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ABSTRACT

Effective representation of large, complex collections of information (datasets) presents a difficult challenge. Visualization
is a solution that uses a visual interface to support efficient analysis and discovery within the data. Our primary goal
in this paper is a technique that allows viewers to compare multiplequery resultsrepresenting user-selected subsets of
a multidimensional dataset. We present an algorithm that visualizes multidimensional information along a space-filling
spiral. Graphical glyphs that vary their position, color, and texture appearance are used to represent attribute values for the
data elements in each query result. Guidelines from human perception allow us to construct glyphs that are specifically
designed to support exploration, facilitate the discovery of trends and relationships both within and between data elements,
and highlight exceptions. A clustering algorithm applied to a user-chosen ranking attribute bundles together similar data
elements. This encapsulation is used to show relationships across different queries via animations that morph between
query results. We apply our techniques to the MovieLens recommender system, to demonstrate their applicability in a
real-world environment, and then conclude with a simple validation experiment to identify the strengths and limitations of
our design, compared to a traditional side-by-side visualization.
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1. INTRODUCTION

Visualization is an area of computer graphics that presents information in a visual form to facilitate rapid, effective, and
meaningful analysis and interpretation. Example application domains include scientific simulations, land and satellite
weather information, geographic information systems, and molecular biology. Visualization is also used in more abstract
settings, for example, software engineering, data mining, and network security. A key challenge is designing visualizations
that are effective for the user’s data and analysis tasks. Our approach constructs visual representations that harness the
strengths of the low-level human visual system. These perceptual visualizations display the data in ways that allow items
of interest to capture the user’s focus of attention.

Due in large part to a rapid increase in the size of the average dataset, the time per element needed to analyze the data
is often critical. The desire to extract knowledge efficiently motivates the need for an effective visualization system. A
dataset’s size is made up of three related properties: (1) the number of elements stored in the dataset; (2) the number of
attributes represented within the dataset; and (3) the range of values possible for each attribute. The information content
of a visualization is a combination of these same properties: the number of elements, the number of attribute values per
element, and the range of different attribute values being visualized. The new technique described in this paper seeks to
increase information content by focusing on the last two properties, dimensionality and range.

In our work, “query results” refers to collections of data elements that form subsets of the original dataset. How the
results are generated is independent of our visualization algorithm. They can come from direct queries into a dataset (e.g.,
via SQL queries on a relational database), or from other methods of data filtering or data selection (e.g., via mathematical,
spatial, or temporal filters applied to a scientific dataset). Based on a common need to visualize relationships both within
and between queries, we identified three important goals for our research:

1. Design graphical glyphs that support flexibility in their placement, and in their ability to represent multidimensional
data elements.

2. Build effective visualization techniques that uses the glyphs to represent results from queries on a multidimensional
dataset.
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3. Highlight similarities and differences between different queries using animation.

Our intent is to show not just the intersection of multiple query results, but also specific details about similarities and
differences in the underlying structure of the results. This information can be critical to understanding how the original
queries are themselves related. To our knowledge, the combination of multidimensional display techniques, perception,
and animation for direct comparison of different perspectives into a dataset represents a useful and novel contribution to
the field.

1.1. Design

Our visualization algorithm consists of two basic stages:

1. Select effective visualizations for individual query results.

2. Visualize correspondence between query results.

We display query results using a data-feature mapping that defines a visual feature to use to represent each data attribute.
The mapping controls the appearance of a geometric glyph through the attribute values of the data element it visualizes. Our
mappings are built using experimental results that describe how the human visual system perceives different color, texture,
and motion properties. Glyphs are positioned along a spiral embedded in a plane based on a scalar ranking attribute. The
value of the ranking attribute decreases as glyphs move away from the center of the spiral.

Correspondence between queries is represented with animations that morph between pairs of query results. A clustering
algorithm identifies groups of spatially neighboring glyphs that are common across the queries. This technique allows a
viewer to see both the similarities and the differences between different query results. Groups of glyphs are moved in
sequence to highlight elements that maintain their relative ranking with one another. This is important, since ranking is
assumed to be an attribute of significant interest to the viewer.

We used the MovieLens recommender system (http://movielens.umn.edu) as a practical testbed for our tech-
niques.1 Graduate students in our laboratory were asked to rate movies that they have seen. Based on this information,
MovieLens matches their ratings with other users in the database. The resulting profile allows MovieLens to suggest
movies that the students have not seen, but would probably like. We used these recommendations, together with a variety
of additional information about each movie, as input to our visualization system. This allows students to see their recom-
mendations, and to compare them with recommendations for their friends. We conducted a simple validation experiment
within this real-world environment, to compare our animated design to a more traditional side-by-side visualization of
different recommendations. Results showed that our design was as good or better than a side-by-side visualization for four
of the five tasks we studied.

2. INFORMATION VISUALIZATION

The basic steps in visualizing information are: (1) convert the raw data to a data table; (2) map the data table to a visual
structure; (3) apply view transformations to increase the amount of data that can be visualized; and (4) allow user interaction
with the mapping and the visual structures to create an information workspace for visual sense making.2 A number of well-
known techniques exist for visualizing non-spatial datasets. These can be roughly classified as geometric projection, iconic
display, hierarchical, graph-based, pixel-oriented and dynamic.3,4 We decided a dynamic iconic display was most relevant
to our goal of visualizing relationships between multidimensional query results. An iconic display is used to represent
patterns within each query result. A dynamic animation is used to highlight similarities and differences between queries.

2.1. Visualizing Along a Spiral

A one-dimensional ordering is imposed on the data elements through a user-selected scalar attribute, or “ranking” attribute.
We needed a way to map this ordering to a 2D spatial position for each element. We chose to use a 2D space-filling spiral
to satisfy this requirement. Our algorithm is based on a technique introduced by Carlis and Konstan to display data along
an Archimedean spiral,5 represented in its polar form as:

r = αθ
x = r cosθ
y = r sinθ


 0≤ θ ≤ θmax (1)
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Figure 1. Visualizing a MovieLens query using data-feature mappingMML: (a) in 2D; (b) in 3D

whereθ tracks position along the spiral,r is the distance from the center of the spiral for a givenθ , andα is a constant
used to control the spacing between neighboring arcs in the spiral (Fig. 1). Visualizations along a spiral have been used
with both abstract and periodic data (e.g., SpiralGlyphics6) to provide properties like: (1) comparison of values along a
small section of the spiral; (2) comparison of several consecutive cycles of the spiral; (3) identification of periodic patterns
in the data; and (4) changes in data patterns over the length of the spiral.7

Other space-filling curves exist, for example, Hilbert, Peano, or Sierpinski fractal curves. These curves are hierarchical,
and can more efficiently fill the 2D plane. Because our curve is used to represent order, however, we must ensure that
viewers can rapidly convert position on the curve to distance along the curve. This is an intuitive feature of a spiral (i.e.,
farther from the center implies farther along the curve), but is more difficult to achieve with other space-filling curves.

Some examples of circular visualization are DiskTree that represents hierarchical structures in a circular two-dimensional
form,8 Sunburst9 that displays a radial visualization of information hierarchies, and MetaCrystal10 that compares the results
from multiple search engines. Zschimmer11 used hierarchical circular visualization to display intranet search results.

Other spatial layouts exist, for example, a 2D scatterplot whosex andy-axes represent the ranking attributes for two
separate query results. Elements unique to a single query result are visualized on the appropriate axis, while elements
common to both query results appear in the body of the scatterplot. Although this technique is efficient and compact,
extending it to compare more than two query results is complicated, requiring either a higher-dimensional scatterplot (e.g.,
a 3D volume for three query results), or a projection into 2D or 3D space prior to visualization.

3. PERCEPTION

Our data-feature mappings are constructed from psychophysical studies of how the visual system “sees” fundamental visual
properties in an image. The use of color, texture, and motion has a long history in the graphics, vision, and visualization
literature (e.g., in Treinish’s meteorological visualizations12).

Examples of simple color scales include the rainbow spectrum, red-blue or red-green ramps, and the grey-red satu-
ration scale. More sophisticated techniques divide color along dimensions like luminance, hue, and saturation to better
control the difference viewers perceive between different colors. Perceptually balanced color models have been combined
with non-linear mappings to emphasize changes across specific parts of an attribute’s domain. Automatic colormap se-
lection algorithms based on an attribute’s spatial frequency, continuous or discrete nature, and the analysis tasks to be
performed have been proposed. Experiments have shown that color distance, linear separation, and color category must all
be controlled to select discrete collections of distinguishable colors.13



Texture is often viewed as a single visual feature. Like color, however, it can be decomposed into a collection of
fundamental perceptual dimensions. One promising approach in visualization is the use of perceptual texture dimensions
to represent multiple data attributes. Individual values of an attribute control its corresponding texture dimension. The
result is a texture pattern that changes its visual appearance based on data in the underlying dataset. Examples of perceptual
dimensions include properties like size, density, orientation, and regularity of placement.13,14

A third visual feature we use is motion. Basic motion patterns are processed very rapidly by the low-level visual
system.15 Perceptual dimensions of motion like flicker, direction, and velocity have been studied in the psychophysical
literature, and are now being used for notification in real-time systems,16 for cognitive grouping of elements,17 and for
visualizing multiple independent data attributes.

We are particularly interested in applying motion through animations that visualize correspondence between query
results. Researchers have demonstrated how animations can improve a visualization. Yee et al. explored trees by placing
a user-selected node at the center of the screen, with child and parent nodes arranged in concentric circles around it.18 As
viewers choose new nodes to study, differences are introduced as a smooth, animated transition of nodes and edges from
their current to their new locations. Robertson et al. animated relationships between user-selected nodes embedded within
data hierarchies.19 User studies confirmed that viewers’ performance and preferences favored animation for transitioning
between different hierarchies. Krasser et al. combined parallel coordinate plots with the animation of scatterplots to
examine 2D and 3D coordinated displays that provide insight into network activity.20

Our visualization designs choose visual features that are highly salient, both in isolation and in combination. We map
the features to individual data attributes in ways that draw a viewer’s focus of attention to important areas in a visualization.
The ability to harness the low-level human visual system is attractive, since:

• high-level exploration and analysis tasks are rapid and accurate, usually requiring 200 milliseconds or less to com-
plete,

• analysis is display size insensitive, so the time to perform a task is independent of the number of elements in the
display, and

• different features can interact with one another to mask information; psychophysical experiments allow us to identify
and avoid these visual interference patterns.

We have combined our experimental results into a visualization assistant called ViA.21 ViA employs mixed initiative AI
techniques that use information about a dataset and a list of perceptual guidelines to search intelligently the space of
all possible visualizations for the specific visualizations that are best-suited to the user’s data and analysis needs. ViA
suggested the initial data-feature mappings we used. These mappings were then extended to support an animated method
of comparing pairs of query results.

4. ANIMATION

Animation in computer graphics is a sequence of static images taken at small, discrete intervals of time and displayed
at a speed fast enough to form the impression of smooth motion. A more theoretical description defines animation as a
change function used to produce a successor image from a current image.7 Traditional computer animation techniques are
common in visualization, for example, camera animations to zoom, spin, pan and track along a path inside a dataset. This
type of animation is defined with the start and end positions of the camera, the path through the dataset, the number of
frames to be displayed, the duration of the animation, the intermediate states to be highlighted in each step, and so on.22

This same technique (with possibly fewer view parameters changing) is used to visualize temporal properties of a dataset.
Finally, individual data elements can be animated to visualize the values of the attributes they encode.16,23

The static visualizations we produce represent data elements as glyphs whose color, texture, and position vary based
on an element’s specific attribute values. Our visualization can be viewed as a graph, where glyphs represent nodes and
subsets of the spiral between pairs of glyphs represent edges. This formalism is useful, because it allows us to apply graph
animation techniques to highlight the similarities and differences between pairs of visualizations.



5. VISUALIZATION DESIGN

Our visualizations were designed by first constructing an object to represent a single data element. Next, the objects are
positioned to produce a static visualization of a single query result. Finally, an animation step is used morph between pairs
of query results to highlight their similarities and differences.

5.1. Visualizing Data Elements

We designed both a 2D and 3D glyph (a square and a tower, respectively) to represent a data element (Fig. 1). A data-
feature mapping built from our perceptual guidelines defines which visual feature to use to display values for a particular
attribute. Our glyphs can vary different color and texture properties, including hue, luminance, size (or height for the 3D
glyph), spatial density, and regularity of placement. A glyph uses the attribute values of the data element it represents to
select specific values of the visual features to display.

There are many different objects we could have selected to represent our data elements, ranging from pixels,4 through
basic 2D shapes,13,14and on to more complex 3D objects. Although 2D glyphs are “simpler”, a 3D glyph may be better for
representing multiple attribute values in certain situations, since it offers more surface area on which to place information.
Psychophysical experiments have shown that viewers can properly identify and compare color and texture properties of 3D
objects, as long as they are perceived as being displayed in a 3D environment.13,24 Visualizing glyphs on an underlying
plane is used to reinforce this perception. Overlap or occlusion is a problem for both types of glyphs, particularly when
many data elements are being visualized. Our glyphs vary their positions slightly to try to minimize their overlap with
one another. The heights of the 3D glyphs decrease as they move away from the center of the spiral, further reducing the
possibility of outer glyphs occluding inner ones.

5.2. Visualizing Query Results

Once glyphs are built for each data element in a query result, they must be positioned along an underlying spiral. The value
of a user-selected scalar attributeAr defines a glyph’s position. GivenAr,min ≤ ar ≤ Ar,max for all ar ∈ Ar , an elementei

with a ranking attribute valuear,i will have its glyph located at an(x,y) position defined by Eq. 1, where:

θ =
Ar,max−ar,i

Ar,max−Ar,min
θmax (2)

In other words, elements with high ranking values are positioned near the center of the spiral, while elements with low
ranking values are positioned near the periphery.

5.3. Animating Pairs of Query Results

We use animation to morph between pairs of query resultsQ1 andQ2. Our animations are designed to visually identify
neighbors that maintain their relative positions (i.e., their relative ranking with one another) along the spiral. The animation
consists of three phases. We begin by displaying results fromQ1 using our visualization technique for individual query
results. We then gradually remove glyphs that are not present inQ2. Next, the remaining glyphs that are common to both
queries move to their new positions as defined byQ2. Clusters of glyphs that maintain their spatial neighborhood with one
another move first, followed by individual glyphs that are not part of any shared cluster. Each move is animated over 900
milliseconds (i.e., approximately one second). Finally, glyphs that are present only inQ2 gradually appear.

We explored different ways to build the paths the glyphs follow as they move from their starting position to their ending
position. In particular, we investigated: (1) straight linear paths, (2) angular polar paths, (3) angular B-Spline paths, and (4)
equal arc B-Spline paths. A straight linear path (i.e., a linear interpolation of Cartesian coordinates) often crossed the spiral
numerous times along its length. This can produce collisions between moving and stationary glyphs. Collisions are visually
disruptive, with viewers sometimes being confused about which glyph entered and which glyph left a collision location. An
angular polar path (i.e., a linear interpolation of polar coordinates) produced fewer collisions, but did not generate smooth
animations. Interpolating angular values can produce non-uniform distances between steps, which results in non-uniform
velocities along the animation path. We observed similar problems with angular B-Spline paths. We therefore chose to use
an equal arc B-Spline path (i.e., a spline path divided into steps of uniform arc length), since it returns a smooth animation
and minimizes collisions between glyphs.



5.4. Clustering

We applied a simple segmentation algorithm to partition a query result into clusters based on the user-chosen ranking
attribute. All the elements in a cluster have “similar” ranking values. Two elements are said to be similar if the difference
between their ranking attribute values is less than or equal to a user-chosen thresholdε.

Given ranking attributeAr , our clustering algorithm proceeds as follows:

1. Array the elementsei along the spiral based on their ranking attribute valuesai,r .

2. From the remaining elements that are not part of any cluster, choose the elemente1 closest to the center of the spiral.

3. Set a median ranking valuem for the new cluster toa1,r .

4. Choose the next non-clustered elementei that is closest on the spiral toe1. If |ai,r −m| ≤ ε for some user-chosen
thresholdε, addei to the cluster and update the cluster’s median.

5. Continue until no more elements can be added to the cluster.

6. Repeat until every element in the query result has been assigned to a cluster.

The algorithm grows each cluster around a starting element. A new elementei is accepted if its ranking valueai,r is within
a user-chosen thresholdε to the cluster’s median valuem, |ai,r −m| ≤ ε. ε is fixed whereasm is updated as new elements
are added. The granularity of the clusters depend onε, and on the method used to update the median value. We use the
median update method:

m=
1

∑k−1
x=0 wx

[w0a1,r +w1a2,r + ...+wk−1ak,r ] (3)

w is used to control how new elements affect the median value. On the range 0< w< 1, the maximum possible contribution
of each new element is monotonically decreasing. Elements that are added to the cluster later in the process have a smaller
and smaller influence on the median value. This allowsm to stabilize after the initial elements are added, and ensures
that the cluster cannot grow in size without bound. We usedw = 7

8 to produce a good balance between each new element
having too much or too little impact on the median.

6. VISUALIZING MOVIE DATA

In order to test our system on a real dataset, we turned to the application that originally motivated our investigation:
visualizing relationships within and between queries to the MovieLens recommender system.

6.1. Data Collection

MovieLens is a web-based recommender system for movies, built on collaborative filtering algorithms, and run by the
GroupLens Research Group in the Department of Computer Science and Engineering at the University of Minnesota.
MovieLens uses an experimental data source containing thousands of movies as a framework for studying user interface
issues related to recommender systems.

MovieLens works as follows: users tell MovieLens about movies they have seen by providing a rating of each movie on
a scale from one to five. One means a user did not like the movie at all, and five means a user liked the movie a lot. Once a
sufficient number of ratings are provided, MovieLens builds a profile of a user’s movie preferences. This profile is entered
into a database, and matched against existing profiles to identify other users who share similar interests in movies. Once
matches are found, MovieLens can recommend movies that the other users have seen and liked, but that the current user
has not seen. This results in suggestions that are tailored to the personal tastes of a user. MovieLens includes a predicted
user ratingfor each movie it recommends. This is MovieLens’s estimate of how the current user would rate the movie if
he or she had already seen it.

Graduate students from our laboratory volunteered to rate movies that they have seen. We used their profiles to produce
multiple recommendations from MovieLens. MovieLens returns a movie’stitle, its genreand a predicteduser rating. We



augmented each recommendation with information taken from the Internet Movie Database∗ (IMDB) to include theyear
the movie was released, thelengthof the movie in minutes, and theIMDB rating of the movie.

MovieLens’s predicteduser ratingfalls along a nine-point scale ranging from 1 to 5 in1
2 point steps. We increased the

granularity of this result by first extending MovieLens’s predicteduser ratingto the range 1 to 10, then weighting it by the
IMDB rating. The IMDB rating is the average of all IMDB users who have rated a particular movie. It ranges from 1 to
10 in 1

10 point steps. The result is a predicteduser ratingover the range 1 to 100, with values rounded to produce a total of
1000 discrete steps.

6.2. Data-Feature Mappings

Figure 2. A visualization of action movies generated withMML
with “The Godfather, Part II” selected: the blue color of the
glyph represents the movie’s release date of 1974, while its
higher luminance represents its length of 200 minutes; light
brown flags mark the movie asAction andDrama; finally, the
glyph’s height reinforces its higher predicteduser rating

The query results we used as input for our visualization system
have the following attributes: movietitle, genreof the movie,
year the movie was released,lengthin minutes, and predicted
user rating. Each movie recommendation is displayed as a 2D
or 3D glyph. Based on suggestions from ViA, our MovieLens
data feature mappingMML defined:

• Predicteduser rating mapped to size for 2D glyphs
(small for low ratings to large for high ratings), or height
for 3D glyphs (short for low ratings to tall for high rat-
ings).

• Year, which ranges from 1921 to 2006, mapped to hue
(blue for oldest to red for most recent).

• Lengthmapped to luminance (dark for shortest to bright
for longest).

• Genremapped to light brown flags wrapped around the
glyph. Since a movie can be classified into multiple
genres, multiple genre flags may appear on a glyph.

Predicteduser ratingwas also used as the ranking attribute to
position glyphs along the spiral. High predicteduser rating
placed a glyph near the center of the spiral, while low pre-
dicteduser ratingplaced it along the outer periphery. A high
spatial density of glyphs represents a cluster of results with
similar predicteduser rating. Fig. 1 shows an example of two
visualizations generated by our system usingMML. Fig. 2 shows a close-up of a query result containing action movies,
with the glyph for “The Godfather, Part II” currently selected.

Mapping predicteduser ratingto both spatial position and size (or height) was done to emphasize the ranking attribute.
Less important attributes were assigned less salient visual features. For example, luminance variations were not as easy
to identify as differences in size, so they were attached tolength, a secondary data attribute. Although both position and
size represent predicteduser rating, their scaling factors are slightly different. Position is normalized to ensure the glyphs
from the query results being visualized cover the length of the spiral (Eq. 2). Size is scaled to the limits of predicteduser
rating, 1 and 100, and is independent ofAr,min andAr,max. It can therefore be used to judge the range of predicteduser
rating values in a visualization. For example, if all the glyphs have a similar size (or height), then the predicteduser rating
values in the visualization are relatively uniform.

6.3. Comparing MovieLens Recommendations

Once static visualizations are constructed for results from each query, relationships between pairs of query resultsQ1 and
Q2 can be displayed. We use a set of animation steps to perform this visualization, specifically:

∗www.imdb.com



(a) (b)
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Figure 3. Visualizing query results: (a) the first friend’s query resultsQ1 (step 2); (b) common elements with position based onQ1 (step
3); (c) common elements with position based onQ2 (end of step 4); the second friend’s query results (step 5)

1. Groups of movies with similar rankings are identified in bothQ1 andQ2 using our spatial clustering algorithm.

2. Q1 is visualized.

3. Movies unique toQ1 are removed.

4. Movies common toQ1 andQ2 are moved from their current positions inQ1 to their new positions inQ2. Clusters
containing multiple movies are moved first, followed by singletons. Movies closer to the center of the spiral move
before movies on the periphery.

5. Movies unique toQ2 are added, producing the final visualization of all the elements inQ2.

Differences betweenQ1 andQ2 are shown in steps 3 and 5, as elements unique toQ1 are removed, and as elements unique
to Q2 are added. Similarities betweenQ1 andQ2 are shown in step 4. Clusters of movies that maintain their positions



(a) (b)

Figure 4.Experiment displays: (a) the animation technique, with a single element selected (blue balloon); (b) the side-by-side technique,
with a common element selected inQ1 (blue balloon) and its position shown inQ2 (green balloon)

relative to one another are highlighted first, followed by singletons. Starting with elements at the center of the spiral and
continuing outwards to the periphery allows the viewer to track high rank (or low rank) movies fromQ1 to see how they
are valued inQ2.

6.4. Animating Query Results

Suppose two friends decided to see a movie together. Although MovieLens can produce a group recommendation of
movies that both users would like, it might also be interesting for the friends to see additional information, for example,
which movies one friend likes more than the other, or which movies one friend likes that the other does not like at all.
Recommendations from MovieLens can be visualized to show both the intersection of movies they contain, and specific
details about how the friends’ movie preferences differ. Fig. 3 demonstrates the different steps in our animations. Fig. 3a
represents step 2, visualizing the first friend’s resultsQ1. Thirty-five clusters are identified inQ1. Position on the spiral
is controlled entirely by the predicteduser ratingvalue. Once the initial display is built, we remove glyphs that are not
present inQ2 by gradually making them transparent (step 3). This produces a display of the intersection of the query
results, with glyph positions still based onQ1. Fig. 3b shows fifteen clusters containing a total of twenty-seven glyphs
common to bothQ1 andQ2 (i.e., twenty-seven movies neither friend has seen). In the second phase of the animation, the
common glyphs move to their new positions according to the predicteduser ratingin the second friend’s resultsQ2 (step
4). During this phase the sizes of the glyphs increase or decrease depending on whether they are moving closer to or away
from the center of the spiral. At each point during the animation phase glyphs from a single cluster are moving from their
original positions to their new positions. The other glyphs remain stationary, waiting for their turn to move. The second
phase ends when all the common glyphs have arrived at their new positions inQ2 (Fig. 3c). Finally, the glyphs that are
unique toQ2 are faded in (step 5). When this step is complete, results fromQ2 are displayed in their entirety (Fig. 3d).

7. VALIDATION STUDIES

In order to further investigate our design choices, we conducted a simple validation experiment that compared our animated
technique to a more traditional side-by-side display (Fig. 4). Our experiment trials used 3D glyphs to visualize data
elements in each query result. Both systems allowed users to select elements to see information balloons describing their
properties. This was most important for the side-by-side technique, since picking elements in one query result “brushes”
the corresponding elements, if they exist, in the other result.

Subjects were asked to use each technique to answer five questions on pairs of query results. We wanted tasks that: (1)
are representative of tasks users perform when comparing subsets of data elements; and (2) will help to highlight strengths
and weaknesses in each technique. We chose:



• T1: Determine the percentage of elements that are common across the two query resultsQ1 andQ2.

• T2: Locate the highest ranked element inQ1.

• T3: Locate the highest ranked element inQ2.

• T4: Locate the element that has the highest combined ranking overQ1 andQ2.

• T5: Identify a cluster of elements that maintains its local spatial neighborhood betweenQ1 andQ2.

Pairs of query results were constructed for use during the experiment. Every pair was built to contain exactly two common
clusters that existed in both queries, and exactly four unique clusters that existed in only one of the queries (two unique
clusters inQ1, two in Q2). We also varied thepercentageof common elements (20, 40, 60, or 80%), the query result that
contained thehighestranked element (Q1 or Q2), and thedifferencein predicteduser ratingbetween the highest elements
in the two query results (2.5% or 5.0% of total user rating). Two query result pairs for each of the 16 possible conditions
were built (fourpercentageby twohighestby twodifference), for a total of 32 pairs.

Nine faculty and graduate students from the Computer Science department (eight males and one female, all with normal
or corrected vision) volunteered to participate during the experiment. Subjects were familiar with the PC computer and the
Windows interface used to conduct the experiment, although none were experts in either visualization technique. Subjects
performed the five tasks on all 32 query pairs, once with the animated technique, and once with the side-by-side technique.
The technique each subject started with was randomized: half saw the animations first; the other half saw the side-by-sides
first. Practice trials were presented before the experiment began, to explain the techniques and the tasks to the subjects,
and to allow subjects to become comfortable with both techniques. The order of the trials was randomized during the
experiment. Subjects completed all five tasks in order on each query pair. Subjects were told whether their answer was
correct or incorrect immediately after they finished a task. Time to respond and subject accuracy were recorded for later
analysis.

7.1. Results

Subject response timesrt and error ratese were used to measure performance during the experiment.rt was recorded in
seconds.e was zero if subjects completed a task correctly, or one if they completed it incorrectly (i.e.,e represents per-
centage error).rt ande were collapsed and averaged over all subjects for each of the 32 experiment conditions:technique
(animated or side-by-side) bypercentage(20, 40, 60, or 80%) byhighest(Q1 or Q2) by difference(2.5 or 5.0%).t-tests and
analysis of variance (ANOVA) with a 95% confidence interval were used to locate significant differences in performance.
Our main findings were:

1. The animation technique was significantly faster than the side-by-side technique for tasksT1 (percentage common),
T4 (highest combined element), andT5 (locate a cluster).

2. The animation technique had significantly fewer errors for taskT4 (highest combined element).

3. The side-by-side technique was significantly faster for taskT3 (highest inQ2).

We comparedrt andeacrosstechniquefor all five tasks. The animation trials were significantly faster than the side-by-side
trials for tasksT1, T4, andT5, t(62) = 5.382, p < 0.0001,t(62) = 12.842, p < 0.0001, andt(62) = 14.069, p < 0.0001,
respectively. Average response times werert = 5.24, 9.61, and 1.49s during the animation trials, andrt = 6.88, 23.51, and
6.18s during the side-by-side trials for each of the three tasks.e was also significantly lower during the animation trials
for taskT4, t(62) = 2.312, p = 0.024, withe= 0.11 during the animation trials ande= 0.26 during the side-by-side trials.
The side-by-side trials were faster than the animation trials for taskT3, t(62) = 6.46, p < 0.0001, withrt = 2.41 during
the animation trials andrt = 1.92 during the side-by-side trials.

A number of other small but significant differences were found. For taskT4 during animation trials,rt varied signifi-
cantly overpercentage, F(3,28) = 3.46, p = 0.03 (rt = 8.19, 10.36, 10.93, and 8.94s for 20, 40, 60, and 80% common,
respectively). For taskT3 during animation trials,rt varied significantly overdifference, t(30) = 2.226, p= 0.034 (rt = 2.53
and 2.29s forQ1 andQ2, respectively). Finally,rt varied significantly overpercentagefor tasksT1 andT5 during side-
by-side trials,F(3,28) = 6.582, p = 0.002 andF(3,28) = 4.036, p = 0.017, respectively (rt = 5.569, 6.361, 8.236, and
7.347s for taskT1 andrt = 6.069, 4.847, 6.097, and 7.708s for taskT5 for 20, 40, 60, and 80% common, respectively).



Figure 5. Graph ofrt ande for the animation and side-by-side
techniques, for each task

Interpretation. Animations were statistically faster and more
accurate for identifying the element with the highest combined
user ratingacrossQ1 and Q2. Users “scrubbed” back and
forth through the animation to find these types of elements.
In the side-by-side technique users were forced to select in-
dividual elements in one query result, then look for their po-
sition in the other result. The animated technique was also
faster for estimating the percentage of common elements, and
for identifying clusters of elements that maintain their spatial
neighborhood across both query results.

The side-by-side technique was faster for finding the two
elements inQ1 andQ2 with the highestuser rating, since both

results were visible simultaneously. Users had to scroll back and forth in the animation technique to change the query
result being displayed.

We watched to try to see how subjects completed the tasks and why they made errors. Only taskT4, highest combined
user rating, had a large error rate (approximately 18.5%, Fig. 5). We noticed that the farther the target element moved
between the query results, the harder it was to identify. Subjects also tended to “give up” in the side-by-side technique after
they spent a certain amount of time searching for the target element. After completing the experiment, subjects voiced a
strong preference for the animation technique.

8. CONCLUSIONS AND FUTURE WORK

Figure 6. A MovieLens query with 500 recommenda-
tions

Our goal is a method to visualize patterns both within and between
queries on an underlying dataset. Query results are represented with
perceptual glyphs positioned along a space-filling spiral, with color
and texture properties used to encode the element’s attribute values.
Animations are used to highlight similarities and differences between
pairs of query results. We used queries from a movie recommender
system as a practical testbed for our visualization system. Exper-
imental results from an initial validation study confirmed many of
our anecdotal observations about the capabilities of our visualization
technique.

Our technique is not restricted to movie data. For example, we
are currently collaborating with bioinformatics researchers to visual-
ize exons and associated GO terms across different transcripts from
a genome database. We are also investigating how to increase the
total number of data elements we can visualize at one time. For ex-
ample, Fig. 6 shows 500 data elements along the spiral, which is ap-
proaching the limit for maintaining distinguishable clusters of data
elements.
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