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An important problem in the area of computer graphics is the visualization of large, complex information spaces. Datasets
of this type have grown rapidly in recent years, both in number and in size. Images of the data stored in these collections
must support rapid and accurate exploration and analysis. This article presents a method for constructing visualizations that
are both effective and aesthetic. Our approach uses techniques from master paintings and human perception to visualize a
multidimensional dataset. Individual data elements are drawn with one or more brush strokes that vary their appearance to
represent the element’s attribute values. The result is a nonphotorealistic visualization of information stored in the dataset. Our
research extends existing glyph-based and nonphotorealistic techniques by applying perceptual guidelines to build an effective
representation of the underlying data. The nonphotorealistic properties the strokes employ are selected from studies of the
history and theory of Impressionist art. We show that these properties are similar to visual features that are detected by the low-
level human visual system. This correspondence allows us to manage the strokes to produce perceptually salient visualizations.
Psychophysical experiments confirm a strong relationship between the expressive power of our nonphotorealistic properties and
previous findings on the use of perceptual color and texture patterns for data display. Results from these studies are used to
produce effective nonphotorealistic visualizations. We conclude by applying our techniques to a large, multidimensional weather
dataset to demonstrate their viability in a practical, real-world setting.
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1. INTRODUCTION

Visualization is the conversion of collections of strings and numbers (datasets) into images that are used
to explore, discover, validate, and analyze. The term “scientific visualization” originated during an NSF
panel on graphics and image processing [McCormick et al. 1987], although the field had a long and rich
history prior to this meeting (e.g., cartography, or charts and graphs [MacEachren 1995; Slocum 1998; Tufte
1983; 1990; 1997]). A number of important research problems were identified during these initial discussions.
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In particular, panelists emphasized the need for ways to manage the overwhelming amount of data being
generated. This is not only an issue of the total number of sample points or data elements stored in a
dataset (i.e., its size). Each element may also encode multiple values representing multiple independent
data attributes (i.e., its dimensionality). The challenge is to design methods to represent even some of this
information together in a common display, without overwhelming a viewer’s ability to make sense of the
resulting images.

A follow-up report on advances in scientific visualization discussed new techniques in important application
areas such as volume and flow visualization [Rosenblum 1994]. At the same time, the report noted that much
less progress had been made towards application-independent methods for managing and displaying large,
multidimensional datasets. Increasing information quality and quantity remains an open problem; this need
was again emphasized during a recent DOE/NSF meeting on research directions in visualization [Smith and
Van Rosendale 1998].

Work in our laboratories has studied various issues in scientific visualization for much of the last ten years.
A large part of this effort has focused on multidimensional visualization, the need to visualize multiple layers
of overlapping information simultaneously in a common display. We often divide this problem into two steps:

(1) The design of a data-feature mapping M , a function that defines visual features (e.g., color, texture, or
motion) to represent the data.

(2) An analysis of a viewer’s ability to use the images produced by M to explore and analyze the data.

A multidimensional dataset D represents m attributes A = (A1, . . . , Am) recorded at n sample points ei,
that is, D = {e1, . . . , en} and ei = (ai,1, . . . , ai,m), ai,j ∈ Aj . A data-feature mapping M(V, Φ) defines m
visual features Vj ∈ V to use to display values for each Aj; it also defines a corresponding Φj : Aj → Vj

to map the domain of Aj to the range of displayable values in Vj . An effective M must generate images
that allow viewers to “see” effortlessly within their data. The need to build fundamental techniques that are
appropriate for a wide range of visualization environments further complicates this problem.

The guidelines used to design our M are based on the perceptual abilities of the low-level human visual
system. Previous work has documented different methods for harnessing perception during visualization
[Bergman et al. 1995; Grinstein et al. 1989; Healey 1996; Healey et al. 1996; Healey and Enns 1999; Rheingans
and Tebbs 1990; Rogowitz and Treinish 1993; Ware 1988; 2000; Ware and Knight 1995; Weigle et al.
2000]. Certain visual features are detected very quickly by the visual system [Egeth and Yantis 1997; Mack
and Rock 1998; Pomerantz and Pristach 1989; Rensink 2000; Simons 2000; Triesman 1985; Triesman and
Gormican 1988; Wolfe 1994; Wolfe et al. 2000]; when combined properly, these same features can be used
to construct multidimensional displays that support rapid, accurate, and effortless exploration and analysis.
For example, properties of color and texture (e.g., luminance, hue, contrast, or regularity) are often used to
represent different attributes in a dataset. The way that color and texture are mapped to the data attributes
is controlled using results from psychophysical studies of our ability to distinguish between different color
and texture patterns. The application of perception in aid of visualization has shown great promise, and has
been explicitly cited as an important area of current and future research [Smith and Van Rosendale 1998].

More recently, we have initiated a new set of investigations that focus on the question: “Can we make our
visualizations aesthetically pleasing?” The way an image initially attracts a viewer’s attention is different
from how it holds a viewer’s interest over time. Cognitive scientists use the terms “orienting” and “engaging”
to describe the distinct psychophysical processes involved in these two aspects of attention [Coren et al. 2003].
Display techniques that invoke these responses could be used to direct attention to important properties
in a visualization, and to then encourage the visual system to perform a more detailed analysis within
these areas. The idea of building artistically-motivated visualizations was also based on nonphotorealistic
rendering algorithms in computer graphics [Curtis et al. 1997; Haberli 1990; Hertzmann 1998; Hsu and Lee
1994; Litwinowicz 1997; Meier 1996; Strassmann 1986], and by the efforts of researchers such as Interrante
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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[Interrante 2000], Laidlaw [Kirby et al. 1999; Laidlaw 2001; Laidlaw et al. 1998], and Ebert and Rheingans
[Ebert and Rheingans 2000; Rheingans and Ebert 2001] to extend this work to a visualization environment.
Nonphotorealistic techniques represent a promising method to both orient and engage a viewer’s attention
within an image.

Certain movements in painting (e.g., Impressionism, Abstractionism, or watercolor) are characterized by
a set of fundamental styles [Brown 1978; Schapiro 1997; Venturi 1978]. If the basic brush stroke properties
embodied in these styles can be identified and simulated on a computer, we believe they can then be used
to represent individual data attributes in a multidimensional dataset. Our goal is an image that looks like
a painting, not of a real-world scene, but rather of the information contained in the dataset.

Such a technique might initially seem difficult to control and test. An important insight is that many brush
stroke properties correspond closely to perceptual features that are detected by our visual system. In some
sense this is not surprising. Artistic masters understood intuitively which properties of a painting would
orient a viewer’s gaze and engage their thoughts. We believe this overlap can act as a bridge between artistic
styles and low-level vision, allowing us to apply our knowledge of perception to predict how nonphotorealistic
techniques will perform in a visualization environment. In addition, psychophysical experiments offer a
controlled method for studying the fundamental strengths and limitations of a given stroke property, both in
isolation and in combination with other properties shown together in the same display. In order to use the
correspondence between painting and perception during multidimensional visualization, we need to show that
our perceptual guidelines extend to a nonphotorealistic domain. Perceptually salient displays will guarantee
an effective presentation of information.

We begin this article with a brief overview of nonphotorealistic rendering, followed by a description of
painting styles in Impressionism and their correspondence to perceptual features in vision. We continue
with an explanation of the guidelines that are used to construct perceptually salient brush strokes. We next
discuss a set of experiments that test the expressiveness of our nonphotorealistic properties to confirm that
their abilities match the perceptual rules on which they are based. Finally, we describe a visualization system
built from our experimental findings, and demonstrate its use for exploring a collection of multidimensional
weather datasets.

2. NONPHOTOREALISTIC RENDERING

For many years researchers in the areas of modeling and rendering in computer graphics have studied the
problem of producing photorealistic images, images of graphical models that are indistinguishable from
photographs of an equivalent real-world scene. Advances in areas such as the simulation of global light
transport, modeling of natural phenomena, and image-based rendering have made dramatic strides towards
achieving this goal. At the same time, researchers have approached the issue of image generation from a
completely different direction. Although photographs are common, there are many other compelling methods
of visual discourse, for example, oil and watercolor paintings, pen and ink sketches, cel animation, and
line art. In certain situations, these nonphotorealistic renderings are often considered more effective, more
appropriate, or even more expressive than an equivalent photograph [Gooch and Gooch 2001; Strothotte
and Schlechtweg 2002] (see Figure 1).

Different methods have been suggested to simulate different artistic styles. For example, researchers from
the University of Washington presented a collection of techniques for generating pen-and-ink sketches. Their
initial work focused on using multiresolution curves [Finkelstein and Salesin 1994] to build a stroke texture,
a prioritized collection of simulated pen strokes that are drawn to create stroke patches with a specific
texture and tone. The stroke textures are used to construct nonphotorealistic renderings of 3D polygonal
models [Winkenbach and Salesin 1994], and to interactively convert greyscale reference images into pen-
and-ink sketches [Salisbury et al. 1994]. Follow-on work extended the stroke textures to parametric surfaces
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Fig. 1. A simple nonphotorealistic rendering of a collection of water lilies; the original image is shown in the upper-left corner

[Winkenbach and Salesin 1996], allowed the definition of directional fields to control orientation during the
sketching of 2D reference images [Salisbury et al. 1997], and discussed ways to guarantee a constant tone
that is independent of scale and display resolution [Salisbury et al. 1996]. Related work by Takagi et al. used
a voxel-based simulation of the physical properties of paper and colored lead pencils to construct color pencil
drawings [Takagi and Fujishiro 1997; Takagi et al. 1999]. Finally, Sousa and Buchanan [1999a; 1999b; 2000]
built a sophisticated simulation of graphite pencils, paper, blenders, and erasers to produce nonphotorealistic
pencil drawings of 3D geometric models; their technique allows for the variation of numerous parameters
such as pressure on the pencil, the shape of its tip, how the pencil is held by the artist, and how the pencil
and paper interact.

Texture synthesis techniques have been proposed by a number of researchers to generate nonphotorealistic
results. Initial work by Lewis [1984] allowed viewers to interactively paint spectral properties of a texture
patch in the frequency domain. Convolution and an inverse Fourier transform were applied to generate
a randomized spatial version of the texture. This result was “painted” onto a canvas in different ways
using different pixel copy operations. Haberli and Segal [1993] showed how texture mapping can be used
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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to produce a number of fundamental drawing primitives, including air brush and painted effects. More
recently, Hertzmann et al. [2001] constructed feature analogies to automatically generate nonphotorealistic
results. Texture synthesis techniques were applied to two images I and I ′ to learn how features in I map to
corresponding features in I ′ (e.g., I could be a photograph and I ′ a painterly rendition of the photograph).
Hertzmann used the resulting image analogy to automatically generate a nonphotorealistic image J ′ from a
new source image J . The image analogy embodies J ′ with style properties similar to those seen in I ′.

Our interests lie mainly in nonphotorealistic techniques that use simulated brush strokes to produce images
that look like paintings. An early example of this idea was proposed by Strassmann [1986]; he constructed
a “hairy brush”, a collection of bristles placed along a line segment. Japanese-style sumi brush strokes were
produced by applying ink to the brush, then moving it along a path over a simulated paper surface. Later
work by Haberli [1990] allowed users to paint by stroking a brush over an underlying target image. The
size, shape, color, location, and direction of brush strokes were varied to produce different representations
of the target. Hsu and Lee [1994] defined a reference backbone and reference thickness for a base texture,
then warped these properties parametrically to produce line art images. This generated expressive strokes
with complex paths of varying thickness. Litwinowicz [1997] clipped simple strokes to object boundaries
in a reference image, then rendered the strokes as lines and texture maps with variable length, thickness,
direction, and color. A stroke’s properties were selected based on the image properties of the object it
represented. Curtis et al. [1997] built a fluid-flow simulation to model the interactions of brush, pigment,
and paper during the painting of watercolor images. Their system produced subtle watercolor effects such
as dry-brush, backruns, and color glazing. Shiraishi and Yamaguchi [1999] computed image moments on a
target image; these values controlled the color, location, orientation, and size of texture-mapped brush strokes
in a painterly rendering of the target. Hertzmann [1998] decomposed a reference image into a level-of-detail
hierarchy by applying Gaussian kernels with increasing support. This generated a collection of reference
images, each with different amounts of blurring. The images were painted using strokes with a radius
proportional to the kernel size. Each stroke was modeled as a spline that varied in its length, size, opacity,
placement, and color jitter. The individual paintings were composited to produce a nonphotorealistic result.
Meier [1996] addressed the goal of animating nonphotorealistic renderings by attaching particles to surfaces
in a 3D geometric scene, then drawing a brush stroke with scene-controlled color, size, and direction at each
particle position. Information stored within a particle ensured a consistent stroke appearance. This produced
a smooth animation free of the visual artifacts that result from inconsistent variations in the appearance of
a stroke across multiple frames. Gooch et al. [2002] segmented an image into closed regions representing
image features; the medial axis of a region defined the locations and directions of brush strokes that were
used to paint the region. Finally, Hertzmann [2002] proposed a method for simulating the appearance of
lighting on the brush strokes in a painting. A height field was associated with each brush stroke, producing
a global height map as the strokes were painted; the height map was then used to bump-map the painting
with a Phong shading model.

More recently, researchers in scientific visualization have started to investigate how techniques from non-
photorealistic rendering might be used to improve the expressiveness of a data display. Laidlaw extended
the layered approach of Meier to visualize multidimensional data in a painterly fashion [Kirby et al. 1999;
Laidlaw 2001; Laidlaw et al. 1998]. He varied style properties such as underpainting lightness and stroke
size, transparency, direction, saturation, and frequency to display multiple layers of information in a single
nonphotorealistic image. Interrante [2000] discussed constructing natural textures to visualize multidimen-
sional data. Finally, Ebert and Rheingans used nonphotorealistic techniques such as silhouettes, sketch lines,
and halos to highlight important features in a volumetric dataset [Ebert and Rheingans 2000; Rheingans
and Ebert 2001]. More recent work applied stipple drawing techniques to interactively preview scientific and
medical volumes [Lu et al. 2002].
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Nonphotorealistic rendering produces images that are expressive by making use of a wide range of painting
styles. Promising results from scientific visualization show that these ideas can be extended to the problem
of representing information. This suggests that it may be possible to construct flexible brush stroke glyphs
to visualize multidimensional data elements. To do this properly, however, we must ensure our brush strokes
will form nonphotorealistic visualizations that are effective in their ability to represent multidimensional
data. The use of nonphotorealistic techniques also holds promise for constructing visualizations that are
seen as aesthetic or beautiful by our viewers.

Our investigations focus on understanding and controlling the expressive abilities of different nonpho-
torealistic brush stroke properties during visualization. These properties can then be used to produce
nonphotorealistic images that are both effective and engaging.

3. PAINTING STYLES

The fundamental properties of a nonphotorealistic image can be identified in part by studying the styles
used by artists to construct their paintings. Our investigation of nonphotorealistic properties is directed
by two separate criteria. First, we are restricting our search to a particular movement in art known as
Impressionism. Second, we attempt to match brush stroke characteristics from the Impressionist painting
style with corresponding visual features that have been shown to be effective in a perceptual visualization
environment. There are no technical reasons for our choice of Impressionism over any other movement. In
fact, we expect the basic theories behind our technique will extend to other types of artistic presentation.
For our initial work, however, we felt it was important to narrow our focus to a set of fundamental goals in
the context of a single type of painting style.

The term “Impressionism” was attached to a small group of French artists (initially including Monet,
Degas, Manet, Renoir, and Pissaro, and later Cézanne, Sisley, and van Gogh, among others) who broke from
the traditional schools of the time to approach painting from a new perspective. The Impressionist technique
was based on a number of underlying principles [Brown 1978; Schapiro 1997; Venturi 1978], for example:

(1) Object and environment interpenetrate. Outlines of objects are softened or obscured (e.g., Monet’s water
lilies); objects are bathed and interact with light; shadows are colored and movement is represented as
unfinished outlines.

(2) Color acquires independence. There is no constant hue for an object, atmospheric conditions and light
moderate color across its surface; objects may reduce to swatches of color.

(3) Solicit a viewer’s optics. Study the retinal system; divide tones as separate brush strokes to vitalize
color rather than greying with overlapping strokes; harness simultaneous contrast; use models from color
scientists such as Chevreul [1967] or Rood [1879].

(4) Minimize perspective. Perspective is shortened and distance reduced to turn 3D space into a 2D image.

(5) Show a small section of nature. The artist is not placed in a privileged position relative to nature; the
world is shown as a series of close-up details.

Although these general characteristics are perhaps less precise than we might prefer, we can still draw a
number of important conclusions. Properties of hue, luminance, and lighting were explicitly controlled and
even studied in a scientific fashion by some of the Impressionists (e.g., Seurat’s use of scientific models of
color [Chevreul 1967; Hering 1964; Rood 1879]). Rather than building an “object-based” representation, the
artists appear to be more concerned with subdividing a painting based on the interactions of light with color
and other surface features. Additional properties can be identified by studying the paintings themselves.
These properties often varied dramatically between individual artists, acting to define their unique painting
techniques. Examples include:
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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—Path. The direction a brush stroke follows; van Gogh made extensive use of curved paths to define
boundaries and shape in his paintings; other artists favored simpler, straighter strokes,

—Length. The length of individual strokes on the canvas, often used to differentiate between contextually
different parts of a painting,

—Density. The number and size of strokes laid down in a fixed area of canvas,
—Coverage. The amount of canvas or underpainting that shows through the foreground strokes,
—Coarseness. The coarseness of the brush used to apply a stroke; a coarser brush causes visible bristle lines

and surface roughness, and
—Weight. The amount of paint applied during each stroke; heavy strokes highlight coarseness and stroke

boundaries, and produce ridges of paint that cause underhanging shadows when lit from the proper
direction.

Figure 2 shows a close-up view of an oil painting that demonstrates different brush stroke properties such
as color, path, size, and density. Although by no means exhaustive, this collection of features provides a good
starting point for our work. All of the stroke properties we use are evaluated for effectiveness by identifying
their perceptual characteristics, and by validating their ability to support visualization, discovery, analysis,
and presentation in a real-world application environment.

4. PERCEPTUAL PROPERTIES

Recent research in visualization has explored ways to apply rules of perception to produce images that are
visually salient [Ware 2000]. This work is based in large part on psychophysical studies of the low-level
human visual system. One of the most important lessons of the past twenty-five years is that human vision
does not resemble the relatively faithful and largely passive process of modern photography [Pomerantz and
Pristach 1989; Triesman 1985; Triesman and Gormican 1988; Wolfe 1994; Wolfe et al. 2000]. The goal of
human vision is not to create a replica or image of the seen world in our heads. A much better metaphor for
vision is that of a dynamic and ongoing construction project, where the products being built are short-lived
models of the external world that are specifically designed for the current visually guided tasks of the viewer
[Egeth and Yantis 1997; Mack and Rock 1998; Rensink 2000; Simons 2000]. There does not appear to be any
general purpose vision. What we “see” when confronted with a new scene depends as much on our goals and
expectations as it does on the array of light that enters our eyes. Among the research findings responsible
for this altered view of “seeing” is a greater appreciation of:

(1) Detailed form and color vision is only possible for a tiny window of several degrees of arc surrounding
the current gaze location. “Seeing” beyond the single glance therefore requires a time-consuming series
of eye movements.

(2) The eye movements that are needed to process a “whole scene,” such as the 180◦ view we often assume
we have, are discrete. Many of them must be made in order to see the detail in a large scene, and almost
no visual information is gained during an eye movement itself.

(3) Memory for information from one glance to the next is extremely limited. At most, the details from only
three or four objects can be monitored between glances; perception is often limited to only one object
at a time. What we see therefore depends critically on which objects in a scene we are looking for and
attending to.

(4) Human vision is designed to capitalize on the assumption that the world is generally a quiet place. Only
differences need to be registered. Objects that are very different from their surroundings, or that change
or move, draw attention to themselves because of the difference signals that emanate from these visual
field locations.
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Fig. 2. A close-up view of a small section of an oil painting that demonstrates various stroke properties such as color, path,
size, and density; the entire painting is shown in the upper-left corner

(5) The basic visual features that can be used to guide attention are not large in number. They include
differences in the first order properties of luminance and hue, and the second-order properties of orienta-
tion, texture, and motion. Effective third-order properties are limited to some very simple characteristics
of shape such as length, area, and convexity.

The reality of each of these findings can be illustrated through the so-called change blindness which affects
us all [Mack and Rock 1998; Rensink 2000; Simons 2000]. It involves a task similar to a game that has
amused children reading the comic strips for many years. Try to find the difference between the two pictures
in Figures 3 and 4. Many viewers have a difficult time seeing any difference and often have to be coached
to look carefully to find it. Once they have discovered it, they realize that the difference was not a subtle
one. Change blindness is not a failure to see because of limited visual acuity; rather, it is a failure based on
inappropriate attentional guidance. Some parts of the eye and the brain are clearly responding differently to
the two pictures. Yet, this does not become part of our visual experience until attention is focused directly
on the objects that vary.

Harnessing human vision for the purposes of data visualization therefore requires that the images them-
selves be constructed so as to draw attention to their important parts. Since the displays being shown are
typically novel, we cannot rely on the expectations that might accompany the viewing of a familiar scene.
Rather, we must build an effective mapping between data values and visual features, so that differences in
the features draw the eyes, and more importantly the mind, on their own. Attracting the viewer’s gaze to
a particular object or location in a scene is the first step in having the viewer form a mental representation
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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Fig. 3. An example of change blindness, the inability to quickly identify significant differences across separate views of a common
scene; try to identify the difference between this photograph and the photograph shown in Figure 4 (the answer is included in
footnote 1 on the next page)

that may persist over subsequent scenes.
A data-feature mapping that builds on our knowledge of perception can support the exploration and

analysis of large amounts of data in a relatively short period of time. The ability to take advantage of the
low-level visual system is especially attractive, since:

—completion of high-level exploration and analysis tasks (e.g., target search, boundary and region identifi-
cation, estimation, or spatial and temporal tracking) is rapid and accurate, usually requiring an exposure
duration of 200 milliseconds or less,

—analysis is display size insensitive, so the time required to complete a task is independent of the number
of elements in the display, and

—different features can interact with one another to mask information; psychophysical experiments allow us
to identify and avoid these visual interference patterns.

Our most recent research has focused on the combined use of the fundamental properties of color (hue and
luminance) and texture (size, contrast, orientation, and regularity) to encode multiple attributes in a single
display [Healey 1996; Healey and Enns 1998; 1999]. A comparison of perceptual color and texture properties
with painting styles from Impressionist art reveals a strong correspondence between the two. Reduced to
perceptual elements, color and texture are the precise properties that an artist varies in the application of
colored pigments of paint to a canvas with a brush. From this perspective, color and lighting in Impressionism
has a direct relationship to the use of hue and luminance in perceptual vision. Other brush stroke properties
(e.g., path, density, and length) have similar partners in perception (e.g., orientation, contrast, and size).
This close correspondence between perceptual features and many of the nonphotorealistic properties we hope
to apply is particularly advantageous. Since numerous controlled experiments on the use of perception have
already been conducted, we have a large body of knowledge to draw from to predict how we expect our

ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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Fig. 4. An example of change blindness, the inability to quickly identify significant differences across separate views of a common
scene; try to identify the difference between this photograph and the photograph shown in Figure 3 (the answer is included in
footnote 1 below)

brush stroke properties to react in a multidimensional visualization environment.
We applied three specific areas of research in perception and visualization to guide the use of properties

of our nonphotorealistic brush strokes: color selection, texture selection, and feature hierarchies that cause
visual interference and masking.

4.1 Color Selection

Color is a common feature used in many visualization designs. Examples of simple color scales include the
rainbow spectrum, red-blue or red-green ramps, and the grey-red saturation scale [Ware 1988]. More sophis-
ticated techniques attempt to control the difference viewers perceive between different colors, as opposed to
the distance between their positions in RGB space. This improvement allows:

—perceptual balance: a unit step anywhere along the color scale produces a perceptually uniform difference
in color,

—distinguishability: within a discrete collection of colors, every color is equally distinguishable from all the
others (i.e., no specific color is “easier” or “harder” to identify), and

—flexibility: colors can be selected from any part of color space (e.g., the selection technique is not restricted
to only greens, or only reds and blues).

Color models such as CIE LUV, CIE Lab, or Munsell can be used to provide a rough measure of perceptual
balance [Birren 1969; CIE 1978; Munsell 1905]. Within these models, Euclidean distance is used to estimate
perceived color difference. More complex techniques refine this basic idea. Rheingans and Tebbs [1990]
plotted a path through a perceptually balanced color model, then asked viewers to define how attribute

1Hint: Look at the bushes immediately behind the back of the Sphinx
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values map to positions along the path. Non-linear mappings emphasize differences in specific parts of
an attribute’s domain (e.g., in the lower end with a logarithmic mapping, or in the higher end with an
exponential mapping). Other researchers have constructed rules to automatically select a colormap for a
target data attribute [Bergman et al. 1995; Rogowitz and Treinish 1993]. Properties of the attribute such
as its spatial frequency, its continuous or discrete nature, and the type of analysis to be performed are used
to choose an appropriate color representation. Ware [1988] constructed a color scale that spirals up around
the luminance axis to maintain a uniform simultaneous contrast error along its length. His solution matched
or outperformed traditional color scales for metric and form identification tasks. Healey and Enns showed
that color distance, linear separation, and color category must all be controlled to select discrete collections
of equally distinguishable colors [Healey 1996; Healey and Enns 1999].

Our color selection technique combines different aspects of each of these methods. A single loop spiraling
up around the L-axis (the luminance pole) is plotted near the boundary of our monitor’s gamut of displayable
colors in CIE LUV space. The path is subdivided into r named color regions (i.e., a blue region, a green
region, and so on). n colors can then be selected by choosing n

r colors uniformly spaced along each of the
r color regions. The result is a set of colors selected from a perceptually balanced color model, each with a
roughly constant simultaneous contrast error, and chosen such that color distance and linear separation are
constant within each named color region.

4.2 Texture Selection

Texture is often viewed as a single visual feature. Like color, however, it can be decomposed into a collection of
fundamental perceptual dimensions. Researchers in computer vision have used properties such as regularity,
directionality, contrast, size, and coarseness to perform automatic texture segmentation and classification
[Haralick et al. 1973; Rao and Lohse 1993a; 1993b; Tamura et al. 1978]. These texture features were derived
both from statistical analysis, and through experimental study. Results from psychophysics have shown that
many of these properties are also detected by the low-level visual system, although not always in ways that
are identical to computer-based algorithms [Aks and Enns 1996; Cutting and Millard 1984; Julész 1975;
1984; Julész et al. 1973; 1978; Snowden 1998; Triesman 1991; Wolfe 1994].

One promising approach in visualization has been to use perceptual texture dimensions to represent
multiple data attributes. Individual values of an attribute control its corresponding texture dimension. The
result is a texture pattern that changes its visual appearance based on data in the underlying dataset.
Grinstein et al. [1989] visualized multidimensional data with “stick-man” icons whose limbs encode attribute
values stored in a data element; when the stick-men are arrayed across a display, they form texture patterns
whose spatial groupings and boundaries identify attribute correspondence. Ware and Knight [1995] designed
Gabor filters that modified their orientation, size, and contrast based on the values of three independent data
attributes. Healey and Enns [1998; 1999] constructed perceptual texture elements (or pexels) that varied in
size, density, and regularity; results showed that size and density are perceptually salient, but variations in
regularity are much more difficult to identify. More recent work found that orientation can also be used to
encode information [Weigle et al. 2000]; a difference of 15◦ is sufficient to rapidly distinguish elements from
one another.

We designed brush strokes that can vary in their area, orientation, spatial density, and regularity (in
addition to color). These texture dimensions correspond closely to the nonphotorealistic properties size,
direction, coverage, and placement. The displays in Figures 5 and 6, used to measure target detection
performance, show examples of each of these properties.

4.3 Feature Hierarchy

A third issue that must be considered is visual interference. This occurs when the presence of one feature
masks another. Although the need to measure a brush stroke’s perceptual strength is not necessary in a
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of target detection, color targets with constant orientation (top) and random orientation (bottom); (a)
orange target in pink strokes, constant 45◦ background orientation; (b) green target in orange strokes, constant 60◦ background
orientation; (c) green target in orange strokes, constant 45◦ background orientation; (d) orange target in pink strokes, random
45◦ and 60◦ background orientation; (e) green target in orange strokes, random 30◦ and 45◦ background orientation; (f) green
target in orange strokes, random 45◦ and 60◦ background orientation

painting, this information is critical for effective visualization design. The most important attributes (as
defined by the viewer) should be displayed using the most salient features. Secondary data should never be
visualized in a way that masks the information a viewer wants to see.

Certain perceptual features are ordered in a hierarchy by the low-level visual system. Results reported in
both the psychophysical and visualization literature have confirmed a luminance–hue–texture interference
pattern. Variations in luminance interfere with a viewer’s ability to identify the presence of individual hues
and the spatial patterns they form [Callaghan 1990]. If luminance is held constant across the display, these
same hue patterns are immediately visible. The interference is asymmetric: random variations in hue have
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Examples of target detection, orientation targets with constant color (top) and random color (bottom); (a) 45◦ target
in 30◦ strokes, constant pink background color; (b) 60◦ target in 45◦ strokes, constant green background color; (c) 45◦ target
in 30◦ strokes, constant pink background color; (d) 45◦ target in 30◦ strokes, random pink and orange background color; (e)
60◦ target in 45◦ strokes, random pink and orange background color; (f) 45◦ target in 30◦ strokes, random orange and green
background color

no effect on a viewer’s ability to see luminance patterns. A similar hue on texture interference has also
been shown to exist [Healey and Enns 1998; 1999; Snowden 1998; Triesman 1985]; random variations in hue
interfere with the identification of texture patterns, but not vice-versa.

Figure 5 shows examples of hue on orientation interference. The upper three displays use a constant
background orientation (Figures 5(a)–(c)), while the lower three vary orientation randomly from stroke to
stroke (Figures 5(d)–(f)). This has no effect on a viewer’s ability to locate a target group by defined color;
identification is rapid and accurate for both sets of displays. In Figure 6 the mapping is reversed: background
color is held constant in the upper three displays (Figures 6(a)–(c)), and varied randomly in the lower three
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(Figures 6(d)–(f)). Locating a target group of strokes rotated counterclockwise from their neighbors is much
harder when color varies randomly, compared to the displays where color is held constant. What the visual
system “sees” initially is a random color pattern. Only with additional exposure time will differences in
orientation be reported. Feature interference results suggest that luminance, then hue, then various texture
properties should be used to display attributes in order of importance. Real-world evidence has confirmed
that this technique works well in practice.

4.4 Orienting Versus Engaging Attention

We are interested in two properties of a nonphotorealistic visualization: its effectiveness and its aesthetic
merit. These properties correspond to two basic aspects of human attention: orienting and engaging [Coren
et al. 2003]. Orienting attention to a specific location in an image occurs when the location contains an abrupt
transition in a visual feature that is processed by the low-level visual system (e.g., a high-contrast luminance
edge, a brief flicker, or a motion discontinuity). This may include redirecting a viewer’s gaze so that the
foveal center of the eye is aimed at the region of interest, although this is not required. Visual processes can
operate selectively on areas of high visual salience through a process called “covert orienting” [Posner and
Raichle 1994]. Rapidly orienting a viewer’s attention to novel or important areas in a visualization is the
first step towards allowing the viewer to efficiently discover, explore, and analyze within their data.

The process of orienting is different from engaging attention in two important ways. First, while orienting
is often a momentary event based largely on the nature of an image, engaging reflects the conscious intention
of the viewer to search for specific information. For example, engaging is the process that allows the search for
a difficult-to-find target to continue, even when no low-level visual evidence exists to orient the visual system
to the target’s location. Second, different neurological foundations are believed to control the two aspects
of attention. Orienting is governed by the older, sub-cortical visual pathways. Engaging is determined by
a network of cortical regions that are in close communication with the frontal lobes, the so-called “central
executive” of the human brain [Posner and Raichle 1994].

Skilled visual artists are adept at exploiting these complimentary aspects of visual attention, even though
they may do so intuitively, without understanding the underlying neural processes [Zeki 1999]. For example,
masters of the human portrait such as Vermeer, Titian, and Rembrandt painted the faces of people such that
the region of greatest detail and finest spatial resolution was the face itself. Properties of the background and
the model’s clothing are often presented in shadow or rendered with much less resolution and contrast. This
has the effect of drawing the viewer’s eye towards the face, which is the center of interest in the portrait. At
the same time, these artists reserved another small region away from the face for the most extreme contrast.
This was often the collar of the model, a piece of jewelry, or a background surface detail. This localized region
of high contrast “pulls” at the viewer’s orienting system, even as the viewer tries to engage their attention
on the portrait’s face. It has recently been proposed that this interaction between orienting and engaging
underlies our fascination with and artistic appreciation of these works [Ramachandran and Hirstein 1999;
Zeki 1999]. Psychologists believe they may soon understand the neural substrate of this aspect of creative
tension, an idea that is usually thought to be highly abstract.

We believe that orienting and engaging are both important to a successful visualization. Orienting al-
lows us to highlight important regions in an image by capturing the viewer’s focus of attention. Engaging
encourages the visual system to continue to study the details of an image after orienting occurs. We are pur-
suing nonphotorealistic visualizations as a promising way to build images with exactly these characteristics.
Orienting occurs through the careful use of visual features that are rapidly detected by the low-level visual
system. Engaging is achieved by constructing visualizations that are perceived to be beautiful or artistic by
the viewer. The studies described in this article represent our initial steps towards investigating different
aspects of attention in the context of our nonphotorealistic visualization techniques.
ACM Transactions on Graphics, Vol. 23, No. 1, January 2004.
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5. EFFECTIVENESS STUDIES

The first question we wanted to answer is whether guidelines on the use of perception in glyph-based visual-
izations will extend to our nonphotorealistic domain. We conducted a set of psychophysical experiments to
test this hypothesis. Our experiments were designed to investigate an observer’s ability to rapidly and accu-
rately identify target brush strokes defined by a particular color or orientation [Liu et al. 2003]. Observers
were asked to determine whether a small, 3× 3 group of strokes with a particular visual feature was present
or absent in a display (e.g., a group of orange strokes, as in Figures 5(a), 5(c), 5(d), and 5(f), or a group
strokes tilted 60◦ in Figures 6(b) and 6(e)). Background orientation, color, regularity, and density varied
between displays. This allowed us to test for single-glance task performance, and for visual interference
effects. Since observers need at least 200 milliseconds to initiate an eye movement, any task performed in
200 milliseconds or less is completed based on “a single glance” at the image. In all cases, observer accuracy
and response times were recorded to measure performance. The experimental results were then used to
identify similarities and differences between nonphotorealistic images and existing perceptual visualization
techniques.

5.1 Design

Each experimental display contained a 22 × 22 array of simulated brush strokes (Figures 5 and 6). The
color of the displays was calibrated to the monitor to ensure accurate reproduction. Observers were asked
to determine whether a group of strokes with a particular target type was present or absent in each display.
Displays were shown for 200 milliseconds, after which the screen was cleared; the system then waited for
observers to enter their answer: “target present” or “target absent.” Observers were told to respond as
quickly as possible, while still maintaining a high rate of accuracy. Feedback was provided after each display:
a “+” sign if an observer’s answer was correct, or a “-” sign if it was not.

The displays were equally divided into two groups: one studied an observer’s ability to identify target
strokes based on color, the other studied identification based on orientation. The appearance of the strokes
in each display was varied to test for single-glance performance and visual interference. For example, the
following experimental conditions were used to investigate an observer’s ability to identify colored strokes:

—Two target-background color pairings. An orange target in a pink background, or a green target in an
orange background; this allowed us to test for generality in observer performance for different target-
background color pairings,

—Two background orientations. Constant (every stroke is oriented in the same direction, either 30◦ or 60◦),
or random (strokes are randomly oriented 30◦ and 45◦, or 45◦ and 60◦); any decrease in performance from
a constant to a random background would indicate visual interference from orientation during the search
for color targets,

—Three background densities. The size of the strokes in the display were varied to produce sparse, dense, or
very dense patterns; this allowed us to see how changes in density affected target identification, and

—Two background regularities. Strokes were arrayed in a regular grid pattern, or jittered randomly across the
display; this allowed us to test for visual interference caused by spatial irregularity in the global texture.

Our experimental conditions produced 24 different color display types (two target-background color pair-
ings by two background orientations by three background densities by two background regularities). Ob-
servers were asked to view eight variations of each display type, for a total of 192 color trials. For each
display type, half the trials were randomly chosen to contain a group of target strokes; the other half did
not.

Examples of six color displays are shown in Figure 5. Each display contains either an orange target in a
sea of pink strokes (Figures 5(a), 5c, 5(d), and 5(f)), or a green target in a sea of orange strokes (Figures 5(b)
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and 5(e)). In the upper three displays the background orientation of the strokes is constant (either 45◦ or
60◦). The coverage is dense in Figure 5(a), sparse in Figure 5(b), and very dense in Figure 5(c). The strokes
are arrayed in a regular pattern in Figure 5(a), and randomly jittered in Figures 5(b) and 5(c). The lower
three displays are identical, except for the background orientation. In Figure 5(d) half the strokes were
randomly selected to be oriented 45◦; the other half are oriented 60◦. In Figures 5(e) and 5(f) half the
strokes are oriented 30◦, and half are oriented 45◦.

The displays that studied orientation were designed in an identical fashion. Two target-background ori-
entation pairings were tested: target strokes oriented 45◦ in a sea of background strokes oriented 30◦, or
60◦ targets in a 45◦ background. Two different color patterns were used to search for color on orientation
interference: constant (every stroke has the same color, either green or pink), or random (strokes are ran-
domly colored green and orange, or orange and pink). Background densities and regularities are identical to
the color displays. As before, eight variations of each display type were shown for a total of 192 orientation
trials.

Figures 6(a), 6(c), 6(d), and 6(f) show examples of 45◦ target strokes in a sea of 30◦ background ele-
ments. Figures 6(b) and 6(e) show a 60◦ target in a 45◦ background. The upper three displays have a
constant background color (either pink or green). The strokes are densely packed and regularly positioned
in Figure 6(a), sparsely packed and randomly jittered in Figure 6(b), and very densely packed and randomly
jittered in Figure 6(c). The lower three displays are identical, except for the background color of the strokes.
In Figures 6(d) and 6(e) half the strokes were randomly selected to be colored pink; the other half are colored
orange. In Figure 6(f) half are colored orange, and half are colored green.

The colors, orientations, densities, and regularities we used were chosen based on results from previous
experiments [Healey and Enns 1998; 1999; Weigle et al. 2000]. In particular, the colors and orientations we
selected were shown to be rapidly distinguishable from one another when displayed in isolation (i.e., without
variations in irrelevant background dimensions).

Eighteen observers (six males and twelve females ranging in age from 18 to 28) with normal or corrected
acuity and normal color vision participated during our studies. The observers were undergraduate and grad-
uate student volunteers, none of whom had any prior experience with scientific visualization. Every observer
completed both the color and the orientation experiments within our minimum accuracy requirements of
60% or better for each target type. Observers were told before an experiment that half the trials would
contain a target, and half would not. Observers completed a practice session with 24 trials before each
experiment (i.e., color practice trials before the color experiment, and orientation practice trials before the
orientation experiment). Observers were counterbalanced: half started with the color experiment, while
the other half started with the orientation experiment. We used a Macintosh computer with a 24-bit color
display to run our studies. Answers (either “target present” or “target absent”) and response times for each
trial an observer completed were recorded for later analysis.

5.2 Results

Each observer response collected during our experiments was classified by condition: target-background
pairing, primary background type (either constant or random), density, regularity, and target present or
absent. Trials with the same conditions were collapsed to produce an average accuracy a and an average
response time t. We used these values to compute a measure of search inefficiency for each observer in each
condition e = t

a ; this is a common measurement for situations where the direction of change in accuracy and
response time is the same in each experimental condition. If observer responses are perfect (i.e., a = 1.0),
inefficiency e equals response time; as accuracy decreases, inefficiency e increases (i.e., search inefficiency
increases both for longer response times and for increased error rates). Results were tested for significance
with a multifactor analysis of variance (ANOVA). We used a standard 95% confidence interval to denote
significant variation in mean inefficiency values.
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We first conducted preliminary ANOVAs examining all possible factors, separately for accuracy data a
and response time t. These analyses indicated that: (1) some factors were not significantly related to our
measures of performance (specifically, target presence-absence and target-background pairing), and (2) a
and t were highly correlated. Our primary analyses were therefore based on the search inefficiency measure
e and the significant factors of target type (color or orientation), primary background (constant or random),
density (sparse, dense, or very dense), and regularity (regular or irregular). In summary, our results showed:

(1) Color targets were easy to detect at our 200 millisecond single-glance exposure duration (mean accuracy
a = 91.1% and mean inefficiency e = 811.9 over all experimental conditions); a random orientation
pattern had no interfering effect on performance.

(2) Orientation targets were easy to detect when a constant color was displayed in the background (a = 71.9%
and e = 1327.7 for constant color trials); a random background color pattern caused a significant
reduction in performance (a = 67.9% and e = 1437.8 for random color trials).

(3) Background density had a significant effect on both color and orientation targets; denser displays pro-
duced an improvement in performance.

(4) Background regularity had a significant effect on both color and orientation targets; irregular displays
caused a reduction in performance.

Color targets were easy to identify, moreover, a random variation in background orientation had no effect
on performance (F (1, 17) = 0.01, p < 0.94 with e = 813.7, a = 91.2% for constant orientation, and
e = 810.2, a = 90.9% for random orientation). Orientation targets were easy to identify in a constant
color background, although performance was not as good as for color targets (e = 1327.7, a = 71.9%). A
random color pattern produced a significant reduction in performance (F (1, 17) = 8.08, p < 0.05, with
e = 1437.8, a = 67.9%).

Variation in background density had a significant effect on performance, both for color targets (F (2, 34) =
30.84, p < 0.001) and for orientation targets (F (2, 34) = 7.85, p < 0.01). In all cases accuracy and ineffi-
ciency were best for very dense packings (e = 708.1, a = 96.9% for very dense color trials; e = 1245.3, a =
75.2% for very dense orientation trials), and worst for sparse packings (e = 953.9, a = 83.0% for sparse color
trials; e = 1511.2, a = 66.0% for sparse orientation trials).

Variation in background regularity also had a significant effect on performance, both for color targets
(F (1, 17) = 5.10, p < 0.04) and for orientation targets (F (1, 17) = 24.89, p < 0.001). In all cases accuracy
and inefficiency were best for regular trials (e = 787.5, a = 92.5% for regular color trials; e = 1235.7, a =
75.6% for regular orientation trials), and worst for irregular trials (e = 834.7, a = 89.7% for irregular color
trials; e = 1523.7, a = 64.1% for irregular orientation trials).

Finally, we observed a density × regularity interaction for color trials (F (2, 34) = 5.34, p < 0.01):
variations in performance were larger for “harder” trials. For example, the effect of irregularity was larger
for sparse color trials, compared to very dense color trials; the effect of density was larger for irregular trials,
compared to regular trials. The same interaction pattern was seen for the orientation trials, but the effect
was only marginally significant (F (2, 34) = 2.93, p < 0.07).

5.3 Interpretation

Our results match previous findings in both the psychophysical and the visualization literature, specifically:
(1) color produces better performance than orientation during target identification (F (1, 17) = 71.51, p <
0.001 for our experiments), and (2) an asymmetric color on texture interference effect exists (random color
patterns interfere with orientation identification, but not vice-versa). Both results have been reported in
experimental [Callaghan 1990; Snowden 1998] and real-world visualization settings [Healey and Enns 1998;
1999]. Our results extend the work of Healey and Enns, who found a general color on texture interference
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pattern, but no corresponding texture on color effect [Healey and Enns 1999]. This provides positive evidence
to support the belief that perceptual findings will carry to a nonphotorealistic visualization environment.

The improvement in performance when density increased, both for color and orientation targets, was
encouraging. An initial concern we discussed was that texture variations (e.g., orientation differences) would
disappear when density increased and background color was held constant. Our results show that, for the
types of strokes we displayed, different orientations are not “lost” in the background, even when a significant
stroke overlap exists. This supports our goal of producing painterly images that contain dense stroke regions,
yet at the same time allow viewers to rapidly identify variations in the underlying texture properties.

Finally, the reduction in performance when strokes were irregularly positioned was intriguing. We con-
cluded that regularity acts as a reinforcing visual cue, helping observers identify targets based on some
other feature (e.g., color or orientation). The presence of a target patch “breaks” the regularity pattern,
providing an additional visual signal that identifies the presence of a target. Jittering the strokes removes
this background support. In this sense, irregularity is not so much an “interfering” effect as it is the loss of
a secondary feature that helps to highlight the presence of a group of target strokes.

6. NONPHOTOREALISTIC VISUALIZATION

Based on the results from our experiments, we built a nonphotorealistic visualization system that varied
brush stroke color, orientation, coverage (i.e., spatial density), and size to encode up to four data attributes
(in addition to the two spatial values used to position each stroke). The presence of feature hierarchies
suggest color should be used to represent the most important attribute, followed by texture properties. Our
results further refine this to mapping color, coverage, size, and orientation in order of attribute importance
(from most important to least important).

6.1 Painting Algorithm

To produce nonphotorealistic visualizations, we must convert a dataset D into a nonphotorealistic image
using a data-feature mapping M . We wanted to design a technique that was based in part on the way
that artists paint on a canvas. To this end, we implemented an algorithm that spatially subdivides D into
common regions (objects) based on attribute value, then paints each region independently to produce a
finished result. Our technique follows four basic steps:

(1) Segment D into p spatially connected regions, where the attribute values ai,j for the elements in each
region Rk are within a given tolerance εj of one another.

(2) For each region Rk containing elements e1, . . . , et, compute a region-global stroke coverage from the
average value 1

t

∑t
i=1 ai,j , where Aj is the attribute represented by coverage.

(3) “Paint” strokes at randomly selected positions within Rk. The color, orientation, and size of each stroke
are controlled by the attribute values of the element closest to the stroke’s center. A stroke is accepted
or rejected based on its overlap with existing strokes, and on its overlap with Rk. This process continues
until Rk’s required coverage is met.

(4) After all p regions are painted, display the result to the viewer.

Step three represents an important difference between our nonphotorealistic technique and glyph-based
visualizations. Most glyph algorithms use a one-to-one or one-to-many mapping to represent each data
element with individual glyphs. We wanted a method that was more analogous to how paintings are con-
structed: “objects” in a scene are identified and painted in turn. This is done by segmenting a dataset into
spatial regions, then painting strokes within each region until an appropriate stroke coverage is met. In our
technique strokes do not correspond to specific data elements, rather, the strokes are bound to the elements
indirectly through the segments they belong to.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Examples of different segmentation algorithms applied to an RGB image of a golden poppy; (a, b, c, d) segments with
a fixed, running average, weighted average with w = 1, and weighted average with w = 7

8
, respectively; (e, f, g, h) segments

overlaid on the original RGB image

Segmentation is performed using a modified region-growing algorithm. The first element e1 of a new
segment Rk is selected from a list of elements that do not belong to any segment. Average attribute values
aj = a1,j, j = 1, . . . , m are initialized based on e1. Rk is then grown as follows:

(1) Consider all elements in the eight-neighbor region around e1.

(2) If a neighboring element ei is not part of some other segment, and if |aj − ai,j | ≤ εj ∀j, add ei to Rk.

(3) Update aj based on ai,j , then recursively consider the neighbors of ei.

(4) Continue until no more elements can be added to Rk.

Some care must be used during the updating of aj . We do not use the initial a1,j as a fixed average,
for example, since this produces segments that are too sensitive to the selection of e1. Consider the visual
example shown in Figure 7, where we segment a dataset of pixels with m = 3 attributes: red, green, and
blue. The segment generated with fixed averages and e1 selected from the lower-left corner of the image is
shown in grey in Figures 7(a) and 7(e). Because the choice of e1 produced aj that were relatively dark, the
segment is smaller than expected. Since aj do not change as the segment is constructed, we cannot correct
for this initial decision. Updating aj for each ei forces the averages to follow the structure of the segment as
it grows. New attribute values ai,j must be properly weighted when they are added to aj , however. Consider
Figures 7(b) and 7(f), which use a simple running average aj = 1

2 (aj + ai,j) for each new element ei. This
places too much importance on the attribute values of ei, producing segments that are too large. Intuitively,
a running average pushes aj too far in the direction of ei; if neighboring elements have similar attribute
values, this significantly increases the likelihood that these neighbors will be also accepted into the segment.

The technique we implemented uses weighted averages to build data segments. Given elements e1, e2, . . . , et,
the average values at step t during segment construction are:
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Fig. 8. An example of our segmentation and brush stroke model being used to produce a nonphotorealistic rendering from an
RGB image of a golden poppy

aj =
1

∑t
i=1 wi−1

(w0a1,j + w1a2,j + · · · + wt−1at,j), j = 1, . . . , m (1)

w is used to weight the contribution of each new element. When w = 1, aj is a simple average of the
attribute values within Rk. When w < 1, each additional element has a monotonically smaller effect on
aj , allowing the averages to converge to near-constant values. This is particularly useful when we visualize
datasets with smooth gradients. Specifying w < 1 allows the construction of segments that do not expand
to fill the entire gradient. The fraction 1/

∑t
i=1 wi−1 clamps aj to lie in the range 0 . . . amax

j , where amax
j is

the largest possible value for attribute Aj .
Figure 7 shows examples of two weighted average segments. In Figures 7(c) and 7(g) the averages are

updated using w = 1. In Figures 7(d) and 7(h) the segment is built with w = 0.875. This produces a smaller
result, since elements past the first few contribute little to each aj (e.g., the tenth element at t = 10 accounts
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for 0.8759/
∑10

i=1 0.875i−1 = 0.051, or approximately 5.1% of the segment average). By varying w, we can
control the relative size of the segments we generate.

Each segment Rk is painted by randomly placing brush strokes inside it. The percentage of Rk to be covered
by its strokes (coverage) is defined based on 1

t

∑t
i=1 ai,j , where Aj is the attribute that represents coverage.

Because the elements ei within Rk must have similar attribute values, a region-global coverage produces
an acceptable representation of Aj within Rk. As each new stroke is placed, two values are computed: the
overlap with existing strokes, and the overlap with Rk’s extent. If the stroke overlap is too high, or if the
segment overlap is too low, the stroke is rejected. The allowable stroke overlap is slowly increased to ensure
that Rk’s coverage can be met. The color, orientation, and size of each stroke are chosen using the attribute
values of the element closest to the stroke’s center.

The brush strokes used in our current prototype are identical to the ones shown during our experiments.
They are constructed with a simple texture mapping scheme. This technique is common in nonphotorealistic
rendering (e.g., in Haberli [1990], Hertzmann [1998], Litwinowicz [1997], and Meier [1996]). Real painted
strokes are digitally captured and converted into texture maps. The textures are applied to an underlying
polygon to produce a collection of generic brush strokes. We use a small library of representative stroke
textures. One of the textures is randomly selected and bound to a stroke when it is placed. This produces a
more random, hand-generated feel to the resulting images. The nonphotorealistic rendering of the complete
golden poppy image is shown in Figure 8. Additional examples of renderings and visualizations are shown
in Figures 1, 9, and 10.

6.2 Practical Applications

One of the application testbeds for our nonphotorealistic visualization technique is a collection of monthly
environmental and weather conditions collected and recorded by the Intergovernmental Panel on Climate
Change. This dataset contains mean monthly surface climate readings in 1

2

◦ latitude and longitude steps for
the years 1961 to 1990 (e.g., readings for January averaged over the years 1961-1990, readings for February
averaged over 1961-1990, and so on). We chose to visualize values for mean temperature, wind speed, pressure,
and precipitation. Based on this order of importance, we built a data-feature mapping M that varies brush
stroke color, coverage, size, and orientation. This mapping divides the concept of spatial density into two
separate parts: size, the size of the strokes used to represent a data element ei, and coverage, the percentage
of ei’s screen space covered by its strokes. Both properties represent brush stroke features. Size describes the
energy of strokes in a fixed region of a painting (e.g., a few long, broad, lazy strokes or many small, short,
energetic strokes). Coverage describes the amount of the underlying canvas, if any, that shows through the
strokes. This produced the following data-feature mapping M :

—A1 = temperature → V1 = color, Φ1 = dark blue for low temperature to bright pink for high temperature,
—A2 = wind speed → V2 = coverage, Φ2 = low coverage for weak wind speed to full coverage for strong wind

speed,
—A3 = pressure → V3 = size, Φ3 = small strokes for low pressure to large strokes for high pressure, and
—A4 = precipitation → V4 = orientation, Φ4 = upright (90◦ rotation) for light precipitation to flat (0◦

rotation) for heavy precipitation.

Figure 9 shows an example of applying M to data for February along the east coast of the continental
United States. The top four images use a perceptual color ramp (running from dark blue and green for small
values to bright red and pink for large values) to show the individual variation in temperature, pressure, wind
speed, and precipitation. The result of applying M to construct a nonphotorealistic visualization of all four
attributes is shown in the bottom image. Various color and texture patterns representing different weather
phenomena are noted on this image. Changes in temperature are visible as a smooth blue-green to red-pink
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temperature pressure wind speed precipitation

cold 
(blue and green)

calm winds 
(low coverage)

light rain 
(upright)

strong wind 
(full coverage)

heavy rain 
(tilted)

pressure gradient 
(size gradient)

hot 
(pink and red)

Fig. 9. Nonphotorealistic visualization of weather conditions for February over the eastern United States: (top row) perceptual
color ramps (dark blue for low to bright pink for high) of mean temperature, pressure, wind speed, and precipitation in isolation;
(bottom row) combined visualization of temperature (dark blue to bright pink for cold to hot), wind speed (low to high coverage
for weak to strong), pressure (small to large for low to high), and precipitation (upright to flat for light to heavy)
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(a)

(b)

Fig. 10. Weather conditions over the continental United States: (a) mean temperature, pressure, wind speed and precipitation
(represented by color, size, coverage, and orientation) for January; (b) mean conditions for August
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color variation running north to south over the map. Pressure gradients produce size boundaries, shown
as neighboring regions with different sized strokes (e.g., larger strokes in Florida represent higher pressure
readings). Increases in rainfall are shown as a increasing stroke tilt running from upright (light precipitation)
to flat (heavy precipitation). Finally, the wind’s magnitude modifies stroke coverage: weak wind speed values
produce small numbers of strokes with a large amount of background showing through (e.g., north of the
Great Lakes), while strong wind speed values produce larger numbers of strokes that completely fill their
corresponding screen space (e.g., in central Texas and Kansas).

Figure 10 uses the same M to visualize weather conditions over the continental United States for January
and August. These visualizations provide a number of interesting insights into historical weather conditions
for this part of the world. In January (Figure 10(a)) weak wind speed and pressure values (shown as small,
low coverage strokes) cover much of western, southeastern, and northeastern parts of the country. Regions
of much higher pressure are shown as larger strokes in the center of the map. Typically heavy precipitation
in the Pacific Northwest is represented by nearly flat strokes. Regions of severe cold east of the Rocky
Mountains near Denver and in the northern plains and Canadian prairies appear as patches of dark green
and blue strokes. Conditions in August (Figure 10(b)) are markedly different. Most of the United States is
warm with areas of intense heat, shown as bright pink strokes, visible in southern California, the southwest,
and most of the southern states. Little precipitation is evident apart from Florida, where tilted strokes are
displayed. Finally, wind speed to the west of the Rocky Mountains is much weaker than to the east; the
background is clearly visible through the strokes in the west, while almost no background can be seen in the
east.

7. VALIDATION EXPERIMENT

In order to further explore the capabilities of our nonphotorealistic techniques, we conducted a basic valida-
tion experiment designed to:

(1) Test the ability of our nonphotorealistic visualization to support common analysis tasks on real-world
data.

(2) Compare our nonphotorealistic visualization with a more traditional display method.
(3) Study whether the common method of combining displays that work well in isolation produces an effective

multidimensional visualization.

Our experiment compared user performance in our nonphotorealistic weather visualizations with more tra-
ditional displays. The dataset we used for this experiment contained four data attributes A = ( temperature,
wind speed, wind direction, precipitation ). Based on consultation with domain experts from the natural sci-
ences, we decided to composite standard displays of the individual attributes to produce a multidimensional
result. Anecdotal feedback from the scientists suggested that our nonphotorealistic visualizations were better
than the collection of side-by-side displays they often employ (e.g., Figures 11(a)–(c), which were captured
directly from online weather maps), particularly when searching for combinations of weather conditions. This
is not surprising, since a search across multiple images will produce change blindness. The low-level visual
system cannot remember image detail beyond the local region containing the viewer’s focus of attention (see
the Perceptual Properties section for a more detailed discussion of change blindness). Because many people
are already familiar with standard weather maps, the scientists wondered whether a combination of these
displays would still be effective. Our experiment was designed to study this question, and to compare the
performance of a combined display to our nonphotorealistic visualizations.

Figure 11(d) shows the result of applying Ms(Vs, Φs) with Vs = ( color, luminance, directed contours, semi-
transparent color ), Φs = ( green · · · yellow, dark · · · bright, 0◦ · · · 360◦, green · · · red ). Certain modifications
were needed to combine the data into a single image. For example, temperature, wind speed, and precipitation
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(a) (b) (c)

(d) (e)

Fig. 11. Example multidimensional visualizations: (a) standard visualization of temperature with color (dark green for cooler
to yellow for warmer); (b) standard visualization of precipitation with Doppler radar (green for light rainfall to red for heavy
rainfall); (c) standard visualization of wind direction with directed contours and wind speed with color (dark blue for low winds
to bright green for high winds); (d) a combination of three individual visualizations to form a single, multidimensional image; (e)
a nonphotorealistic visualization with simulated paint strokes that vary their color, coverage, orientation, and size to visualize
the same data

are all represented by color in the individual displays (Figures 11(a)–(c)); we continued to use color to
represent temperature, but switched to luminance to represent wind speed. This variation of luminance
makes areas of weaker winds appear darker (i.e., lower luminance), and areas of stronger winds appear
lighter (i.e., higher luminance and therefore less saturated). We left the Doppler radar traces of precipitation
intact, but made them semi-transparent to try to show the underlying temperature, wind speed, and wind
direction.

Figure 11(e) displays the same data in Figure 11(d) as a nonphotorealistic visualization. Here, Mn is
defined as Vn = ( color, coverage, orientation, size ), Φn = (dark blue · · · bright pink, low · · · high, 0◦ · · · 360◦,
small · · · large ). Since the nonphotorealistic technique was specifically designed to visualize multidimensional
datasets, none of the tradeoffs used in Figure 11(d) were needed. Because of the coarseness of the available
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data, we imposed a more regular structure on the positions of our brush strokes. Apart from this modification,
the painting algorithm used for Figure 11(e) was identical to the one used for the previous datasets.

Fifteen observers (computer science graduate students and staff ranging in age from 18 to 41) with normal
or corrected acuity and normal color vision participated during this experiment. The data-feature mappings
Ms and Mn were explained in detail to the observers using a pair of visualizations different from the ones
shown during the experiment. Observers were encouraged to ask questions to ensure they understood how
each attribute was being represented. Observers were then instructed to answer the following questions on
a new pair of visualization images (Figures 11(d) and 11(e)):

(1) In which visualization is it easiest to distinguish: temperature; precipitation; wind speed; wind direction?
(2) Identify an area in each visualization that has: high temperature; high precipitation; low wind speed.
(3) Identify an area in each visualization that has: high precipitation and low temperature; high precipitation

and high wind speed.
(4) Identify an area in each visualization where temperature changes rapidly.

The first question queried an observer’s preferences about the representation techniques used for each
attribute. The second question tested an observer’s ability to identify values for three different attributes.
The third question tested an observer’s ability to identify combinations of attribute values. The final question
tested an observer’s ability to identify high spatial frequency changes in one attribute (temperature) in the
presence of a second (precipitation). As with the construction of the standard visualization image, these
questions were selected in part through suggestions from our natural science colleagues.

7.1 Results

Responses were recorded and tabulated for all fifteen observers. Chi-squared tests with a standard 95%
confidence interval were used to denote significance. In summary, we found:

(1) Observers preferred the nonphotorealistic visualization’s method of representing temperature and wind
speed.

(2) Observers preferred the standard visualization’s method of representing precipitation.
(3) Observers were better at identifying high temperature in the nonphotorealistic visualization.
(4) Observers were better at identifying a combination of high precipitation and high wind speed in the

nonphotorealistic visualization.
(5) Observers were better at identifying areas of rapid temperature change in the nonphotorealistic visu-

alization.

Table 7.1 details observer preferences for the visualization that they felt made each data attribute easiest
to distinguish. A chi-squared test showed significant variation within the table as a whole (χ2

3 = 28.8,
p < 0.001). Chi-squared tests on each attribute identified a significant preference for the nonphotorealistic
visualization for temperature and wind speed (χ2

1 = 11.267, p < 0.001 in both cases), and a significant
preference for the standard visualization for precipitation (χ2

1 = 8.067, p < 0.01). Observers indicated that
it was easier to see precipitation in the standard visualization, since it sat “on top” of the other attributes.
However, this made it difficult to distinguish temperature and wind speed in areas of high precipitation (and
thus the preference for the nonphotorealistic visualization’s method of displaying these attributes). Although
wind direction was also obscured by precipitation in the standard visualization, some observers felt they could
infer its pattern from what they could see entering and exiting areas of high rainfall.

Table 7.1 details observer performance for the task of identifying the location of high or low attribute
values in the visualization. For this task, “high” was considered to be any value in the top 10% of the
range shown in the visualization, and “low” was any value in the bottom 10%. “Correct” means an observer
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Table I. Combined Responses for the Question: “In Which Visualization is it
Easiest to Distinguish the Given Data Attribute?”

Visualization temperature precipitation wind speed wind direction

Standard 1 13 1 5

Nonphotorealistic 14 2 14 10

Table II. Combined Responses for the Task: “Identify an Area in Each Visualization
that has the Following Attribute Value”

Visualization Response High temperature High precipitation Low wind speed

correct 10 14 11
Standard incorrect 2 0 0

hard to tell 3 1 4

correct 15 13 13
Nonphotorealistic incorrect 0 0 0

hard to tell 0 2 2

correctly identified an area in the visualization that contained the target attribute value. “Incorrect” means
an observer identified an area that did not contain the target attribute value. “Hard to tell” means an
observer gave no answer, but instead reported it was “hard to tell” where the target value was located.
Performance for identifying high temperature was significantly better in the nonphotorealistic visualization
(χ2

2 = 6.00, p < 0.05). There was no statistical difference in performance for the other two attributes.
Interestingly, although observers stated a preference for the way precipitation was displayed in the standard
visualization (see Table 7.1), this did not produce any improvement in identifying regions of high precipitation
(χ2

2 = 0.37, p < 0.90).
Table 7.1 details observer performance for the task of identifying the location of a combination of high and

low attribute values in the visualization (with “high” and “low” defined as before). In both cases absolute
performance was better in the nonphotorealistic visualization, although it was statistically significant only for
identifying combinations of high precipitation and high wind speed (χ2

2 = 7.778, p < 0.05). Observers reported
that it was easier to see color differences (i.e., variations in temperature) through the semi-transparent
Doppler radar traces in the standard visualization, compared to luminance differences (i.e., variations in
wind speed). This explained the slightly better absolute performance in the standard visualization for the
first task: Identify areas of high precipitation and low temperature (versus the second task of identifying high
precipitation and high wind speed).

Table 7.1 details observer performance for the task of identifying rapid changes in temperature. These
areas were known to be located within areas of high precipitation, so the question was designed to test
an observer’s ability to identify sharp variations in one attribute (temperature) in the presence of a second
(precipitation). Results showed a significant performance advantage in the nonphotorealistic visualization
(χ2

1 = 8.572, p < 0.01).

7.2 Interpretation

Although the standard visualization appeals to our familiarity with the weather maps we often see in day-
to-day life, it was not built with methods that support rapid and accurate multidimensional analysis. This
fact was highlighted during our experiment. Results showed that performance with the nonphotorealistic
visualization matched or exceeded the standard visualization in all cases. This suggests that a method
specifically designed for multidimensional data produces better visualizations than a combination of displays
that work well in isolation. It also demonstrates that the nonphotorealistic visualizations are effective at
representing multidimensional data in a way that supports real-world analysis tasks.
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Table III. Combined Responses for the Task: “Identify an Area in Each
Visualization that has the Following Combinations of Attribute Values”

High precipitation AND High precipitation AND
Visualization Response

Low temperature High wind speed

correct 9 7
Standard incorrect 5 8

hard to tell 1 0

correct 13 14
Nonphotorealistic incorrect 2 1

hard to tell 0 0

Table IV. Combined Responses for the Task: “Identify an
Area in Each Visualization with Rapid temperature

Change”

Visualization Response rapid temperature change

correct 4
Standard

incorrect 11

correct 12
Nonphotorealistic

incorrect 3

Given the foundations used to build the visualizations (rules of perception versus effective visualizations
in isolation), the fact that the nonphotorealistic visualization outperformed the standard visualization in
certain situations is not surprising. What was unexpected was that the standard visualization was never
better than the nonphotorealistic visualization for the tasks we tested. Choosing representations in the
standard visualization that favor some attributes (e.g., precipitation) at the expense of others should make
these attributes highly salient. This was exactly what we observed, for example, in Tables 7.1 and 7.1
where the presence of precipitation in the standard visualization interfered with the identification of wind
speed and temperature, respectively. Our results therefore suggest that every attribute representation in
the nonphotorealistic visualization is at least as good as the corresponding attribute representation in the
standard visualization.

A number of issues were raised when we tried to combine the individual displays to produce the standard
weather visualization. These included occlusion (e.g., semitransparent Doppler radar traces obscured un-
derlying temperature, wind speed, and wind direction values), and links between visual features that caused
variations in one to affect another (e.g., luminance variations used to represent wind speed lightened or
darkened the colors used to represent temperature).

A separate problem was the choice of features used in the individual displays. These choices were not
always well-suited to the tasks the scientists said they wanted to perform. For example, the standard
visualization uses a static colormap that assigns a fixed color to each range of temperatures. This is a
common technique used to facilitate comparison across multiple weather maps. Unfortunately, it also results
in a narrow range of colors when a user chooses to study a local region of interest. Our visualization scales
the colormap to fit the range of attribute values being displayed.2 The narrow color range made it difficult
for users to identify specific temperature values in the standard visualization (both in isolation and in the
presence of high precipitation). It may have been possible to replace the colormap to try to overcome some
of these problems. This would not address the issues of variations in luminance to visualize wind speed,

2In the case of visualizing more than one map, we first combine temperature ranges from each map, then scale our colormap
to cover this combined range; in this way the same colors in different displays properly correspond to the same temperature
values (e.g., see Figures 9 and 10).
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or the occlusion that occurs in areas of high precipitation, however. Our intuition is that the standard
visualization would continue to produce poor representations for certain tasks, and would not outperform
the nonphotorealistic visualization, even with a more expressive colormap.

Although these experiments visualized weather data, we are not restricted to this domain. We are cur-
rently applying our nonphotorealistic techniques to scientific simulation results in oceanography, and to the
problem of tracking intelligent agents interacting in a simulated e-commerce auction environment. Building
on the strengths of the low-level human visual system provides the flexibility needed to construct effective
multidimensional visualizations for a wide range of problem environments.

8. CONCLUSIONS AND FUTURE WORK

This paper describes a method of visualization that uses painted brush strokes to represent multidimensional
data elements. Our goal was to produce effective nonphotorealistic visualizations. We were motivated in part
by nonphotorealistic rendering in computer graphics, and by the work of Laidlaw, Interrante, and Ebert and
Rheingans to extend these techniques to a visualization environment. Our contributions to this work are the
application of human perception during the selection of a data-feature mapping, and the use of controlled
experiments to study the effectiveness of a nonphotorealistic visualization, both in a laboratory setting, and
in a more practical, real-world context.

The brush strokes we used support the variation of visual features that were selected based on styles from
the Impressionist school of painting. Each attribute in a dataset is mapped to a specific nonphotorealistic
property; attribute values stored in a data element can then be used to vary the visual appearance of
the brush strokes. The properties we chose correspond closely to perceptual features detected by the low-
level human visual system. Experimental results show that existing guidelines on the use of perception
during visualization extend to a nonphotorealistic environment. This allows us to optimize the selection
and application of our brush stroke properties. The result is a “painted image” whose color and texture
patterns can be used to explore, analyze, verify, and discover information stored in a multidimensional
dataset. We are optimistic that future results from studies of perception in visualization will also apply to
our nonphotorealistic domain.

In addition to being effective, our techniques try to produce visualizations that viewers perceive as engaging
or aesthetic. Nonphotorealistic techniques that highlight important or unexpected properties can be used to
orient a viewer’s attention to specific areas in the image. An engaging visualization will encourage a more
in-depth examination of these details.

A number of areas for future work are now being considered. Experiments are currently underway to try
to measure the level of artistic merit viewers attach to our visualizations, and to identify the basic emotional
and visual composition properties of the images (e.g., pleasure, arousal, meaning, and complexity) that
affect these judgments. One question of interest asks: “Can we use these results to vary a visualization’s
composition in ways that improve its artistic merit?” For example, we could try to increase the meaning
of a visualization image by explaining what it represents and how it is used. If meaning is a predictor of
artistic beauty, we would expect to see an increase in observers’ artistic merit rankings of the visualization
images. Another area for investigation asks: “How do knowledge and experience affect the rating scales?”
Our observers are, for the most part, artistic novices. Conducting an experiment with participants who
have some type of formal training in art theory and art history could offer important insights on how this
knowledge affects appreciation of our different image types. Results from these two questions may show
that our current emotional and visual composition properties need to be refined or extended to further
differentiate the artistic merit attached to different images. We are evaluating new candidate properties to
test during future studies.

Another interesting suggestion is to compare the artistic merit of our nonphotorealistic visualizations with
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traditional visualization techniques (e.g., multidimensional glyphs). We are now studying this possibility as
a follow-on to our current experiments.

Our brush strokes support the variation of color, orientation, coverage, and size. We are working to
identify new nonphotorealistic properties that could be integrated into our stroke model. Two promising
candidates we have already discussed are coarseness and weight. Other properties are being sought using two
complementary approaches. First, we are reviewing literature on technique and style in Impressionist art.
Second, we are looking at perceptually salient visual features that may correspond to new nonphotorealistic
properties. Increasing the number of features we can encode effectively in each brush stroke may allow us
to represent datasets with higher dimensionality.

The need to display additional nonphotorealistic properties may exceed the abilities of our simple texture
mapped stroke model. We are studying three techniques to overcome this limitation: (1) the creation of
a larger library of texture mapped brush strokes that explicitly vary the properties that are not easy to
modify within an individual texture map; (2) a model that uses spline surfaces to construct continuous
representations of the multiple properties in a brush stroke, and (3) a model that uses a physical simulation
to vary nonphotorealistic properties and construct visually realistic strokes.

Finally, we note one other important advantage we can derive from the correspondence between perceptual
features and nonphotorealistic properties. We measure the perceptual salience of a visual feature using
controlled psychophysical experiments. Exactly the same technique is used to investigate the strengths and
limitations of new nonphotorealistic features, both in isolation and when displayed together with other stroke
properties. Just as research in perception helps us to identify and control nonphotorealistic features during
visualization, work on new features may offer insight into how the low-level visual system “sees” certain
combinations of visual properties. These results could have an important impact on models of low-level
human vision that are being constructed by researchers in the psychophysical community.
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