure 4: Single member visualizations: (a) all leaf octants visu-

alized; (b) an abstract visualization with Hmax = 5 in a six-level

octree

Our ensemble visualizations were initially designed to

mimic star field patterns, similar to what you might see in a Hub-

ble image. One part of the motivation for this design choice was

the goal of creating aesthetically pleasing visualizations. Another

motivation was based on collaborative work we were conduct-

ing with astrophysicists creating ensembles to study galaxy for-

mation. Their real-world images inspired our interest in creat-

ing a galaxy-like visualization. A final motivation was to use our

knowledge of the perceptual strengths and limitations of colour,

texture, and motion in the human visual system to present percep-

tually optimal visualizations [6, 8].

The ensemble analysis we perform is independent of the vi-

sualization technique used to render the final results. This allows

a user to replace our nonphotorealistic visualizations with more

traditional approaches (e.g., surfaces built with marching cubes,

or ray-traced voxel visualizations) if these are preferred or con-

sidered more appropriate for the domain being analyzed.

Single Member Visualization
The star field visualizations can be viewed as a type of glyph-

based volume rendering technique, used to display a single en-

semble member mi. Each glyph encodes member data from one

octant in the octree. Let Dr
i = {d1,d2, ...,dn} be the set of data el-

ements of mi in octant o l
r . The glyph gr represents o l

r as follows:

• The spatial location of gr is the average location of the ele-

ments in Dr
i .

• The size of gr represents n, the number of elements in Dr
i .

• The colour of gr represents the average of the attribute val-

ues of the elements in Dr
i .

(a)

(b) (c)

(d) (e)

Figure 5: Multiple member visualization: (a) visualization of a

four-member cluster: (b) first member, (c) second member, (d)

third member, (e) fourth member

Our examples visualize temperature using a version of the

rainbow colour scale that we perceptually corrected, with purples

and blues for cold, greens for warm, and oranges and reds for hot

[6]. This was driven by the physicists’ expectation of this specific

colourmap for representing temperature.

By default we render all leaf octants in the octree (Fig. 4a).

To add flexibility, a viewer can define a threshold level Hmax as the

most detailed level in a visualization (Fig. 4b). This restricts the

visualization to include octants from level Hmax and all leaf oc-

tants above Hmax. By varying Hmax, scientists can take advantage

of the hierarchical structure of the octree to visualize shape and

data at different levels of detail. An octant from a more abstract

level covers a larger 3D space, so its corresponding glyph pro-

vides a more abstract view, possibly removing distracting details

that are not of interest. This also allows for member visualizations

at different levels of detail without the need to rebuild the octree.

Multiple Member Visualization

Visualizing multiple members is one of the key differences

between 3D ensemble visualization and traditional volume ren-

dering. Multi-member visualization is necessary because ensem-

ble analysis focuses not only on features of a single member, but

also on shape and data relationships between members. One ap-

proach, used in [20], places members side-by-side with multiple

linked views. This limits the number of members that can be com-

pared, however, and assigns the responsibility for comparison to

the viewer. Another solution is to overlay multiple members on-

screen. This was shown in [17] to be inefficient and prone to

visual clutter.

To address these issues, we designed a cluster visualization



that extends the single member visualization to highlight simi-

larities and differences in shape and attribute value distributions

across multiple ensemble members. The visualization starts by

performing an octant-by-octant summarization and comparison,

creating a single glyph for each octant. It then uses the same

strategies from the single member visualization to select a subset

of octants to render (i.e., to visualize at multiple levels of detail).

Assume E ′ = {m1,m2, ...,ms},E
′ ⊆ E, is a cluster of s mem-

bers to visualize. Every mi ∈ E ′ with data in octant o l
r is rep-

resented by an aggregated data point pr
i in that octant. Let

Pr
i = {pr

1, pr
2, . . . , pr

n} be the set of data points in o l
r . The glyph gr

for o l
r is created from the P r

i as follows:

• The spatial location of gr is the average location of the data

points in Pr
i .

• The size of gr represents n, the number of data points in Pr
i .

• The colour of gr represents the average of the attribute val-

ues of the data points in Pr
i .

• Animation is introduced, with flicker frequency representing

the variance of the attribute values of the data points in Pr
i .

Figure 5a shows a cluster visualization of four RHIC mem-

bers presented individually in Figures 5b–e. Note the larger

glyphs on either side of the dumbbell, and smaller glyphs at its

center. This indicates that all four members have data on both

sides of the dumbbell, but connect differently at the center. This

can be seen in Figures 5b–e, where some members are strongly

connected (Figure 5b), while others are only weakly connected

(Figure 5c–e).

Hue provides additional insight into the average tempera-

ture of the members. It is high in the center of both ends of

the dumbbell (orange and red glyphs), decreasing gradually to-

ward the boundaries (blue glyphs). In the animated version of

Figure 5a a small number of points in the center of the two dumb-

bell ends flicker more rapidly. This indicates higher temperature

variances representing larger differences in temperature across the

four members in these regions. This is a feature that is difficult

to see in static, side-by-side visualizations (Figure 5b–e), but one

that is clearly visible through the use of motion, a property that

past research in our laboratory has shown to be perceptually ef-

fective at encoding information [8].

The cluster visualization highlights similarities by display-

ing overall shape and attribute distributions across members. It

presents dissimilarities between members by visualizing member

count and attribute variance at each octant with glyph size and

flicker rate. Smaller glyphs indicate that fewer members have

data in a given location. Glyphs flickering more rapidly repre-

sent larger attribute value differences in the region. Compared

to techniques like [1], the cluster visualization is not meant to

present detailed pairwise differences between members. Instead,

it scales to visualize relationships between multiple members, al-

lowing the scientists to trade off the number of members being

visualized versus details for any single member. It is designed to

cooperate with and validate the clustering results by highlighting

regions of shape and data value similarity and difference within

a cluster. For example, consider again the small glyphs in the

center of Figure 5a that indicate the four members are connected

differently. Scientists can choose a more detailed cluster in the

cluster tree to separate the different shapes, or ignore the shape

differences and continue to explore the four-member cluster.

RHIC Application
We collaborated with physics colleagues at Duke University

to apply our methods to a RHIC ensemble with 224 members.

This represents a more realistic ensemble size, compared to the

smaller ensembles we used to demonstrate our analysis and vi-

sualization techniques. The physicists focused on differences in

shape and temperature—an attribute value they are particularly

interested in exploring.

Figure 6a visualizes an agglomerative cluster tree of the 224

RHIC members. It automatically identified two main clusters, en-

coded in the left and the right (Figure 6b) subtrees. Figure 6c is a

cluster visualization of the 164 members from the left subtree. It

includes members with connected dumbbell shapes, similar to the

two example members shown in Figures 6e,g. Figure 6d is a clus-

ter visualization of the 60 members from the smaller right subtree.

It contains members with shapes that have two cones either sep-

arated or weakly connected, similar to the two example members

shown in Figures 6f,h. The distribution of strongly versus weakly

connected members was of particular interest to the physicists,

since it highlighted the sensitivity of connectivity to small differ-

ences in input parameters. The physicists switched between the

two cluster visualizations by selecting the left or right child of the

root node in the cluster tree visualization. They also selected dif-

ferent leaf nodes in each subtree to visualize individual members

and examine the quality of the clustering results.

A second exploration varied the number of clusters k from

k = 2 (two clusters) to k = 224 (one member per cluster). Fig-

ure 7a plots the smallest dissimilarity for each k, that is, the

threshold between the two most similar clusters.

The threshold jumps sharply at k = 2 to approximately 0.27.

This is not surprising, since it represents the root node splitting

into its left and right subtrees, but it does provide an indication of

the amount of shape dissimilarity within the ensemble as a whole.

The threshold falls to approximately 0.24 at k = 3, then slowly

decreases until k = 184, when it falls to zero through k = 224.

This indicates that the two most similar clusters contain identical

shapes. The physicists investigated the inflection in the threshold

at k = 183, and discovered that each cluster contained members

with identical shapes. Figure 7 highlights the 183 clusters. Every

subtree with a red root node represents a cluster, all of whose

members are identical.

Physicist Feedback
Although we did not conduct formal experiments to compare

task performance for the physicists’ existing approaches versus

our visualization system, we did discuss with them at some length

their experiences from using our system.

Feedback was positive. Our colleagues noted that our sys-

tem was much more efficient than their current approach of statis-

tical and mathematical analysis with minimal visualization sup-

port. This was especially true when the physicists first looked

at their results to obtain an initial understanding of an ensemble,

and when they wanted to perform free-form exploration within an

ensemble.

To compare the advantage of a basic visualization system
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Figure 6: RHIC example: (a) agglomerative cluster tree of a 224-member RHIC ensemble; (b) close-up of the 60 members in the right

subtree; (c) cluster visualization of the left subtree’s 164 members, which are connected at the center; (d) cluster visualization of the right

subtree’s 60 members, which are disconnected at the center; (e,g) two single member visualizations from the left subtree; (f,h) two single

member visualizations from the right subtree

alone versus our hierarchical technique, we asked the physicists to

visualize members individually as a complete set, then try to iden-

tify members with similar shapes. Not surprisingly, the physicists

found this difficult to do, especially when the ensemble contained

numerous members. Moreover, subtle differences, for example,

the variation in temperature internal to the dumbbell ends shown

in Figure 5, were impossible to detect visually.

The physicists emphasized that the ability to cluster and

visualize members offers important advantages to their current

workflow, providing a way to rapidly explore within an ensem-

ble to confirm expected findings and perhaps more importantly,

to identify unexpected or unusual results. For example, deter-

mining that 75% of the ensemble members were strongly con-

nected at the center and only 25% were weakly connected led

to an investigation of how connectivity was related to changes in

parameter inputs. This is important, since the physicists’ over-



(a)

(b)

(c)

Figure 7: Varying k: (a) threshold for each k; (b) k = 183 clusters, each red cluster contains members with identical shapes; (c) close-up

of the members in the right subtree

all goal is to choose parameters that mimic real-world results,

and to understand whether slight variations in those parameters

will lead to small or large changes in the simulation. The finding

that forty different members have one or more identical partners,

even when their parameter inputs are different, led to additional

insights into member sensitivity to specific parameter and param-

eter range changes. The physicists noted that these findings would

have been difficult and time consuming to identify using their ex-

isting data analytics algorithms.

Conclusions
We propose a framework to provide a scalable technique for

analyzing ensembles. Our approach combines a level-of-detail hi-

erarchical clustering algorithm to group similar members, a clus-

ter tree visualization to provide an overview of inter-member re-

lationships, and a detailed comparative visualization for single or

multiple member clusters. The system allows scientists to start

with a high-level overview, then zoom in to explore detailed shape

comparisons between members.

We collaborated with physicists at Duke University to study

RHIC ensembles. RHIC members can contain millions of data

elements, producing CSV files up to 85MB in size. Our octree

representation reduces data size by aggregating data elements in

an octant and linking spatially related elements. The system is

capable of generating XML files that encode octree representa-

tions. For example, a 29MB CSV file representing one member

was converted to a 600KB XML file encoding its octree represen-

tation.

Octree shape comparison mathematically captures dissimi-

larities between members, freeing a scientist from using visual

perception alone to identify differences. Our enhanced algorithm

guarantees accuracy even when large numbers of empty octants

occur. It associates shape dissimilarities at multiple levels of ab-

straction in the octree, based on a scientist-chosen shape compar-

ison ratio. The resulting cluster tree interactively guides scientists

when they select members to visualize, increasing the efficiency

of ensemble analysis.

Individual members and member clusters are visualized us-

ing a glyph-based approach. The technique is scalable. Includ-

ing more members does not significantly increases the number of

glyphs, so it will not lead to on-screen clutter or large increases in

computation. Different ensemble views are integrated and coordi-

nated, producing a multi-level, multi-perspective ensemble anal-

ysis system.

Our current visualizations focus more on general shape sum-

marization versus detailed dissimilarity comparison. For exam-

ple, they do not identify which members have data in a given

octant. Multi-member visualizations should provide more pow-

erful comparative details for in-depth dissimilarity analysis, per-

haps by highlighting interesting sub-regions to avoid distraction

and increase the efficiency of the analysis.

The system described here does not support the important

need for temporal ensemble analysis, which if often required. We

have recently investigated a number of more complex methods to

identify temporal patterns within an ensemble (e.g., cluster par-

ticipation pattern mining and time-step pattern mining), with pos-

itive results [5].

The framework we propose is flexible and extensible. The

system can be modified to analyze 2D spatial ensembles by re-

placing octrees with quadtrees. The dissimilarity calculation and

cluster algorithms can be revised to meet domain requirements.

The 3D visualization can be modified to adjust for specific fea-

tures of interest. Given this, our future work focuses on improve-

ments in each part of the framework, better coordination between

the parts, and intelligent management of shape and data changes

in the time dimension.
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