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Abstract—This paper describes the integration of perceptual selectn visual features = (V1,...,V,) to represent eachl,.
guidelines from human vision with an Al-based mixed-initiative Fynctions® = (¢1,...,6n) map the domain of4; to the range
search strategy. The result is avisualization assistantalled ViA,  of displayable values ii;, ¢; : A; — V;. Described in this way,
a system that collaborates with its users to identify perceptually visualization is the selection of a data-feature mapging/, ),

salient visualizations for large, multidimensional datasets. ViA ¢ th ith uati f . 's ability t hend
applies knowledge of low-level human vision to: (1) evaluate ogether with an evajuaton or a viewers ability o comprenen

the effectiveness of a particular visualization for a given dataset the images generated by. Results from human psychophysics
and analysis tasks; and (2) rapidly direct its search towards can be used to construct perceptually effective that allow

new visualizations that are most likely to offer improvements viewers to rapidly and accurately understand their data.

over those seen to date. Context, domain expertise, and a Fig. 1 presents a multidimensional visualization of a simulated
high-level understanding of a dataset are critical to identifying g, pemova collapse, a massive explosion that occurs at the end of
effective visualizations. We apply a mixed-initiative strategy that a star's lifetime. We visualize slices through the flow volume

allows VIiA and its users to share their different strengths and . - . -
continually improve ViA's understanding of a user’s preferences. USiNg nonphotorealistic brush strokes built from guidelines on
We visualize historical weather conditions to compare ViA's Perception and aesthetics. Stroke color represents flow magnitude
search strategy to exhaustive analysis, simulated annealing, and(dark blue for low to bright pink for high), stroke orientation
reactive tabu search, and to measure the improvement provided represents flow direction, and stroke size represents flow pressure
by mixed-initiative interaction. We also visualize intelligent agents (jarger for higher). Anecdotal feedback from our astrophysics

competing in a simulated online auction to evaluate VIA's percep- q1anorators at North Carolina State University confirms that the
tual guidelines. Results from each study are positive, suggesting . N L . .
visualizations provide important advantages, particularly during

that ViA can construct high-quality visualizations for a range of - . : !
analysis of data attribute interactions [17], [52].

real-world datasets.

Since most users are not visualization researchers, they cannot
be expected to know how to construct effective visualizations.
Even if users have experience in building visual representations
for their data, they often repeat the same basic design strategy.

|. INTRODUCTION This can lead to a number of inefficiencies. For example, it is
N important problem in computer graphics is visualizatiorgifficult to determine if the resulting visualization is of a high
the conversion of collections of strings and numbers (guality, or if there are simple ways it could be improved. Offering
datasets) into images that viewers can use to explore, discowsly a single visualization mapping can also limit data analysis.
and analyze within their data [37], [46]. The rapid growth irfProviding a collection of visualization designs that show the
our ability to generate, capture, and archive vast amounts ssfme data in different ways will often provide new insights into
information has dramatically increased the need for effectii@portant properties that exist in the dataset.
visualization techniques. Unfortunately, methods to display in- Our goal is to empower our users by providing access to
formation in useful and meaningful ways have not always kegkisting visualization knowledge. To do this, we proposésa-
pace. alization assistanta mixed-initiative artificial intelligence search
Numerous research efforts are now underway to identify nesystem that helps users construct visualizations for their data. We
visualization algorithms [27], [28], [53]. One promising approachefined a number of requirements for this system, specifically,
is the use of guidelines from visual perception. The human visuhht its operation and resulting visualizations are:
system can detect certain image properties very rapidly, oftens effective:the data-feature mappings that produce the visu-
in only a few hundred milliseconds. Visualization techniques alizations must display data in ways that allows viewers to
that harness human perception have the potential to significantly rapidly and accurately complete their analysis tasks,
increase data throughput and improve viewer comprehension. The multidimensionalthe resulting visualizations should be ca-
need to consider perception during visualization was highlighted pable of representing datasets with multiple values encoded
as an important research issue in the original NSF report on at each data element,
scientific visualization [37], and it continues to offer the potential « transparent.viewers must be able to understand and guide
to improve a wide range of visualization algorithms [27], [28], the assistant (e.g. by changing the initial inputs, or through
[53]. built-in interaction mechanisms) to impose constraints, to
Our specific interest in this paper is the visualizationmoil- define preferences, or to maintain context specific to the data
tidimensionaldatasets that encode multiple attributes. Consider being visualized,

Index Terms—computer graphics, perception, search, user
interfaces, visualization

a datasetD representingn data attributesd = (Ay,...,Axn), « application independentthe assistant should not depend

n > 1 and containingm data elementg;, D = (e1,...,em).
Each element encodes one value for every attribute, =
{aj1,...,ajn}, a;; € A;. One way to visualizeD is to

on properties specific to a particular application area or
dataset type, but instead should be capable of producing
visualizations for a range of different domains, and
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Fig. 1. A painterly visualization of 2D flow in a simulated supernova collafie; direction— stroke orientationmagnitude— color, pressure— size

« extensiblethe assistant should easily extend to support nevisual appearance based on the data they represent [16], [26], [56],
visualization results as they are discovered. [58]. Texture dimensions have been identified both in computer
The key idea is to divide the visualization process betweaision and visual perception [7], [29], [35], [40], [41], [54], [59].
the computer and the end-user in a way that harnesses figs example, automatic texture segmentation measure properties
unique strengths of each participant. Since most users are lif# size (or height), spatial packing density, orientation, and
visualization experts, details about how to construct and evalusggularity. Results from computer vision cannot always be applied
a multidimensional visualization are assigned to the visualizatigifectly during visualization design, however, so care must be
assistant. Userare experts on their data, however, so they artaken to confirm the visual system’s ability to distinguish and
asked to provide information about the dataset and analysis tailentify individual texture properties [16], [25], [30], [56].
to be performed, to make decisions about how the data carVisual properties that work well in isolation do not necessarily
be preprocessed, and to consider domain-specific constrainturection with the same efficiency if they are shown together.
enforce any visual context required in the final visualizations For example, random changes in luminance can interfere with
a viewer’s ability to recognize hue patterns [6], [16], [50]. This
Il. PERCEPTUALFOUNDATIONS interference effect is asymmetric: random variations in hue have

Our visualizations are constructed from psychophysical studig@ effect on a viewer’s ability to perceive luminance. Both hue
of how the human visual system “sees” fundamental propertiégd luminance interfere with texture dimensions, again in an
of color and texture in an image. asymmetric manner: random hue or luminance masks texture

Color is a common visual feature used in many visualizatigffoperties, but random texture properties have no effect on hue or
designs. This belies its complex nature, however [60]. Simdféminance [7], [16], [50]. Small but significant interference effects
color scales include the rainbow spectrum, the grey-red saturat®J0 occur between texture dimensions: density or regularity can
scale, and red-blue or red-green ramps [55]. More sophisticat®@sk small targets, and size or regularity can mask sparse targets.
methods divide color along basic dimensions like luminance, hu&/e do not want to map a low-relevance attribute to a high-salience
and saturation to better control the differences viewers perceNigual feature, since this could obscure important data.

[32]. Perceptually balanced models like CIE LUV or Munsell Our visualization designs focus on visual features that are
roughly equate perceived color difference to Euclidean distang@sily recognized, both in isolation and in combination. We map
[8], [39]. Methods have been proposed to emphasize specifiglividual data attributes to features in ways that draw a viewer's
data ranges with non-linear paths through a color model [44pcus of attention to important areas in a visualization. The ability
to choose color scales based on data attribute properties [45]tadarness low-level human vision is attractive, since:

control color surround errors [55], or to pick small collections of « high-level exploration and analysis tasks are rapid and accu-
distinguishable colors [16]. rate, usually requiring 200 milliseconds or less to complete,

Our current color scales combine many of these findings [17].. the time to perform a task is independent of the number of
We build paths along a monitor gamut's boundary in CIE LUV,  elements in the display, and
either as a single spiral that monotonically increases in luminance, different features can interact with one another to mask
or as a single loop with a constant luminance. A path is subdivided information; psychophysical experiments allow us to identify
into named regions that are parameterized to have equal arc and avoid these visual interference patterns [15]-[17].
length. The result is a color scale that: (1) is balanced along
its length; (2) controls color surround errors; (3) can vary hue
and luminance independently; and (4) can suggest small sets of
equally distinguishable colors. Numerous systems exist with extensive capabilities for the pre-

Like color, texture can be decomposed into a collection afntation of data, for example, Vis5D, AVS, or the Visualization
fundamental perceptual dimensions. Mapping data attributesTwolkit (vtk) [21], [48]. What these systems lack is a method of
texture properties produces texture patterns that change trseiggesting to usernsow to represent their data in ways that are

IIl. ARCHITECTURE
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best-suited to their specific analysis and exploration needs. Thighe pairing. For pairings with low weights, an engine may also
is exactly the problem that we are trying to address. return one or moréiints on how the pairing could be improved,
Some previous work in visualization has investigated automatgether with an estimated evaluation weight increase if the hint
ing the selection of a visual mappinty. Wehrend and Lewis were applied.
built a classification system to describe visualization techniquesThe simple strategy of exhaustively searching the state space
in a domain-independent manner [57]; these classifications afeall possible data-feature mappings faf with the largest
used to try to suggest an appropridteé A similar technique is evaluation weight quickly becomes infeasible, even for small
described by Lohse et al. [33]. Robertson uses a natural scemenbers of data attributes and visual features. Allowing users
paradigm to guide the choice of visual representations for ddta add, remove, or modify their initial inputs while VIiA runs
[43], [44]; this methodology identifies the types of informatiorchanges the evaluation constraints, further increasing the number
conveyed by a particular representation, then tries to match the$elifferent visualizations that must be considered.
to the underlying characteristics of a dataset. Mackinlay proposesRather than applying a brute-force approach, VIA tries to
automated methods that measure expressiveness and effectiveresssct its searches to locations that are most likely to contain
to develop 2D graphical presentations [34]. Beshers and Feitégh-quality mappings. The search algorithm collects weights and
apply similar rules to build graph-based “worlds within worlds’hints for all the attribute-feature pairs in/. Chains of non-
to visualize multidimensional data [4]. Senay and Ignatius exterdnflicting hints are bundled witld/ and placed on a priority
Mackinlay’s work to 3D using a visualization system built orqueue in order of estimated evaluation weight improvement. The
heuristic rules [49]. Gallop proposes data models and structumd®sin with the largest expected improvement is then removed
to classify visualizations [12]. Rogowitz and Treinish describe faom the queue and applied fd to form a new mapping/’. M’
rule-based visualization architecture for representing continuagsevaluated in an identical manner, producing new hints that may
surfaces [45], built on perceptual rules to guarantee that-an lead to even better visualizations. This allows the search engine
fold increase in an attribute’s value results in a perceptufalld to focus on mappings that have a high probability of representing
increase in the visual presentation for that value. Bergman et lagtter visualizations. Searching continues until the queue is empty,
[3] describe a colormap tool that uses system-generated and usemntil a user-specified stopping conditions is reached.
provided information about a dataset to limit a viewer's choice
of color scales during visualization. B. User Input
Unfortunately, the construction of the perceptual rules used

by th i is often left i A It Users are asked to enter a small amount of application-
y INese systems 1S often Iefl as work-In-progress. As wet, rﬂ?dependent information prior to initiating a search. These inputs
techniques include a number of potential limitations, for example:

Sre used as an initial set of constraints when candidate visualiza-

(1) only oneM is recommended for each type of dgtaset; (2) ﬂ}?ons are evaluated. For each data attribute, the user defines:
parameters used to categorize a dataset are relatively coarse, so

many differentD will map to the same/; and (3) there is no  * attribute impgrtance:a normalizgd importange weight, to
simple way to intelligently modifyM to support context or user prder the attributes and to identify which attributes are most
preferences. Design galleries [36] address the first limitation by |mp?rt|arf1t o the u.tsr?r, tial f f the attribute’
converting input parameters to images via a mapping function;® spla a I:eq#encly. _e sha '.zti_ lrequen_cy 0 q ebavr_lAu esd
a set of images maximally dispersed from one another can be va uis (hig (:rdow), and_lpléabgtiﬁss IS made by VIA, an
automatically identified, arranged, and displayed to provide an can be accepled or modified by the user, .
overview of how different inputs affect the resulting image. * continuous or discretewhether the datq represe_nts discrete
Although expressive, perceptual knowledge and expertise are still values, or samples from an underlying, continuous data

1
needed to select the “bestl/ for the user's visualization and source”, and . .
exploration needs « task: the analysis tasks, if any, the user wants to perform

on the attribute; VIiA supports searching for a specific value
(search), identifying spatial boundaries between regions with
A. VIA common valueshioundary detegf estimating the number or
We propose an Al-based visualization assistant called VIA ratio of data with a particular valuegtimatg, and tracking
[18], [19], built with perceptual guidelines from human vision,  regions with common values as they move over titnac).
heuristic Al search strategies, and mixed-initiative interactionfpege properties were derived in part from our own experiences in
VIA collaborates with its users to design high quality, perceptuallyecomposing domain-specific analysis requests into fundamental
salient visualizations that are well-suited to the underlying dafaa|ysis tasks, and from existing automated visualization systems

and analysis needs. and task analysis research, which use many of these same

ViA begins by askin_g a short set of qu_gstions abqut the datslﬁ%perties to drive their visualization selection strategies.
and the user’s analysis tasks. These initial constraints allow VIA

to evaluate the applicability of different visualization mapping
M. Users can modify the constraints, either through mixed- i _ R _
initiative interaction during the search process, or after a set ofEvaluation engines are the basic building blocks that determine

visualizations are proposed by VIA. Once the dataset properti€§ guality of a given visualization/. The evaluation is based in

and analysis tasks are defined, ViA begins constructing and testi@jt On/'s perceptual strengths and limitations, and in part on
visualizations. A potential mapping/ is decomposed into ita the data being visualized, the user’s stated interests in the data,

data attribute-to-visual feature paifsl;,V;). For each pair, an @nd the analysis tasks the user wants to perform.

evaluation €NgIN@ssesses thg use Of. visual featuyeThe €NngiNe  1viA currently supports numeric data only, so nominal data is not consid-
returns a normalized evaluation weight to rate the effectivenessd

. Evaluation Engines
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Fig. 2. ViAs architecture, made up of a datadef initial inputs from a user, a mixed-initiative search algorithm, and visual feature evaluation engines

Evaluation engines are categorized by visual feature. Viknown optimal value. This strategy was selected as a starting
currently includes engines for luminance, hue, size, densipgint for two reasons. First, past research in artificial intelligence
orientation, and regularity. This design makes it easy to extehds show that very simple weighting schemes for automated
ViIA to include new visual features. Once sufficient perceptugkarch can often produce results that are as good as more
knowledge is available, a new engine can be implemented acwmplicated techniques [9]. Second, choosing basic, recognizable

integrated directly into ViA's search algorithms. values makes it easier to critique and correct the performance of
An evaluation engine performs four different classes of tesg@ch evaluation engine.
for each attribute-feature pajn;, V;): Results to date for real-world datasets have been positive, to the

xtent that although we are considering minor improvements to

1) Spatial frequencyCertain visual features are best appliei1 . A .
e evaluation engines’ weighting schemes, we are not planning

to either high or low spatial frequency data (e.g. Iumlnancv%holesale changes to the underlying strategies they employ. As

IS a_pproprlate for high spatl_al frequency dat_a, while ISqbng as the existing approach continues to return good results, we
luminant hues are better suited for low spatial frequencx . .
intend to leave the evaluation framework intact.

patterns). VIA checks4,;’s spatial frequency against what
V; can best support. D. Hints
2) Interference:Visual features can interact with one another

. : . . ' Weights allow the search algorithm to compare different visu-
causing visual interference patterns (e.g. luminance c¢

Kh ft d lumi dh Kt gﬁzations, but they do not offer any clues on how to improve
mask hue patierns, and iuminance and hue can mas ex%rgm_ Since the evaluation engines have the specific knowledge

pfaltterns). Features that lie near the top of the visual Sa_l'er}%eded to provide this information, they are also responsible
o s e e o s s enT8 proposing possive mprovemart o sah. 1) ey st
i . pl feat ) % dt . ; tThese suggestions are returned in the form of hints, a specific

salient visual eatures; are mappe' 0 mo're Important . »dification toas together with an estimate of how muai will

data attrlput§s4j, that is, V; < V; butimp; > imp;. _improve if the modification is applied. The lower the evaluation
3) Task type Different w;ual features are best-suited for dif; eight for a particular attribute-feature pair, the more hints the

ferent types of analysis tasks. VIA che_cks to see whlc_h tasgs/aluation engine is likely to return.

a user has asked to pe”"”T‘ on attributg to d_etermlne Four types of modifications can be suggested within a hint:

whetherV; can support the given task fully, partially, or not 1) Feature swapSwap featured’; andV; (e.g. in a situation

at all where visual interference is occurring betwdgnand V;).

4) Attribute type:Different visual features work better with . . :
. . . . ) 2) Importance weight modifyincrease or decrease the impor-
either continuous or discrete data. ViA compaVg's capa- : )
tance weight of attributel; by a set amount.

bilities to A;'s don?a'”’ _and to the total number of unique 3) Discretize:Bin A;’s values into a fixed number of equal-
values ofA; contained inD. . .
width intervals.

Each test is weighted evenly, comprising 25% of the total evalu-4) Task removeRemove a task a user has stated he may want
ation score. Their sum is returned as the final evaluation weight to perform onA4;.
for the current(4;,V;) pairing in M. Alg. 1 shows a pseudo- A hint's expected improvement weight is calculated directly from
code overview describing how the orientation evaluation engifige penalty for the flaw it is meant to correct. For example, a
operates. Although the specifics for number of recommendgpht by the orientation evaluation engine to reduce the number
values, maximum number of allowed values, invalid task anst unique values from above the maximum allowed to below
domain pairs, weight penalties, and so on vary between enging® maximum recommended would have an estimated weight
their basic structure is identical. improvement of 0.25 (i.e. it will increasgomain _wt from 0 to

We considered different ways to penalize flaws in a visualiza; improving the overall evaluation weight kg/ see also Alg. 1).
tion mapping, including some that were fairly complicated. In the
end, we decided to begin with a simple set of weight reductiors; Search Algorithm
for example, 1 or 0 for supporting a particular constraint, or a Once hints are collected, they are bundled together to fonin
liner increase in a penalty as the mapping moves away fromclains Not all combinations of hints are valid. Each evaluation
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Input: Attribute A; mapped to orientation
Output: Evaluation weight, hints forA4;,orientation)

The search algorithm proceeds by removing the hint chain at
the top of the queue and applying it to the mappihg that
generated the chain’s hints. This produces a new visualization

1 if domain is continuoushen domainwt = 1.0;

2 else ifunique vals< max recommenthen domainwt = 1.0; M’ that is likely to have a better evaluation weight than If

3 else ViA has not seenV/’ previously, it is evaluated, generating new

4 if unique vals> max allowthen domainwt = 0.0; hints and hint chains that are added to the queue. This allows the

5 else domainwt = 1.0 - ( unique vals / max allow ); search algorithm to restrict its efforts to small areas of the much

6 hint to discretize to max recommend values; larger search space of all possible visualizations. ViA focuses on

7 forall lower salience features Ho visualizations that are expected to have the highest evaluation

8 if unique vals< max recommend for Ehen weights. The search continues until: (1) the priority queue is

9 L L hint to swap features tg; empty; (2) a user-specified number of visualizations are evaluated;
N or (3) a user-specified period of time passes.

10 freqwt = 1.0; Once the search is complete, VIiA presents theioisualiza-

interferewt = 1.0;
forall V € (Color, Luminancé do

tions. The mappings can be applied directly?pallowing users
to view and explore their data with each candidate visualization.
The ability to show the same dataset in different ways is one of

13 if another A uses V && A's importance importance ViA's important strengths. Even when each proposed visualization
then has a high evaluation weight, displaying the data from different
14 interferewt = 0.0; perspectives will often highlight different areas of interest to
15 hint to swap features with attribui; the user. VA removes the need to manually construct multiple
16 diff = | importance - A's importancé visualizations, a task that can be difficult when both perceptual
17 if diff < min importance diffthen and dataset constraints must be considered. It also avoids the
18 hint to make importance -= diff; tendency of a visualization expert to design visualizations using
19 hint to makeA’'s importance += diff, common procedures or templates, producing visualizations with
L - similar structures and therefore potentially less power to display
20 taskwt = 1.0 the data in significantly different ways.
21 forall T € (estimate/continuous, search/continuduid
29 if task and domain match fhen IV. MIXED-INITIATIVE INTERACTION
23 if T is (estimate/continuoughen taskwt = 0.25; Researchers in human-computer interaction have pursued nu-
24 else if T is (search/continuoughen taskwt = 0.5; merous important goals. One area investigates intelligent agents
25 if importance< min importance wthen that try to automatically identify and complete a user’s tasks. An-
26 L hint to remove tasK'; other studies interfaces for direct manipulation. A third approach
L integrates these techniques, combining automated services and
27 wt = ( domainwt + freqwt + interferewt + taskwt ) / 4,0;  USer control to form mixed-initiative interaction [1].

Mixed-initiative interaction allows participants to contribute

28 if wt < min release wthen ixed >

20 | forall attributes A not mapped to any featude their unique strengths towards solving a common goal [5], [10],

20 | hint to release feature [38]. The basic idea is that initiative (i.e. control) should shift
L depending on who is most qualified to solve the current step

31 return wt, hints of a problem. Humans have knowledge of high-level goals, and

Alg 1. Pseudo-code for the orientation evaluation engine

are guided by principles that are often difficult or impossible to
fully automate. A computer excels at managing low-level details
and performing repetitive tasks. Humans can formulate and plan,

engine works independently to improve its own attribute-featutllect and evaluate relevant information, supply estimates for
pair, so different hints can conflict with one another. For examplencertain factors, and perform visual and spatial reasoning. Com-

one hint might suggest discretizing attribute (discretize hint),

puters can rapidly conduct systematic searches, and manage and

while another might recommend swappidg to use a different communicate large volumes of data. Mixed-initiative algorithms
visual feature (feature swap hint). The basic rule for identifyingy to minimize the number of explicit actions required of the user.

conflicting hints is straight-forward: a data attribute or visual

They also focus on asking the user to perform high-value actions,

featureV; can be modified by at most one hint in a chain. Hinfvhere answers provide additional knowledge for automatically
chains that include conflicting hints are discarded.

Once valid hint chains fon/ are identified, they are inserted A number of mixed-initiative systems have been presented in
onto a priority queue ordered by the expected improvement time literature. Lookout extends Microsoft Outlook by scanning

handling future decisions.

M'’s weight. The expected improvement is defined as the summdw email messages and collaborating to schedule appointment
M'’s current weight plus the largest expected improvement in thequests [23]. TRAINS95 constructs optimal transportation routes
chain (i.e. the expected improvement for the hint with the largeist the presence of uncertainty (e.g. changing weather and traffic
improvement weight), together with a bonus for the length of theonditions, unexpected events, and so on) [11]. AIDE (Assistant
chain. Longer chains are favored over shorter ones, since thésdntelligent Data Exploration) applies Al planning techniques to
have a higher potential to improve’s overall evaluation weight. help users analyze univariate and bivariate statistical relationships
Moreover, a longer chain moves farther fradis current position [51]. Design-A-Plant uses an animated pedagogical agent to teach
in the search space, helping to escape from local maxima. botanical anatomy and physiology to middle school students [31].
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One important consideration is how to manage uncertainty uo.6)

about a user’s goals during problem solving. A common solution, i)
is to use Bayesian agents to model goals and construct utility
measures based on probabilistic relationships [22]. Combining,p i)
statistical models of user goals with the expected utility of action
or inaction forms a critical component of a mixed-initiative system
[23].

u(D,G)

u(0,!G)

|
I
1 u('0,G)
p(GIE) = 1.0

|
Lo
| 1
Lo
Lo
l L
A. Mixed-Initiative Search pP(GIE) = 0.0 Pop PP

- -
utility of dialog > utility of automatic action

[oX]
If a user’s initial inputs were fixed, or if ViAs evaluation
weights were insensitive to changes in these inputs, the ability

to support modifications as the search unfolds would not Is&). 3. Utility curves for automatically accepting operation for automat-
necessary. Unfortunately, these assumptions do not hold. Magdjly rejecting!O, and for querying the user through a dialby
of ViA's hints (e.g. discretize, importance weight modify, or task
remove) require explicit changes to the user’s initial constrain@aphs the two utility curves.(O) and u(!0), and identifies
or to the data itself. These hints represent situations where \gabreak-even probability™ where either accepting or rejecting
suggestsif a change can be made to the format of the data 6 leads to the same expected utility. For alG|E) < p*,
the users’ choices about what they want to do with the daemy We automatically rejecO, and for all p(G|E) > p* we can
a significantly better visualization may be available. The questiGitomatically accep®.
becomes, should VIA accept the change a hint recommends? A final factor to consider is the value of interacting with the
Certain considerations can be used to help with this decisigffer- IfG is valid, the utility of asking the user and then applying
Larger changes to the data or the user's inputs are less |ikais higher than automatically rejecting@ (since this incorrectly
to be allowed. The probability of a hint being accepted may glefinesG as not valid), but lower than automatically applying
higher if its expected improvement weight is larger. Finally, th€ (Since additional work is required by the user to validate
way a hint was managed in the past can provide clues abétt That is, given a dialog actio, u(!0,G) < w(D,G) <
future decisions. For example, if VIA was previously told not té(O; G). Similarly, whenG is not a valid goal statey(O, !G) <
discretize an attribute, new discretize requests are less likely#d?,'G) < u('0,!G). The utility of presenting a dialog.(D)
be accepted. can be added to the probability graph (Fig. 3). This defines a
More formally, consider a situation where the user has a desifi@bability region wherew(D|E) is higher than botheu(O|E)
goal stateG, and a hint suggests performing a given operation and eu(!O|E). In this region the best choice is to ask the user
(e.g. discretizing an attribute, or changing its importance weight)oW to proceed. Given the intersection points betweg¢®) and
One simple way to resolve the hint is to ask the user eathD) atpip p and betweem(O) andu(D) atpy p, we can now
time a change is desired. This often produces a long sequeAg&8ne ViAs actions as:
of requests that quickly lead to situations where users answed) p(G|E) < pjp p, automatically rejecO
without significant consideration (e.g. always answering “Yes” 2) p(G|E) > p;, p, automatically accep®
or “No”). Allowing ViA to decide whether or not to apply 3) pio.p <p(G|E) < p p, ask the user aboud
has its own drawbacks. Even with sophisticated heuristics, ViWhen a dialog is presented, the user's answer is important for
cannot correctly anticipate how its users want to proceed for evenore than simply deciding abo@. The choice changeg, the
operation. A fully automatic approach does not allow ViA tevidence observed about the probabilityhfallowing us to infer
benefit from a user’s expertise about the data. more information aboup(G|E).
Instead of relying on either extreme, we extend a probabilistic
utility model prqposed by Horowitz to guide ViA's actions [_23]-8. ViA's Expected Utility Graph
For any operatiorD and goal statez, there are four possible
actions: applying when the goal ig7, applyingO when the goal
is not G, not applyingO when the goal ig7, and not applying
O when the goal is noz. We denote the utility of these actions . - . .
w(0,G), w(0,1G), u(10,G), andu(l0,!G). If we assumeo is and a hint to pgrf_orm operatlom_ with an _exp_ected |mpr_ovemer.1t
designed to facilitate achieving, thenw(0, @) > u(!0,G) and O’ the four utilities for acceptlng o.r rejecting are defl.ned as:
u(10,1G) > u(0,G). Given evidence to date observed by ViA,  * #(O,G) = w+wo, applying a hint the user wants increases

In order to evaluate a hint to perform operationwe need the
six utility valuesu(O, G), u(0,!G), u(10, G), u(10,!G), u(D, G),
andu(D,!G). For a visualization\ with an overall weightw,

the probability thatz is a valid goal state is denotedG|E). We utility by O's expected improvement weight.
can now compute the expected utility for acceptidy e u(0,!G) = 0, applying a hint the user does not want reduces
utility to zero.
eu(O|E) = p(G|E)u(0, G) + p(\G|E)u(0,!G) ) e u(!0,G) = w — wp, not applying a hint the user wants
= p(G|E)u(0,G) + (1 — p(G|E))u(0,!G) reduces utility by the improvement thét could have pro-
vided.

Similarly, the expected utility for rejecting is: e u(!0,!G) = w, not applying a hint the user does not want

provides no improvement or penalty.
Two additional values are used to determine the expected utility of
By comparingeu(O|E) andeu(!O|E), we can determine whetherpresenting a dialog to the user.@®nservation factoo < f <1
accepting or rejectin@ produces a higher expected utility. Fig. 3defines a user’s level of concern about allowing ViA to make

eu(l0|E) = p(G|E)u(10,G) + (1 — p(G|E))u(10,1G)  (2)
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A;’s initial discretization probability graph assigp&=|E) = 1
for no discretization (i.e. for any hint withh > u), andp(G|E) =
0 for a discretization ofd = 0. Linear interpolation is used to
compute probabilities between these endpoints. A user’s responses
p=0.0 L s » Pp=0.0 L- to discretize hints (accept or reject) update the probability graph.
imp=00 .2.3.4.5.6 imp=1.0 d=0 5 7 d=u Consider4; with v > 7 unique values (Fig. 4b). Suppose ViA
suggests discretizing; to d = 7 values, which the user accepts,
@ (0) then ViA suggests discretizing té = 5 values, which the user
rejects. The updated probability graph is shown in Fig. 4bdAH
Fig. 4. Probability graphs for ViAs hints: (a@mportance weight modify 7 are now assumed to be accepted, andiall 5 are assumed to
|n|t|a| graph (dashed) witlimp; = 0.4, updated graph (solid) after accepting . . . . . . L
imyp!, = 0.3 andimyp/, = 0.5, but rejectingimyp!, = 0.2 andimp!, = 0.6; (o) P€ rejected. Linear interpolation is used to estimate probabilities

discretize initial graph (dashed) with. unique 'values, updated graph (solid)over the unknown regioh < d < 7 (i.e. p(G|E) = 0.5 for d = 6).
after acceptingl = 7 ranges, but rejecting = 5 ranges

p=1.0 1.0

Task Remove.A task removal hint requests that a task assigned
to A; be removed from consideration. This hint is generated when

decisions without consultation. A valué= 1 indicates the user sual featurel; representingd, cannot support the given task.
is very conservative, and wants to review all decisions ViA make\éI u u P IngA; upp giv
Task removal operations are binary in nature, since there are no

The importance weightmp; of A4; is also considered. Operations, - .

on more important attributes are more likely to generate reque %ra}Emet_er \1/alues attached(;otthe rfquetst rf\n |n||t||(all probability

to the user. Given these additional weights, the two utilities fé) &) — imp; 1S USed 10 estimale now fikely a user
s to accept the hint. A single query fixes the task removal

presenting a dialog> are defined as: probablhty. If a user allows the task removal, the probability is set

o u(D,G) = w+ (f x imp; x wo), presenting a dialog for 4, )~ 1. If 4 user rejects the task removal, the probability
a hint the user wants increases utility to betweerand is set top(G|E) = 0

w + (imp; X wp), depending ory andimp;.

e u(D,!G) = f x imp; X wo, presenting a dialog for a hint
the user does not want decreases utility to between
mp; X wWo.

The ut|I|ty values allow us to build utility graphs that defm’% D
andpg, p. VIA automatically rejectsO when p(G|E) < pip p,
automatlcally accept® when p(G|E) > pp p, or queries the
user whempi, p < p(G|E) < po p-

V. EVALUATION

In order to evaluate ViAs performance, we considered three
separate components. First, we measured ViAs ability to locate
the best visualization mappings, compared to an exhaustive search
of all possible visualizations, and to the common simulated
annealing and tabu search algorithms. This provides evidence
that ViAs hint-based search algorithm can locate high-quality
visualizations, hopefully in significantly fewer steps than are
C. Conditional Probability Graphs required for exhaustive search.

The final value needed to process a hintpi&7|E), the Second, we studied how adding mixed-initiative interaction
conditional probability that users want goal based on their affects the quality of the visualizations VIA recommends, and
previous interactions with ViA. Initial probability graphs are builthow well it buffers a user from having to answer repeated queries
for each attributed; for the hints importance weight modify, about how the search should proceed.
discretize, and task remove. Feature swap hints can be managdspbth the search and mixed-initiative investigations were con-
automatically, since they depend on perceptual rules alone. ducted using a real dataset containing historical weather condi-

Importance Weight Modify. An importance weight modify hint t'?nds't Wet conclude? by a;pfplwln_g tv:f‘ to a very td|fferent It<_|nd_
requests to changd,’s importance weight frommp; to imp!, of dataset representing artificial intelligence agents competing in

for example, to remove visual interference between attribdtes 'z[ahsmulate? € cgrr:/nxarce autl:tlo? env[[ron(;ner:t Resea:ch?rs from
and A, by reversing their importance ordering. is project used ViA's visualizations to identify important new

Given A; with importance weightmp;, the initial importance strategies the agents employed during the competition.
weight probablhty graph assigngG|E) = 1 for weight imp;,
and p(G|E) = 0 for weights0 and 1. Linear interpolation is A. Search Performance
used to compute probabilities between these three points. A user'$\e began by comparing ViA's search capabilities to an ex-
responses to importance weight modify hints (accept or rejetfustive search of all possible visualization mappings, and to
update the probability graph. For example, considgr with two common artificial intelligence search algorithms: simulated
imp; = 0.4 (Fig. 4a). Suppose VIiA suggests changingp; annealing (SA) and reactive tabu search (RTS). Three metrics
first to 0.3 and then t00.5, both of which the user accepts,were calculated to measure performance:
then VIA suggests weights df.2 and 0.6, both of which the 1) Optimality: the evaluation weight of the best mapping found
user rejects. The updated probability graph is shown in Fig. 4a.  py an algorithm.
All 0.3 < imp; < 0.5 are now assumed to be accepted, and all 2) Efficiency:the number of visualization mappings evaluated
imp; < 0.2 andimp; > 0.6 are assumed to be rejected. Linear by an algorithm to find the first optimal mapping.
interpolation is used to estimate probabilities over the unknowng) Completenessthe number of optimal mappings an algo-
regions0.2 < imp; < 0.3 and0.5 < imp; < 0.6. rithm finds, relative to the total number of mappings with

Discretize. A discretize hint requests that; be divided intod the maximum evaluation weight.
equal-width ranges, for example, to reduteto a distinguishable The number of visualizations in a search space depends on the
number of unique values. number of data attributes and the number of available visual
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TABLE |

previous states, allowing it to avoid this problem [13], [47]. At
WEATHER DATASET ATTRIBUTES AND ASSOCIATED PROPERTIES

each iteration in the search process, the most recently visited

Attr Domain Freq Task Impt nodes are marked as tabu, and are not considered when making
temperature  discrete ¢ =7)  high  search 1.0 the next move. The size of the recently visited node list affects the
wind speed  discrete ¢ =23) low  boundary  0.75 algorithm’s performance. Strict-TS treats any node ever visited as

pressure continuous low  boundary 0.15 . . .
precipitation  discrete ¢ = 82)  high search 0.75 tabu. This leads to slow convergence, however, since previously

visited nodes act as barriers to improved areas of the search

space. Fixed-TS treats the Igstnodes visited as tabyw must

be chosen to be large enough to avoid cycles, but small enough

not to overconstrain the search. Reactive-TS (RTS) vapies

that any visualization mapping containinfy may evaluate to a dy”am'ca"Y _[2]' RTS maintains a se_parate, long-term memory Of.
all nodes visited. Whenever a node is repeated, the tabu list size is

new weight and set of hints. ; .
ﬂgreased. A separate, slower mechanism reduces the size of the

We used a meteorological dataset containing weatherconditi(} h d located. If th ber of nod i
collected and averaged by the Intergovernmental Panel on Clim g5 vhen new nodes are located. 1t the number of node repetitions
ecomes significant, a diversification stage is applied to escape

Change (IPCC) for the years 1961 to 189lonthly averages for the local ima b i d K to a diff t regi
eleven separate weather conditions are provide}f’alatitude by € local maxima by making a random walk to a difierent region
f the search space.

19 longi for positive elevations throughout the world: : o
2 longitude s_teps 0 post € elevations throug qutt € wo do As with SA, RTS begins with an initial data-feature mappivig
In order to limit the size of the search space during exhaustiye

. . . that evaluates to weight. The node containing/ is placed on
searching, we focused en= 4 data attributes: meaemperature . - .
- S - the tabu list, and all permissible operations hare generated.
wind speed pressure and precipitation over the continental

P . )
United States. Table | summarizes the attributes and the init-irafj]e move that produces/” with the largest evaluation weight

inputs that were provided to VIA. We allowed ViA to consider”, is applied. RTS continues searching local non-tabu mappings,

usingv = 4 visual features to represent the weather data: Col%lrvers_lfymg as hecessary, until a stopplng cono_lltlon 1S reach(_ad.
. . - . appings located during the search with the highest evaluation

density, orientation, and height. We also pre-selected how USEIS s are returned by the svstem

respond to each type of hint for each attribute. This allowed us 9 y y '

to fully specify a search space with 1,680 nodes containing &grformance Results.Given the meteorological dataset, initial
possible combinations of visualization mappings and user inpugser inputs, and allowed modifications to the inputs, an exhaustive

Simulated Annealing. Simulated annealing (SA) is a heuristicsearCh of all 13680 npdes identified 21 Opt'mal ’ma_ppmgs, each
. . I . with an evaluation weight ofy = 0.844. We ran ViAs hint-based
technique that applies a probabilistic model to iterate towards_a . . .
. ; search, simulated annealing, and reactive tabu search to compare
global optimum in a large search space. SA has been compare . .
heir performance to this complete evaluation.

ling metal minimum cr llin r re through an . . .
to cooling meta’s to a um crystalline structure through a How each search proceeds depends in part on its starting

annealing process, wherg th? metal is set_ to a high temper"ﬂ"'&%ition within the state space. By default, ViA builds an initial
and slowly cooled to maintain an approximate thermodyna

i . ) " :
equilibrium. If the energy function of the physical system ig%t‘.'jl feature mapping at sta}rtlng posmS@. by. sort[ng the data .
S . : attributes by importance weight, then assigning visual features in

replaced by an objective function, the progression towards a - . . ;
- . . rder of perceptual salience. This maps the most salient visual

ground state represents iterating towards a global optimum. $SA - -
erforms aradient descent by picking a random move the%atures to the most important data attributes, and produces good
P g y P 9 ' fesults in practice. In addition t§y, we selected five additional

allowing the move if it improves the current state, or aIIOWIn%tarting positionssy, ..., Sy that were distributed throughout the

it with probability less than 1 if it does not. This probability isst te space, and that had both high and low evaluation weights
lower when a move produces a larger decrease in the cur\:\ferﬁ '

. I.e. represented both strong and weak initial visualizations). For
state, and when the current temperature of the system is lower, . :

i ) . X achS;, an algorithm was allowed to perform 200 evaluations,
As with the annealing process, avoiding local maxima depends

on the choice of the initial and final temperatures, and the chananoI was then asked to return the best mappings that it found.

featuresv. Given n > v, the total number of visualization
mappings is(?)v!. If users modify their initial constraints, the
number of states will increase rapidly, since a changé;tmeans

) . - - 9% int-based search runs in a deterministic fashion. From a given
in temperature as each cooling step is applied [14], [47]. . SRR .
SA bedins with an initial data-feature maopinfithat evaluates starting point, it will always evaluate the same states in the
9 PpiRg same order. SA and RTS have random components, however, so

to weight w. All permissible operations on/ (e.g. discretize, th%v can visit different nodes for a given starting position and
d

feature swap, and so on) are generated, with one being randoW number of evaluation steps. To address this, we ran both

. p ) . X
selgcted ?nd appl!eq 0 produM'é(. If M"has a higher evgluat!oq algorithms from eacls; until the variance between runs fell below
weight w' > w, it is automatically accepted, otherwise it is

accepted or rejected with a probability based on- w' and a pre-selected confidence threshold, then averaged the results to

- . roduce an overall estimate of the algorithm’s performance.
T, a monotonically decreasing current temperature of the systéom 9 P

. ) 2 . c}Ne started by calculating the number of evaluations required
This process continues until a final system temperature is reacr}% find the first optimal mapping. Averaged over all six starting

Mappmgs located during the search with the highest eVal'“"rjltlf?)(qsitions, hint-based search needed to perform 63.2 evaluations,
weights are then returned by the system.

. . ranging from a low of 4 evaluations for starting positisg to
t?eea(r:::go:—na?éljiiifhcfgee?a:?(\)l\rlgaftkcga Sbéclosmtga}[tr,aduee dt?na high of 120 evaluations fof; (Table Il). SA needed 85.8
P ’ pp evaluations, ranging from an average low of 74 evaluations for

cycle. Tabu search (TS) allocates additional memory to rememtzs%rto an average high of 98 evaluations f&y. RTS needed 84.2
2hitp:/fingrid.Ideo.columbia.edu/SOURCES/.UEA/.CRU/ evaluations, ranging from an average low of 14 evaluations for
.New/.CRUOS5/.climatology/.c6190/ S3 to an average high of 190 evaluations .
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TABLE I
RESULTS FOR EXHAUSTIVE SEARCH VERSUYIA’S HINT-BASED
HEURISTIC, SIMULATED ANNEALING, AND REACTIVE TABU SEARCH

guaranteeing that at least some optimal mappings are located in a
timely fashion. Based on our results, we believe a combination of
hint-based diversification between regions and RTS intensification

First Optimal Total Optimal within a region could improve our results. This algorithm is being
So S1 S2 S3 Sy S; S | SoS1S2S5354S5 S implemented as part of our future work.
Ful | — — — — — — — [ 212121212121 21
Hint | 76 120 102>200 14 4 632| 3 5 3 0 4 2 283 . o .
SA | 9498 80 74 90 79858 3 4 4 4 3 4 3.83 B. Mixed-Initiative Interaction Performance
RTS | 68 36 44 14 19015384.2 16 17 17 17 6 6 13.17

We continued our investigations by studying ViA's recommen-
dations, both with and without mixed-initiative interaction, for

Interestingly, from starting positios hint-based search wasvisualizing the same meaamperaturewind speegdpressureand
unable to locate an optimal result during its 200 allowed evabrecipitation attributes from the IPCC weather dataset (Table 1).
uations. The best mapping it found had an evaluation weightViA was executed in three separate modes. In the first, no user
98% of the global maximum. The hint-based search arrived iateractions were conducted except for the initial input of data
the neighbor of an optimal node, but never moved to the optimaloperties and analysis task requirements. We denote this version
node itself. Moves are dictated by the hints the evaluation enginsfsviA with no interaction VIiA-N. Fixed cutoffs were applied to
return, and none of the hints suggested pushed the search entmatically determine whether to accept or reject hints from
the optimal node. the evaluation engines:

Simulated annealing also failed to find optimal nodes during, feature swap:automatically allowed, since these hints are
some (but not all) of its runs for all six starting positions. perceptually based and do not change the user’s initial inputs,

In every case, however, SA was able to locate mappings thaj jmportance weight modifyallowed if the difference between
3

The random nature of how SA selects its moves caused it t0 ). is no more thar.15, | imp; —imp), | < 0.15, otherwise
miss nearby optimal mappings during approximately 23% of its  ygjected, o

searches. ' ' « discretize: allowed if the number of discrete rangésis

We also measured how many of the 21 optimal mappings each no less than half the number of unique valuesriginally
algorithm identified. Hint-based search located, on average, 2.83 contained inA4;, d > %u otherwise rejected, and
optimal mappings (ranging from a low of zero mappings for o task removeallowed if the importanceémp; of A; is 0.25
starting positionS; to a high of five mappings fa$;), SA located, or less,imp; < 0.25, otherwise rejected.

on average, 3.83 optimal mappings (ranging from a low of threrﬁ the second mode, VIA runs with the mixed-initiative engine

ma:jpplngs f3r54 tg Ia h'gthf four mappmg; fofo, 51, S|2’ 93, enabled. Decisions about whether to automatically accept or reject
and Ss), and RTS located, on average, 13.17 optima mappmgshim or to ask the user for advice, are controlled by expected

g-r?nging fromfa low of sixdmappings fef4 and S5 to a high of utilities. We denote this version of VIA with mixed-initiative
mappings forsy, 5, anc 5s)- _ _interaction ViA-MI.
RTS identified more optimal mappings, compared to the hint- Finally, we ran ViA with full, explicit interaction. The user

based and SA searches.. This algorithm.did particularly well due ~cked to accept or reject each importance weight modify,
to its exhaustive evaluation of local regions of the search spaggretize, or task remove hint. Apart from avoiding duplicate
(the intensification stage) before moving on to new locations (t%eries, answers to past queries are not analyzed to try to infer

diversification stage). The space of visualizations we searchgfl;re answers. We denote this version of VIA with complete
during our testing contained 12 optimal mappings clustered Ngafa action ViA-U.

one another. RTS was able to quickly identify all 12 mappings i _ _ -

from four of the six starting positions. In the other two cases RTGA-N versus VIA-MI. Our first experiments tested the abilities

did not diversify fully into this region. It was still able to identify ©f VIA with no interaction versus VIA with a mixed-initiative

six optimal mappings, however, more than the best results fgterface. Four conditions were measured: evaluation weights of

both hint-based and SA search. the best visualizations ViA found, the number of visualization
Although RTS may find more optimal mappings when thgwappin_gs evaluated, the total number of possible_mappings over

mappings cluster together, these mappings will, by definition, Hée entire search space, and the numt_)er of queries made to the

er. VIA-N evaluated 89 of 3,840 possible mappings (2.3%), re-

similar to one another. This makes them potentially less likely”™" ) X - e
to highlight different aspects of the dataset, since they visuali ning the following mappings as the best it identified (Table Il):

data in very similar ways. Hint-based search does a better job o w = 0.84, temperature— orientation; wind speed(dis-
spreading its evaluations throughout the search space by following Cretized tod = 12 ranges)— hue; precipitation — size;
promising hint chains to diversify quickly into different local pressure— coverage
regions. This has the potential to return optimal mappings thate w = 0.84, temperature(discretized tod = 5 ranges)—
are very different from one another, although at the expense of a Size; wind speed(discretized tod = 12 ranges)— hue;
reduction in the total number of optimal mappings identified. precipitation — orientation;pressure— coverage

None of the search algorithms produced poor results. ViARig. 5a shows the first VIA-N mapping used to visualize average
hint-based search completed its 200 evaluations in less than ar@ather conditions for the month of January. An area of high
second, although more time would be needed if more attributeind speedappears in the center of the country (orange and pink
were included (e.g. approximately 10 seconds for six or mogdyphs), while an area of higprecipitationoccurs in the Pacific
attributes). There is room for improvement, however, mostly iNorthwest (larger glyphs). Higheéemperatureand pressureare
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TABLE IlI
SEARCHES WITH FIXED CUTOFFYVIA-N), MIXED-INITIATIVE
INTERACTION (VIA-MI), AND EXPLICIT USER INTERACTION(VIA-UI)

In order to investigate this question of how user responses
affect VIA-MI's performance, we re-ran ViA-MI, but answered
the dialog queries in a slightly different manner. A total of nine

Maximum _ Queries Hints gueries were made. The user changed his answer from “No” to
w Issued  Accepted “Yes” for the following three requests:
VIA-N 0.84 0 5 . .
VIA-MI. first run 0.875 6 2 « Discretizetemperatureto 5 values?
ViA-MI, second run 0.94 9 8 « Change the importance weight tfmperatureto 0.8757?
ViA-Ul, always no 0.83 20 0 o Change the importance weight wind speedo 0.875?
ViA-Ul, fixed cutoffs 0.84 43 5
VIA-UI, always yes 0.94 2,324 2,324 Based on these responses, ViA-MI evaluated 343 of 30,720

possible mappings (1.1%), returning a visualization with an
visible in southern Texas and Florida (a denser packing of glypiitsreased weight ofv = 0.94 (Table Ill). The mapping assigned

with a rightward orientation). temperature(discretized tod = 5 ranges, and with importance
For ViA-MI, a total of six queries were made. The usepveight reduced to 0.875)- size, wind speed(discretized to
answered “Yes” to the following request: d = 5 ranges, and with importance weight increased to 0.8%5)

hue, precipitation — orientation, andporessure— coverage. The
following hints were needed to improve upon the best mapping
found during the first test of ViA-MI:

e Size is better-suited to representing the high spatial frequency
details intemperaturehan (isoluminant) hue, but in order to
use size without penalty, it needed to be discretized 105
ranges,

hue can be used to represent (low spatial frequenégyl
speedonce it is discretized t@ < 7 ranges, and

the initial importance weights of 1.0 faemperatureand
0.75 forwind speedvould produce visual interference (lower
importancewind speedepresented with a more salient visual
feature hue); to remove this, the importance weight for
temperatures reduced to 0.875, and the importance weight
for wind speeds increased to 0.875.

d = 5 ranges)— hue; precipitation — orientation;pressure This demonstrates how ViA tries to use sequences of hints to
iteratively improve its visualization recommendations. All three

— coverage _ _ _ _ _
Fig. 5b shows the first VIA-MI mapping used to visualize Janua hints described above were needed to arrive at the final, high

The temperaturepatterns appear easier to identify with hue thal ug_llty ;'sui:lzatlo?hVIA sug\g/_e:t&?. . d to visuali
with the orientations in Fig. 5a. The stromgnd speedegion in 9. oC shows the new VIA-VII mapping used o visualize

the center of the country is visible as larger glyphs. The regiojr?nuary' All of the weather patterns seen in the previous visu-

. S . lizations appear in this final image. One prominent feature of
of high precipitationnow appears as a set of glyphs with a strong. ) o .
rightward orientation. a|g. 5c is the small area of very higind speedvisible as

We observed a number of interesting effects produced Bﬂghtth plorl1_k gI):_ph?_ N :/t\j/yi)r;mg. Th'SA:S ?Ee t_otthe ltj.se of hlllte
enabling mixed initiative interactions. Discretizimgnd speedo a th t? |scret|za lon ta = | ranges. . not er II:n ergs Ing resu d
d = 5 ranges allowed both hue and size to visualize the attribde"2! ‘€MPeraturéappears Iess proment in Fig. ¢, compare

(hue supports up to seven distinguishable values, and size supp@rtwe or|g|tnal V'hA'MI mtaptpr)‘lng n Ftlg' Sb. Thlﬁu:‘f:ue t? the
up to five values). Since ViA-N's fixed constraints do not allow!S€M accepting changes to the Importance weig perature

discretizing an attribute to less than half its original number &nd wind speed Although modifying the initial user inputs can

unique values, size could not be used by VIA-N without somgprove the visualization mapping’s evaluation weight, the user

penalty. Discretizingvind speedilso allowed ViA-MI to evaluate {n;st dref'?? whet:\err_e?ﬁpr:/a}zmﬂmd spe(:ob}[t the e);.prgnif O'fth
30 new mappings that were not considered by ViA-N. t(ha peta u esfapp Otp 1ate. é aflows utsr? sto Tt)'(pe ime I'Wlt'
Because the user did not allowwmperatureto be discretized, ese fypes of questions and compare the resufting visualizations

ViA-MI did not consider 42 mappings that were evaluated bEP ;ee Wh|chhmap_p|ng:_s pr_oduc_e ti;_e best resurllts Ict))r th”elr anal_yses.
ViA-N. By not allowing any importance weight changes, VIA-MI ecause the visualizations in Fig. 5 are the "best” mappings

eliminated an additional 40 mappings that ViA-N had to evalua?é‘ggeswd by ,\AA’ they are all of a high quality. This explajns Wh,y
Although VIA-MI was not allowed to discretizéemperature many of the differences between them are subtle. Mappings with
below its initialu = 7 values, VIA-N did reduce it ta — 5 ranges lower evaluation weights would exhibit larger visual differences.

On the one hand, this is an example of ViA-MI using a querYiA-Ul versus ViA-MI. Next, we compared ViA-MI to a system

to identify and enforce a user's preferences. On the other hamdhere the user is always asked to decide whether to accept or
new visualizations of potential interest to the user were generateject each hint. This scenario is similar to ViA-N, since it runs
by reducingtemperatureo five ranges. To gain this benefit, usersvithout using expected utilities to determine how to handle a hint.
can run VIiA multiple times and answer certain queries differentiyistead of applying fixed cutoffs, however, the user is required to
to explore how their preferences and constraints affect the tyge#f VIA how to act for each hint that is generated. Our main
of visualizations ViA suggests. interests were to see: (1) what improvement in evaluation weight

« Discretizewind speedo 5 values?
The user answered “No” to the following five requests:
« Discretizetemperatureto 5 values?
« Discretizeprecipitationto 7 values?
o Change the importance weight tfmperatureto 0.8757?
o Change the importance weight wind speedo 0.875?
« Change the importance weight pfecipitationto 0.875?
Based on these responses, VIiA-MI evaluated 49 of 1,920 possible'
mappings (2.6%). Even with this single allowed change, VIA-MI
was able to identify better visualizations that VIA-N. The top °
mappings returned by VIA-MI were (Table 111):
o w = 0.875, temperature— hue;wind speed(discretized to
d = 5 ranges)— size; precipitation — orientation;pressure
— coverage
« w = 0.86, temperature— size; wind speed(discretized to
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TABLE IV

can we obtain by asking the user to control the hint selection
TAC ATTRIBUTES AND ASSOCIATED PROPERTIES

process; and (2) how well VIA-MI insulates the user, that is, how
many hints does ViA-MI manage automatically. Attr Domain Freq Task Impt

We did not want to force our users to answer the long sequences | agentID discrete ¢ =8)  high ~ search 1.0
of queries generated during this experiment. Instead, we executed | Pric® ~continuous low  boundary 0.5

. . . . quantity  discrete ¢ = 10)  high estimate 0.5
ViA-Ul in three separate scenarios. In the first, we assumed the
user rejected every hint suggested by ViA. In the second, ViA-Ul . . .
made answers identical to those made by the fixed constraints of a hotel reservathn during the trip, gnd .

ViA-N. In the final scenario, ViA-UIl allowed all hints. » tickets to entertainment e\./ents during the trip. ) )

When every hint was rejected, the search space was kept Sn@h’three products are traded in separate markets with different
resulting in 20 unique queries and a maximum visualizatigdction rules. For example, hotel room auctions run as follows:
weight of w = 0.83 (Table 1ll). In the second scenario VIA- 1) One economy and one luxury hotel offer sixteen rooms
Ul mimicked ViA-N, producing 43 unique queries. The best every evening.
visualization had weights = 0.84, identical to the VIA-N  2) Each hotel-evening pair runs as a separate auction.
scenario. In the final scenario, allowing every hint increased the3) An auction ends when the simulation ends, or a random
size of the search space dramatically, producing 2,324 unique period of inactivity passes with no new bids.
queries. The weight for the best visualization was= 0.94, 4) All rooms are sold at the sixteenth bid price (i.e. the sixteen
identical to VIA-MI's second experiment. highest bids win, but they all pay the sixteenth bid price).

These results suggest that mixed-initiative interaction offe@ther auctions run with slightly different rules. For airline tickets,
important advantages over fixed constraints or full user controine flight operates every day as a separate auction, with enough
by increasing the quality of the suggested visualizations whigats to satisfy any number of customers and with prices ranging
protecting the user from answering numerous queries. ViA makiesm $150 to $600, changing b¥$10 every 20 to 30 seconds.
requests to relax the initial constraints, but focuses on situatiofsr entertainment tickets, every agent receives an initial allotment
where this knowledge could significantly improve the visualef tickets, which they buy and sell with other agents in a stock
izations being generated. VIA caches responses in probabilityarket fashion. As with hotels, a separate auction is held for each
graphs to improve the likelihood of taking automatic actions fagvening-event combination.
future hints. VIiA also explains why a query is being made, and We began by asking the TAC designers to identify the attributes
quantifies the expected improvement of accepting the proposedisualize. They chose thime, auction ID, agent ID, priceand
action. Keeping the number of queries small and explaining tlg@antity for every bid made during the simulation. ViA does not
query’s purpose and results motivates a user to fully considesaggest spatial layout of information, so we consulted with the
hint and answer knowledgeably about how to proceed. TAC designers to choosiime and auction ID to define a bid’s

A final point to recall is that, given the same visual features and and y-position on a two-dimensional grid. 3D tower glyphs
perceptual guidelines, VIA cannot suggest visualizations that aheat can vary in their hue, luminance, height (size), density, and
better than the very best mapping hand-built by a visualizatiesegularity of placement were used to represent the remaining
expert. ViA's strength is its ability to rapidly identify visualiza- attributes:agent 1D, price,and quantity (Table V).
tions that are well-suited to a given dataset and analysis tasksAfter further discussion, we alloweguantityto be discretized
without requiring any visualization expertise from its users. Ounto (as few as) three equal-width rangesgyent ID was not
search results demonstrate that ViA is faster and, in many casesdified, since viewers need to identify specific agents during
more effective than the typical manual process of designing higite simulation. Finally, VIA was not allowed to change any
quality visualizations. importance weights or discard any analysis tasks.

Based on these restrictions, a total of nineteh were
evaluated. The smaller number of attributes and visual features,
. . L , ogether with the constraints on how mappings could be modified,
The first two studies highlight the advantages of ViAs seargl pt this number low (without these constraints, ViA would have

aIgothm and mixed-initiative |nte_ract|on r_nodel. This ignores th_ valuated 189 separalé). A number of promisingl/ remained,
question of whether the evaluation engines accurately ident F example:

the strengths and weaknesses present in a visualization mapping. . . .
The rules used within each engine are based on results fronf * = 9-862, agent ID— color, price — height, quantity —
controlled psychophysical experiments, specifically to address density (discretized td = 4 ranges) . .
this issue. Real-world validation is still needed to confirm ViAs * = 0.787, agent ID — color, price — density,quantity —
practical usefulness, however. To address this need, we conducted height ) N )

a final evaluation by visualizing intelligent agents competing iffiven these mappings, we chose a modified version of the
the Trading Agent Competitidn(TAC) [18], [20]. The TAC first mapping for_the final vllsuallzauons. Instgad of using density
implements different types of online auction rules to mimic ¥ represenquantity M varies each tower's width. This supports
wide variety of market games. Intelligent auction agents compéteVider range ofjuantity values, and it uncoupleguantity from
within the TAC to study different buying and selling strategies/ertical density, allowing us to use this spatial property to show
For example, during the first version of the TAC we visualizednultiple bids within a commorime andauction ID.

agents were tasked to assemble travel packages consisting of; Each year, an online round-robin competition is used to select
« a round-trip flight to Boston TAC finalists, who compete against one another at a conference

venue. Fig. 6 shows a dataset from the Fourth International
3http://tac.eecs.umich.edu Conference on Multiagent Systems (ICMAS-00), visualized with

C. E-Commerce Datasets
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ViA's visualizations, providing further evidence of the strength of
ViAs perceptual evaluation approach.

ViA also contains a number of important limitations. Our
visualizations use visual features attached to geometric glyphs
to represent different data attributes. Certain datasets or analysis
tasks may not fit well with this approach (e.g. when a very
large number of attributes need to be displayed). ViA is designed
to be application-independent. This was done to generalize to
different problem domains, but it can also restrict how well VIiA
supports certain application-specific requirements. VIiA searches
for visualizations that fit either the original or any modified

time “stay alive” bids  penalty/cost tradeoff bids user constraints. Telling users which constraints a visualization
is matched against can help them to understand how modifying
Fig. 6. ICMAS-00 TAC data visualized witt\/ constraints affects ViA's suggestions. Small evaluation weight

differences imply subtle variations. In these situations, users may
M. Finalists at ICMAS used sophisticated agent strategies, mamyt agree with ViA about which visualization is the “best” choice.
of which are visible in our visualizations. For example: Finally, our evaluation of ViAs real-world capabilities is based on
1) Most agents deferred purchasing hotel rooms and airliagecdotal feedback from domain experts. We have not conducted
tickets until just before the simulation ended, since thesontrolled experiments to formally quantify ViA advantages over
felt there was no advantage to early purchase. existing analysis and visualization techniques.

2) Some agents periodically made low buy bigddor hotel These issues are being investigated as part of our plan for future
rooms to keep the hotel auctions open. work. Other improvements are also being pursued. Based on
3) Some agents made very high buy bid®r hotel rooms at recently completed psychophysical studies, we are building three

the end of the simulation. Without a hotel room, a penaltyew evaluation engines to include flicker, direction of motion,
would apply for not completing the customer’s trip, but thend velocity of motion in ViA's visualizations [24]. We are also
sixteenth winning bid for hotel rooms is likely to be b, extending ViAs search strategy to include diversification through
allowing the agent to secure a room for a reasonable prig¢he existing hint-based scheme, and intensification within a local
Each of the above findings were of interest to the TAC designefggion using a reactive tabu search. Results from our evaluations
They told us these particular techniques had not been identifigé¢ggest this may lead to better performance.
in the event logs, graphs, and statistical analyses that were
previously employed to study agents’ actions. More importantly,
these approaches represent major strategies. For example, agents
that bid on hotel rooms using a minimum penalty-cost tradeoffy] AL en, J., Guinn, C. 1., AND HoROWITZ, E. Mixed-initiative inter-

won the ICMAS-00 TAC. action. IEEE Intelligent Systems 15 (1999), 14-23.
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BERGMAN, L. D., RocowITz, B. E.,AND TREINISH, L. A. A rule-
based tool for assisting colormap selectionPhaceedings Visualization
'95 (Atlanta, Georgia, 1995), pp. 118-125.

BESHERS C., AND FEINER, S. AutoVisual: Rule-based design of
interactive multivariate visualizations.IEEE Computer Graphics &
Applications 134 (July 1993), 41-49.

REFERENCES

[2]
VI. CONCLUSIONS ANDFUTURE WORK

The paper describes ViA, a semi-automated visualization as-
sistant designed to construct high quality multidimensional visul3]
alizations by combining knowledge of human visual perception
with a mixed-initiative Al search algorithm. [4]

Basic dimensions of color and texture are used to visualize
individual data attributes. Guidelines on how we perceive these o )
visual features are combined with a datasets properties and(3 BRI M A8 CHiCARROLL, ). An svdente) motel o acking
user’s analysis needs to form a space of all possible visualization adapted Interaction 83 (1998), 215-253.
mappings. This space is explored with a hint-based search stratel§y CALLAGHAN, T. C. Dimensional interaction of hue and brightness in

that tries to quickly locate mappings that are best-suited to
the user’s data and tasks. A mixed-initiative interaction engin

consults probability graphs and queries the user to decide when to
modify the dataset or the user’s initial inputs during the search for

better visualizations. The top mappings are returned, allowing (&l
the user to quickly visualize the same data in different ways to

highlight different findings of interest.

ViA's hint-based search was compared to an exhaustive seardB]
simulated annealing, and reactive tabu search. The mixed-
initiative interactions were also studied to characterize the ii
provements they offer. Results for a meteorological dataset were
positive, suggesting both components provide important advan-
tages during visualization construction. We concluded by usirﬁjgl
VIA to visualize intelligent agent activity within a simulated e-
commerce auction. Important agent strategies were found using

preattentive field segregatioRerception & Psychophysics 36 (1984),
25-34.

1 CALLAGHAN, T. C. Interference and dominance in texture segregation.

In Visual SearchD. Brogan, Ed. Taylor & Francis, New York, New
York, 1990, pp. 81-87.

CIE. CIE Publication No. 15, Supplement Number 2 (E-1.3.1, 1971):
Official Recommendations on Uniform Color Spaces, Color-Difference
Equations, and Metric Color Terms Commission Internationale de
L’ Eclairge, 1978.

CoOHEN, P. R.Empirical Methods for Atrtificial IntelligenceMIT Press,
Cambridge, Massachusetts, 1995.

10] CoHEN, P. R., ALLABY, C., CUMBAA, C., ATZGERALD, M., Ho, K.,

Hul, B., LATULIPE, C., LU, F., MOUSSA N., POOLEY, D., QAN, A.,
AND DissIQI, S. What is initiative.User Modeling and User-Adapted
Interaction 8§ 3 (1998), 171-214.

] FERGUSON G., ALLEN, J. F.,AND MILLER, B. TRAINS-95: Towards

a mixed-initiative planning assistant. IRroceedings of the Third
International Conference on Atrtificial Intelligence Planning Systems
(Edinburgh, Scotland, 1996), pp. 70-77.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

14

[12] GALLoOP, J. Underlying data models and structures for visualization. 1I[87] McCoRMICK, B. H., DEFANTI, T. A., AND BROWN, M. D. Visualiza-

(23]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Scientific Visualization: Advances and ChallengesRosenblum, Ed.
Academic Press, San Diego, California, 1994, pp. 87-102.
GLOVER, F., AND LAGUNA, M. Tabu search. IrModern Heuristic
Techniques for Combinatorial Problem€. R. Reeves, Ed. Blackwell
Scientific Publishing, Oxford, UK, 1993, pp. 70-150.

GRAY, P., HART, W., PAINTON, L., PHILLIPS, C., TRAHAN, M., AND
WAGNER, J. A survey of global optimization methodsttp://www.
cs.sandia.gov/opt/survey/main.html.1997 , 1997.
HEALEY, C. G., BooTH, K. S., AND ENNS, J. T. Harnessing preat-
tentive processes for multivariate data visualization. Pimoceedings [41]
Graphics Interface '93Toronto, Canada, 1993), pp. 107-117.

HEALEY, C. G.,AND ENNS, J. T. Large datasets at a glance: Combining
textures and colors in scientific visualizatiolEEE Transactions on [42]
Visualization and Computer Graphics 8 (1999), 145-167.

HEALEY, C. G., BNS, J. T., TATEOSIAN, L. G., AND REMPLE, [43]
M. Perceptually-based brush strokes for nonphotorealistic visualization.
ACM Transactions on Graphics 22 (2004), 64—96.

HEALEY, C. G., 1. AMANT, R.,AND CHANG, J. Assisted visualization

of e-commerce auction agents. Proceedings Graphics Interface 2001 [44]
(Ottawa, Canada, 2001), pp. 201-208.

HEALEY, C. G., §. AMANT, R., AND ELHADDAD, M. VIA: A
perceptual visualization assistant. R8th Workshop on Advanced
Imagery Pattern Recognition (AIPR-9@Washington, DC, 1999), pp. 1— [45]
11.

HEALEY, C. G.,AND WURMAN, P. R. Visualizing market datdEEE
Internet Computing 52 (2001), 88.

HIBBARD, B., AND SANTEK, D. The VIS-5D system for easy inter-
active visualization. InProceedings Visualization '9¢San Francisco, [47]
California, 1990), pp. 28-35.

HoRrowITz, E. Uncertainty, action and interaction: In pursuit of mixed-
initiative computing.IEEE Intelligent Systems 1% (1990), 17-20. [48]
HorowITz, E. Principles of mixed initiative user interfaces. In
Proceedings SIGCHI '99Pittsburgh, Pennsylvania, 1999), pp. 159-166[49]
HUBER, D. E., AND HEALEY, C. G. Visualizing data with motion.

In Proceedings Visualization 2008Minneapolis, Minnesota, 2005),

pp. 527-534. [50]
INTERRANTE, V. lllustrating surface shape in volume data via principle
direction-driven 3D line integral convolution. IBIGGRAPH 97 Con-
ference Proceedingfos Angeles, California, 1997), T. Whitted, Ed.,

pp. 109-116. [51]
INTERRANTE, V. Harnessing natural textures for multivariate visualiza-
tion. IEEE Computer Graphics & Applications 26 (2000), 6-11.
JoHNsON, C. R. Top scientific visualization research problentsEE
Computer Graphics & Applications 24t (2004), 13-17.

JoHNsoN, C. R., MOORHEAD, R., MUNZNER, T., PFSITER H.,
RHEINGANS, P.,AND YOO, T. S.E. NIH/NSF Visualization Research
Challenges RepartlEEE Press, Piscataway, New Jersey, 2006.
JULESZ, B., GILBERT, E. N.,AND SHEPR L. A. Inability of humans [53]
to discriminate between visual textures that agree in second-order
statistics—revisited Perception 2(1973), 391-405.

LAIDLAW, D. H., KIRBY, R. M., JACKSON, C. D., DaviDsSON, J. S.,
MILLER, T. S.,DA SILVA, M., WARREN, W. H., AND TARR, M. J.
Comparing 2D vector field visualization methods: A user stu@EE
Transactions on Visualization and Computer Graphics11{2005), 59—
70.

LESTER J. C., SONE, B. A., AND STELLING, G. D. Lifelike
pedagogical agents for mixed-initiative problem solving in constructivi§b6]
learning environmentdJser Modeling and User-Adapted Interaction 9
1 (1999), 1-44.

LEvkowITz, H., AND HERMAN, G. T. Color scales for image data.
IEEE Computer Graphics & Applications 12 (1992), 72-80.

LOHSE, J., RUETER, H., BioLsl, K., AND WALKER, N. Classifying [58]
visual knowledge representations: A foundation for visualization re-
search. InProceedings Visualization '9@San Francisco, California,
1990), pp. 131-138.

MACKINLAY, J. Automating the design of graphical presentations db9]
relational information. ACM Transactions on Graphics, 2 (1986),
110-141. [60]
MALIK, J.,AND PERONA, P. Preattentive texture discrimination with
early vision mechanismsJournal of the Optical Society of America A

7, 5 (1990), 923-932.

MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W.,
GIBSON, S., HODGINS, J.,AND KANG, T. Design galleries: A general
approach to setting parameters for computer graphics and animation.
In SIGGRAPH 97 Conference Proceeding®s Angeles, California,
1997), T. Whitted, Ed., pp. 389-400.

(38]

(39]

(40]

(46]

(52]

(54]

(58]

(57]

tion in scientific computingComputer Graphics 216 (1987), 1-14.
MILLER, B. Is explicit representation of initiative desirable?\iforking
Notes of AAAI 97 Spring Symposium on Mixed-Initiative Interaction
(Stanford, California, 1997), pp. 105-110.

MUNSELL, A. H. A Color Notation Geo. H. Ellis Co., Boston,
Massachusetts, 1905.

RAO, A. R., AND LOHSE, G. L. Towards a texture naming system:
Identifying relevant dimensions of texture. froceedings Visualization
'93 (San Jose, California, 1993), pp. 220-227.

REeD, T. R., AND HANS Du BuF, J. M. A review of recent texture
segmentation and feature extraction techniqug®¢GIP: Image Under-
standing 57 3 (1993), 359-372.

RHEINGANS, P.,AND TEBBS, B. A tool for dynamic explorations of
color mappings.Computer Graphics 242 (1990), 145-146.
RoBERTSON P. K. A methodology for scientific data visualisation:
Choosing representations based on a natural scene paradigRro-In
ceedings Visualization '9¢San Francisco, California, 1990), pp. 114—
123.

ROBERTSON P. K., AND DE FERRARI, L. Systematic approaches to
visualization: Is a reference model needed?Shientific Visualization:
Advances and Challenges. Rosenblum, Ed. Academic Press, San
Diego, California, 1994, pp. 239-250.

RoGowITz, B. E.,AND TREINISH, L. A. An architecture for perceptual
rule-based visualization. IfProceedings Visualization '98San Jose,
California, 1993), pp. 236-243.

ROSENBLUM, L. J. Research issues in scientific visualizatidEEE
Computer Graphics & Applications 12 (1994), 61-85.

RUSSELL, S. J.,AND NORVIG, P. Atrtificial Intelligence: A Modern
Approach, 2nd Edition Prentice-Hall, Inc., Upper Saddle River, New
Jersey, 2003.

SCHROEDER W., MARTIN, K., AND LORENSEN B. The Visualization
Toolkit Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1998.
SENAY, H., AND IGNATIUS, E. A knowledge-based system for visual-
ization design.IEEE Computer Graphics & Applications 18 (1994),
36-47.

SNOWDEN, R. J. Texture segregation and visual search: A comparison
of the effects of random variations along irrelevant dimensidosirnal

of Experimental Psychology: Human Perception and Performancé& 24
(1998), 1354-1367.

ST. AMANT, R.,AND COHEN, P. R. Interaction with a mixed-initiative
system for exploratory data analysis. Pmoceedings 2nd International
Conference on Intelligent User Interfaces (IUl '9@prlando, Florida,
1997), pp. 15-22.

TATEOSIAN, L. G., AND HEALEY, C. G. Engaging viewers with
aesthetic visualizations. IRroceedings 5th International Symposium
Non-Photorealistic Animation and Rendering (NPAR 20(&gn Diego,
California, 2007), p. to appear.

THOMAS, J. J.,AND COOK, K. A. llluminating the Path: Research and
Development Agenda for Visual Analyti¢tEEE Press, Piscataway, New
Jersey, 2005.

TRIESMAN, A. Search, similarity, and integration of features between
and within dimensions.Journal of Experimental Psychology: Human
Perception & Performance 13 (1991), 652-676.

WARE, C. Color sequences for univariate maps: Theory, experiments,
and principles.IEEE Computer Graphics & Applications, & (1988),
41-49.

WARE, C., AND KNIGHT, W. Using visual texture for information
display. ACM Transactions on Graphics 14 (1995), 3-20.

WEHREND, S., AND LEwIS, C. A problem-oriented classification
of visualization techniques. IfProceedings Visualization '9¢San
Francisco, California, 1990), pp. 139-143.

WEIGLE, C., BMIGH, W. G., Liu, G., TAYLOR, R. M., EnNS, J. T.,
AND HEALEY, C. G. Oriented texture slivers: A technique for local value
estimation of multiple scalar fields. IRroceedings Graphics Interface
2000 (Montréal, Canada, 2000), pp. 163-170.

WOoLFE, J. M. Guided Search 2.0: A revised model of visual search.
Psychonomic Bulletin & Review, 2 (1994), 202—238.

WyYSzECKI, G., AND STILES, W. S. Color Science: Concepts and
Methods, Quantitative Data and Formulae, 2nd Editiodohn Wiley

& Sons, Inc., New York, New York, 1982.



