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Abstract—Visualization has become integral to the knowledge
discovery process across various domains. However, challenges
remain in the effective use of visualization techniques, especially
when displaying, exploring and analyzing large, multidimensional
datasets, such as weather and meteorological data. Direct vi-
sualizations of such datasets tend to produce images that are
cluttered with excess detail and are ineffective at communicating
information at higher levels of abstraction.

To address this problem we provide a visual summarization
framework to intuitively reduce the data to its important and
relevant characteristics. Summarization is performed in three
broad steps. First, high-relevance data elements and clusters of
similar data attributes are identified to reduce a dataset’s size
and dimensionality. Next, patterns, relationships and outliers are
extracted from the reduced data. Finally, the extracted summary
characteristics are visualized to the user. Such visualizations
reduce excess visual detail and are more suited to the rapid
comprehension of complex data. Users can interactively guide
the summarization process gaining insight into both how and
why the summary results are produced.

Our framework improves the benefits of mathematical analysis
and interactive visualization by combining the strengths of the
computer and the user to generate high-quality summaries.
Initial results from applying our framework to large weather
datasets have been positive, suggesting that our approach could
be beneficial for a wide range of domains and applications.

Index Terms—classification, decision-support, interaction, out-
lier detection, rule mining, summarization, visualization

I. INTRODUCTION

Visualization has become an integral component of the
knowledge discovery process across a wide variety of domains.
Visual representations of large data collections allow users
to rapidly analyze, explore and assimilate large amounts of
information contained within these datasets. Effective visual-
izations help increase comprehension of such datasets [4], [6],
[12], [21], which in turn allows users to make better informed
decisions.

Visualization supports “sense-making” of the underlying
data by focusing user attention on important characteristics
such as patterns, trends, dependencies, clusters and outliers,
among other aspects. However, existing visualization tech-
niques are being continually challenged by the problem of ef-
fectively and meaningfully displaying larger and larger datasets
[11], [21], [22]. Traditional approaches, including those based
on glyphs, pixels, parallel coordinates, scatter-plot matrices and
so on, often address this problem in a brute-force fashion; by

increasing the visual detail displayed, for example, the number
of graphical objects used to represent individual data elements,
or the number of visual features used to represent values for
each data attribute. Unfortunately, this approach works best for
only a few million data elements and a handful of attributes at
a time [22]. Real-world datasets frequently contain millions
of elements, with each element encoding tens or hundreds
of attributes. Attempting to visualize each individual element
often produces cluttered, overloaded images where all elements
are displayed simultaneously, or images that selectively restrict
their contents to very small data subsets. In both cases, it can be
difficult, even impossible for viewers to perform their analysis
over the datasets as a whole.

Visualizing multidimensional data presents a related set of
problems. For example, techniques that apply visual features
like color and texture to represent individual data attributes
are effective for low-dimensional datasets, but as the dimen-
sionality increases, these methods can quickly run out of
available features. Clearly, it is becoming increasingly difficult
to produce visualizations that remain accurate and complete,
while simultaneously ensuring that a user’s cognitive abilities
are not exceeded.

Problems of dataset size and dimensionality suggest that
intelligent data compression or summarization could be invalu-
able to the visual exploration, analysis and comprehension of
large, multidimensional datasets. Data summaries that high-
light important aspects and characteristics of the underlying
data could help users comprehend the data at higher levels of
abstraction. This data pre-processing could also help transform
large, multidimensional datasets into intermediate represen-
tations that can be more easily visualized using existing
techniques. This could be particularly useful in the discovery of
important behavioral characteristics and phenomena embedded
within environmental data.

Although isolated methods of data summarization have been
previously studied, we know of no system that intelligently
combines different techniques to form an interactive summa-
rization framework: a sequence of operations that allow users
to observe, guide and explore within the summarization as it
runs. This is the goal we are working towards through the
research described in this paper.
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A. Visual Summarization

Fig. 1. Important phases of the summarization framework

Our visual summarization framework is designed to perform
meaningful data processing of a multidimensional dataset. The
framework reduces the underlying data to higher-level abstrac-
tions or “summaries” that contain important characteristics
of the original data, and exclude extraneous detail. These
characteristics include high-relevance elements and attributes,
strong patterns and relationships, and outliers. The summaries
are then visualized to the users.

In the past, mathematical analysis techniques such as asso-
ciation rule mining, clustering, multidimensional scaling, and
outlier detection, among others, have been used to extract rel-
evant data characteristics. These techniques are however more
effective for analyzing low-dimensional data, as their complex-
ity often makes them unsuited to larger, higher-dimensional
datasets. These mathematical algorithms also operate in a
”black box” fashion, where only final results produced are
returned and intermediate analysis steps cannot be seen. These
issues make such techniques unsuited for direct application for
meaningful summarization.

A more structured approach chains together individual anal-
ysis algorithms into a series of supporting steps that system-
atically summarize a dataset. Including the ability to interact
with the process and visualize intermediate execution steps
helps to produce summaries that are relevant and meaningful
to the user. This approach forms the basis of our visual
summarization framework.

Consider a multidimensional dataset D containing m ele-
ments and n attributes A = {A1, ..., An}, where each element
ei ∈ D is a combination of n attribute values. An initial data
reduction phase interactively discretizes attribute values into
bins. The density or sparsity of each bin is used to select a
subset of the data elements for further processing, reducing the
size of the dataset. Inter-element similarities are then computed

to cluster similar attributes, dividing the elements of interest
into low-dimensional subsets. Next, a behavior characteriza-
tion is performed on each attribute subset to extract patterns
in the form of association rules. Outlier elements are also
located during this phase. Both data reduction and behavior
characterization include interactive visualizations to help users
understand and guide the summarization process. Once ele-
ments of interest, attribute subsets, patterns and outliers have
been extracted, they are combined into a summary form and
then visualized to the user during a summary generation and
visualization phase. Figure 1 shows the main steps of our
summarization framework.

Throughout this paper, we will illustrate our approach using
a weather dataset containing seven data attributes: temperature,
vapor pressure, cloud cover, frost days, precipitation, wet days
and diurnal range. This dataset was obtained from the Inter-
governmental Panel on Climate Change (IPCC), and includes
historical monthly averages for each attribute at 1

2

◦ latitude
and longitude locations with positive elevation throughout the
world for the period 1981-1990. In the analysis described in
this paper, we focus on the month of April and for the area
covering North America.

II. RELATED WORK

A number of powerful mathematical techniques exist to
identify potentially interesting properties of a dataset. Dimen-
sion ordering techniques are used to compute similar attribute
subsets. For example, Value and Relation (VaR) [22] computes
similarities between all pairs of attributes in a multidimensional
dataset, then applies multidimensional scaling [17] to generate
a 2D layout of the attributes that clusters similar attributes
close to one another. Attribute subsets can be used as input
to later algorithms, increasing their efficiency by reducing the
size and dimensionality of the data they need to process.

Patterns and relationships defined as association rules can be
constructed using decision tree-based techniques such as ID3
and C4.5 [20], or with counting methods such as Apriori [2] or
frequent pattern growth [9]. An association rule takes the form
X ⇒ Y where X and Y denote one or more attribute-value
pairs called itemsets. X ⇒ Y implies that, if a data element
contains the attribute values X , there is a strong likelihood
it also contains the attribute values Y . Apriori techniques
focus on counting the frequency of individual attribute values
as well as combinations of values. These frequent itemsets
are combined to identify strong association rules. Although
techniques like inclusive and restrictive template matching [13]
can be applied to speed up the rule mining process, association
mining becomes more inefficient as the size and dimensionality
of the underlying dataset increases.

Another useful dataset characteristic are clusters, collections
of data elements where elements within a cluster are more
similar to one another than to elements in different clusters.
Clusters provide useful insight into data distributions, as well
as relationships between the data elements. Techniques such
as parallel coordinates, star coordinates [12], self-organizing
maps [16] and multidimensional scaling [17] can visualize
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multidimensional data in ways that attempt to highlight clusters
and groups. Automatic cluster generation techniques include
partitional and hierarchical approaches. Partitional clustering is
generally more efficient, and includes the well-known k-means
[19] algorithm. Although relatively simple and efficient, k-
means is dependent on an initial assignment of cluster centers.
Moreover, determining the number of clusters k that most
accurately partitions the data can be time-consuming and may
require a trial and error approach.

Outliers are data elements that differ from other elements
by so much that they arouse suspicion of being generated by
a separate mechanism or distribution function [10]. Outliers
can be detected using distance-based [14] or densities of
local neighborhoods [5] techniques. Distance-based algorithms
choose a fixed distance d, then mark any element farther
than d from its nearest neighbor as an outlier. Although
these technique are efficient, they can fail to correctly locate
outliers in a dataset with different densities of elements. The
local neighborhoods density technique addresses this problem
by calculating a local element density to define different
distance thresholds d for outlier detection in different parts
of the dataset. Both methods have difficulty locating outliers
in high-dimensional space, however, since elements tend to
be located far from every other element (i.e. a very sparse
distribution), making it difficult to determine either locality or
density [1]. Finding outliers often requires first constructing a
low-dimension projection of relevant attributes, then locating
outliers within this projection [1].

Techniques have also been proposed to perform summa-
rization for visualization, for example, interactive data sum-
marization (IDS) [18] and RuleViz [7], [8]. These systems
combine automated analysis and interactive visualization for
data pre-processing. IDS generates simple statistical measures
using its combined approach. RuleViz focuses on characteriz-
ing datasets in more depth using association rules. However,
RuleViz currently analyzes at most three attributes at a time,
and does not offer any help to its users to select which three
attributes to process. RuleViz is also restricted to display a
single rule at a time. Finally, neither IDS nor RuleViz focus
on finding other data characteristics such as high-relevance
attribute subsets or outliers, and neither is designed to analyze
and visualize high-dimensional data.

III. DATA REDUCTION

The first step in our summarization framework applies data
reduction operations, starting with discretization of attributes,
then attribute partitioning. These operations are critical, since
they compress both the size and the dimensionality of the data
that later algorithms must process.

A. Attribute Value Discretization
First, each data attribute Aj is discretized into Rj equal-

width ranges rj,k converting continuous attributes into discrete
representations that are more efficient to manage. Rj is a user-
defined value that can be unique for each Aj .

Next, the density of each value range rj,k is computed as
the percentage of ei ∈ D whose attribute value ai,j for Aj

falls in rj,k’s interval. Densities are then used to categorize
ranges as dense or sparse based on user-defined thresholds ρj,d

and ρj,s, respectively. A range rj,k is categorized as dense if
ρ(rj,k) ≥ ρj,d or sparse if ρ(rj,k) ≤ ρj,s.

This categorization helps identify elements and value ranges
critical to frequent pattern detection as well as outliers, which
are used to generate summaries. ei belonging to dense ranges
are more likely to lead to strong associations between at-
tributes, while ei belonging to sparse ranges are kept as
potential outliers, since outliers are sometimes described as
elements that have a very sparse presence within a dataset [1].

Fig. 2. The attribute layout for April for N. America along with the data
distribution for precipitation showing ranges 0, and 1 categorized as dense
and ranges 3 through 6 categorized as sparse.

B. Dimensionality Reduction

Once discretization is completed, the next step involves
generation of low-dimensional subsets, in which attributes are
partitioned into smaller clusters, where attributes within each
cluster are strongly correlated.

To generate meaningful partitions, first correlations between
all pairs of attributes Aj and Al are calculated by comparing
dense ranges from Aj to dense ranges in Al. Given a pair
of dense ranges rj,k and rl,m, if a data element ei’s values
fall within both ranges, then ei is said to be common to the
pair. The total number of such ei is divided by the number
of elements whose values fall in either range, to produce a
correlation measure for the range pair. The highest correlation
between dense range pairs for Aj and Al is recorded as the
correlation between the attributes in an n×n correlation matrix
C.

Once pairwise correlations are computed, they are converted
into a distance matrix C ′, where C ′i,j = 1−Ci,j (i.e. the higher
the correlation between a pair of attributes, the closer they are
to one another). Multidimensional scaling (MDS) [17] is then
applied to C ′ to iteratively generate a 2D spatial layout that
reflects the actual distances between attributes. The final spatial
layout is meant to closely resemble the pairwise correlations
between the attributes.
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Data reduction operations are visualized using an attribute
layout visualization shown in figure 2, which is also the
initial visualization of our framework. It it consists of two
main views: (1) the larger MDS generated view, and (2) the
smaller data distribution view, displaying a single Aj at a
time. In the MDS view, data attributes are represented by
rectangular glyphs, which in turn contain small rectangular
bars denoting both Rj (number of bars) and individual range
densities (bar heights). The data distribution view displays
the frequency distribution of values of Aj as well as range
boundaries for each rj,k (Aj can be selected by clicking on
the corresponding “attribute glyph” in the MDS view). Each
data value is represented by a vertical bar, whose color and
height corresponds to its frequency in D; short, dark green
bars represent lower frequencies while tall, bright red and pink
bars represent higher frequencies. Range categories are shown
using horizontal bars placed directly below the corresponding
ranges. Red bars denote dense ranges, blue denote sparse
ranges, while grey bars represent neither categories. Current
thresholds for density and sparsity are also displayed below
the data distribution view.

Initially, the attribute layout is generated using default val-
ues. Users can choose to keep the initial configuration and the
default parameters or modify each of these parameters uniquely
for each Aj and generate a new updated layout. Controls
are provided for this purpose via a dialog window. Choosing
appropriate values for these parameters is critical to generating
effective summaries. In figure 2 showing the weather data
attributes, the values used were Rj = 7, ρj,d = 10%), and
ρj,s = 0.4%) for all Aj .

Fig. 3. Result of clustering using k = 2 clusters. precip, cloud cover, vapor
pressure and diurnal range form blue attribute subset, while temperature, wet
days and frost days form the green subset.

Following MDS, attribute subsets are computed using a k-
means based clustering technique. The number of clusters k
is defined by the user. In our clustering approach, we start
by assigning k attributes randomly as cluster centers, and then
assigning the remaining Ai to the nearest centers [15]. We then

recompute cluster centers for each cluster and then reassign
the remaining attributes to the new cluster centers. This step
is repeated until the cluster centers stabilize.

Figure 3 shows the result of applying our k-means based
clustering technique to the attribute layout generated in the
previous step using k = 2. Cluster membership is shown
using glyph colors. In figure 3, the blue cluster contains
precip, diurnal range, pressure and cloud cover, while the
remaining weather attributes belong to the green cluster. Users
can interactively vary k to see how different numbers of
clusters change the similar attribute subsets.

IV. BEHAVIOR CHARACTERIZATION

Once data reduction is complete, each similar attribute
subset is examined for patterns, relationships, and outliers.

A. Pattern Detection
Pattern extraction is performed separately on each attribute

subset generated in the previous step using a combination
of association rule mining and interactive visualization tech-
niques. As attribute subsets consist of correlated attributes,
mining for association rules independently within each subset
is much more efficient compared to searching D, but still al-
lows us to correctly locate most or all of the strong association
rules that exist in D.

We apply an Apriori-based technique [3] to generate as-
sociation rules of the form X ⇒ Y , where X and Y are
itemsets representing combinations of one or more attribute
value ranges (items). In our approach, only dense attribute
value ranges are used as individual items. As Apriori generates
multiple rules for each frequent itemset, we only retain the rule
with the highest confidence for each itemset. This prunes the
number of rules that are generated and are to be visualized.

The association rules generated during this step are dis-
played using a radial layout technique shown in figure 4.
For the weather dataset summarization, minimum support
was set at 10% and minimum confidence at 85%. Attributes
are represented by radial axes with attributes belonging to
the same subset (i.e. cluster) placed alongside one another.
Arcs represent individual association rules. Each arc connects
individual items (i.e. attribute value ranges) that participate in
the corresponding rule. Rectangles (denoting antecedents) or
circles (denoting consequents) are displayed at points where
the arcs intersect the axes of the attributes that feature in the
corresponding rules. The attribute value ranges participating in
the rule are also displayed in text form alongside these points.

For analyzing the weather dataset, we added latitude and
longitude as additional attributes to each of the clusters gen-
erated during the attribute partitioning step. This allows us
to correlate the observed weather variables with geographical
locations. Both latitude and longitude value ranges were also
discretized into 7 sub-ranges.

Figure 4 shows rules featuring various latitude, longitude
values and precip value ranges, along with rules featuring
precip, pressure, cloud cover and diurnal range values, among
others. Also, various rules featuring temperature and frost days
value ranges can be seen.
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Fig. 4. The radial visualization showing the association rules extracted from the attribute subsets generated in the previous phase along with latitude and
longitude. Bright red arcs denote high support rules while dark green arcs denote low support. Vertical bars below rule identifiers encode rule confidence (right
area) and rule length (left area).

As the arcs have unique radii, they do not overlap thus
allowing for clear visual differentiation of the individual rules.
Also, using the radial layout, more attributes can be viewed in
a smaller area. Arcs (i.e. rules) are also identified by unique
numerical values displayed along both sides of the horizontal
axis; the highest of these values also represents the total
number of rules generated during the pattern mining step.
Arc colors represent support of the rule, with dark green arcs
signifying low support, and bright red and pink arcs signifying
high support. Red, vertical bars displayed below the numerical
labels denote the confidence (lower right) and the length (lower
left) of the corresponding rules. Longer, deep red bars signify
higher values.

Users can interact with the rule mining process by modify-
ing minimum support and minimum confidence thresholds, and
re-initiating the rule mining process using controls provided
via a dialog window. Lower support and confidence thresholds
could result in a large number of rules, while very high values
could produce too few rules. We rely on the user’s expertise
to explore different support values and identify appropriate
thresholds to generate rules that should be included within the
data summaries. Users can also zoom in and out as well as
rotate the visualization to gain more clarity. Figure 5 shows a
magnified view of the radial visualization from figure 4.

B. Outlier Detection
A final characteristic that we identify are outliers. Our

detection algorithm is focused on efficiency. In particular, we
want to avoid computing pairwise distances between all pairs
of elements, since this will negatively impact performance,
particularly for datasets with large m and n. To achieve this
goal, we modified the local neighborhoods technique [5] to use
ei from sparse attribute value ranges as candidate outliers.

The basic premise of the local neighbors approach is that, if
an element ei is much further from its k nearest neighbors than
its neighbors are from their k neighbors (i.e. ei’s neighborhood
is sparse relative to its neighbors neighborhoods), then ei is
likely to be an outlier. As computing the local neighborhoods
to test every ei requires significant computational effort, we
avoid this issue by focusing on sparse ranges to identify
potential outliers. This is because previous research suggests
that outliers are elements that have a very sparse presence
within a dataset [1]. We use a threshold on the sparseness
of the local neighborhood of the potential outlier to filter the
number of outliers detected. Varying this threshold to low or
high changes the number of outliers detected; low threshold
values result in a large number of outliers while high thresholds
results in fewer outliers.

As with association rule mining, we perform outlier detec-
tion independently on similar attribute subsets. This further
reduces the number of elements and attributes that need to
be processed during the neighborhood searches and distance
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calculations. It also avoids the problem of distances becoming
less meaningful as dimensionality increases [1]. The similar
attribute subsets act as lower-dimensional projections, com-
pacting the elements into a smaller subspace and improving our
ability to discriminate elements based on Euclidean distance
measures.

Outliers are visualized using a parallel axes based display
as shown in figure 6, in which the attributes are represented
by vertical axes. Each outlier ei is represented by a “polyline”,
with the individual line segments connecting the attributes val-
ues of the outlying element. To provide context, the frequency
distribution of the attribute values is also displayed. Figure 6
displays the 3 outliers detected along with their corresponding
attribute values from the attribute subsets of the weather dataset
using an outlier threshold of 2.6.

V. SUMMARY GENERATION AND VISUALIZATION

Once important characteristics have been extracted, sum-
maries generated from these characteristics are displayed to
the user.

For summary generation purposes, we analyze the patterns
generated from the previous phase to compute the number of
frequent patterns that each attribute value range participates
in. Attribute value ranges that participate in one or more
frequent patterns are considered important. Additionally, we
also maintain a count of the number of times each attribute
value range occurs as an antecedent or as a consequent. This
could help in identifying potentially dependent value ranges.
We then compare pairs of important value ranges by computing
the percentage of rules in which the range pairs participate in.
This could inform the level of interaction between these value
ranges. The co-participation measures are then transformed
into a distance matrix (using a methodology similar to the
one described in section 3). MDS is then used once again to
generate a spatial configuration in which value ranges that co-
occur more frequently in the extracted patterns cluster close to
one another.

Fig. 5. A ”zoomed-in” view of the radial visualization.

Fig. 6. Result of the outlier detection step displayed using a parallel axes
view showing the 3 outliers (yellow poly-lines) found.

Fig. 7. The complete summmary visualization generated with nodes repre-
senting attribute value ranges. Larger nodes represent value ranges occurring
more often in the extracted association rules. Lines connect value ranges
occurring together in the association rules; bright yellow lines denote higher
co-occurrence.

This configuration is then visualized to the user as shown
in figure 7. Here, nodes represent important value ranges, with
node size encoding the relative number of frequent patterns that
feature the corresponding value range. Larger nodes indicates
a higher participation in frequent patterns. Also, rectangular
nodes represent majority antecedents while circles represent
majority consequents. Text labels identify the attributes as well
as the value ranges the nodes represent. Distances between
nodes encode co-participation values; nodes closer to one
another feature together more often than nodes away from
one another. Lines connecting the nodes also reinforce this
characteristic, with darker reds denoting low co-participation
and bright yellows representing high co-participation. These
characteristics can be seen more clearly in the detailed view
seen in figure 8. As with the other visualizations users can
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zoom in to areas of interest within the visualization.
Both figures 7 and 8 show the summaries of the weather

dataset. For instance, we can see the relationship between
precip(0, 18.43), pressure(1.00, 44.14), (44.14, 87.29),
latitude(47.11, 56.32) and longitude(85.46, 102.32),
(102.32, 119.18) value ranges. The close relationship
between lower temperature ranges with higher frost days
ranges and vice versa is also clear in figure 7, among others.

Fig. 8. A ”zoomed-in” view of the summary visualization showing the
relationships between precip, cloud cover, vapor pressure, diurnal range along
with latitude and longitude value ranges.

VI. CONCLUSIONS

This paper presents a novel visual summarization approach
designed to support the visualization and comprehension of
large, multidimensional datasets such as weather and climate
data. Our approach is aimed at generating relevant and concise
summaries comprising of data characteristics such as important
attribute value ranges, attribute subsets, patterns and outliers.
Such summaries could then be visualized in place of the
original dataset leading to more effective assimilation of the
information contained within large, complex datasets. Our
framework combines automated mathematical analysis with
interactive visualization techniques to help users intuitively
guide the summarization process and watch summary opera-
tions unfold. Users can also augment the summaries with their
domain knowledge and expertise. Initial results of applying
our framework to weather data have been promising leading
us to believe that our framework could be helpful to climate
and environmental researchers. The Renaissance Computing
Institute (RENCI) is also currently collaborating with the State
Climate Office of North Carolina, Raleigh, NC to explore
further avenues for the application of our framework.

For future work, we are studying ways to enhance our
framework’s efficiency and effectiveness. We are currently
working on incorporating more efficient analysis techniques,
for e.g. hybrid clustering algorithms and FP-tree growth based
association rule mining [9] among others. Another area of

interest is in better integrating visual and non-visual tech-
niques to help users guide the summarization process more
intuitively. We are also interested in ways to include an user’s
domain knowledge within the summarization process, for e.g.
using template-based mining techniques [13], to produce more
relevant data summaries. We are also studying ways to both
record the generated summary information as well as use
this information. For instance, instead of sharing large, raw
datasets, researchers could more efficiently and meaningfully
share high-level summary information generated from the
raw datasets. Finally, we would like to test and expand our
framework’s application by analyzing datasets across domains,
for e.g. climate and socio-economic datasets among others, to
further test and expand our framework.
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