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This talk describes our investigation of methods for choosing color, texture, orientation, shape, and other features to visualize
certain types of large, multidimensional datasets. These datasets are becoming more and more common; examples include sci-
entific simulation results, geographic information systems, satellite images, and biomedical scans. The overwhelming amount
of information contained in these datasets makes them difficult to analyze using traditional mathematical or statistical tech-
niques. It also makes them difficult to visualize in an efficient or useful manner.

The size of a dataset can be divided into three separate characteristics: the number of elements in the dataset, the number of
attributes or dimensions embedded in each element, and the range of values possible for each attribute. All three characteristics
may need to be considered during visualization.

Many of our techniques make explicit use of the way viewers perceive information in an image. Our visualization systems
display data in a manner that takes advantage of the low-level human visual system. Offloading the majority of the analysis
task on the low-level visual system allows users to perform exploratory visualization very rapidly and accurately on large
multidimensional datasets. Trends and relationships, unexpected patterns or results, and other areas of interest can be quickly
identified within the dataset. These data subsets can then be further visualized or analyzed as required.

Preattentive Processing

An important requirement for any visualization technique is a method for rapid, accurate, and effortless visual exploration. We
address this goal by using what is known about the control of human visual attention as a foundation for our visualization tools.
The individual factors that govern what is attended in a visual display can be organized along two major dimensions: bottom-up
(or stimulus driven) versus top-down (or goal directed).

Bottom-up factors in the control of attention include the limited set of features that psychophysicists have identified as being
detected very quickly by the human visual system, without the need for search. These features are often called preattentive,
because their detection occurs rapidly and accurately, usually in an amount of time independent of the total number of elements
being displayed. When applied properly, preattentive features can be used to perform different types of exploratory analysis.
Examples include searching for data elements with a unique visual feature, identifying the boundaries between groups of
elements with common features, tracking groups of elements as they move in time and space, and estimating the number of
elements with a specific feature. Preattentive tasks can be performed in a single glance, which corresponds to 200 milliseconds
(ms) or less. As noted above, the time required to complete the task is independent of the number of data elements being
displayed. Since the visual system cannot choose to refocus attention within this timeframe, users must complete their task
using only a “single glance” at the image. Table 1 lists a number of preattentive features, and provides references that describe
the tasks that can be performed using these features.

Figure 1 shows examples of both types of target search. In Figure 1a-1d the target, a red circle, is easy to find. Here, the target
contains a preattentive feature unique from the background distracters: color (red versus blue) or shape (circle versus square).
This unique feature is used by the low-level visual system to rapidly identify the presence or absence of the target. Unfortunately,
an intuitive combination of these results can lead to visual interference. Figure 1e and 1f simulate a two-dimensional dataset
where one attribute is encoded with color (red or blue), and the other is encoded with shape (circle or square). Although these
features worked well in isolation, searching for a red circle target in a sea of blue circles and red squares is significantly more
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Figure 1: Examples of target search: (a, b) identifying a red target in a sea of blue distracters is rapid and accurate, target absent in (a), present in (b); (c, d)
identifying a red circular target in a sea of red square distracters is rapid and accurate, target present in (c), absent in (d); (e, f) identifying the same red circle
target in a combined sea of blue circular distracters and red square distracters is significantly more difficult, target absent in (e), present in (f)
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Feature Author

line (blob) orientation Jul´esz & Bergen (1983); Wolfe (1992)
length Triesman & Gormican (1988)
width Julész (1984)
size Triesman & Gelade (1980)
curvature Triesman & Gormican (1988)
number Jul´esz (1985); Trick & Pylyshyn (1994); Healey, Booth, & Enns (1996)
terminators Jul´esz & Bergen (1983)
intersection Jul´esz & Bergen (1983)
closure Enns (1986); Triesman & Souther (1986)
color (hue) Triesman & Gormican (1988); Nagy & Sanchez (1990); D’Zmura

(1991); Healey (1997)
intensity Beck et al. (1983); Triesman & Gormican (1988)
flicker Julész (1971)
direction of motion Nakayama & Silverman (1986); Driver & McLeod (1992)
binocular lustre Wolfe & Franzel (1988)
stereoscopic depth Nakayama & Silverman (1986)
3-D depth cues Enns (1990)
lighting direction Enns (1990)
texture Healey & Enns (1998)

Table 1: A list of two-dimensional features that “pop out” during visual search, and a list of authors who describe preattentive tasks performed usingthe given
feature.

difficult. In fact, experiments have shown that search time is directly proportional to the number of elements in the display,
suggesting that viewers are searching small subgroups of elements (or even individual elements themselves) to identify the
target. In this example the low-level visual system has no unique feature to search for, since circular elements (blue circles)
and red elements (red squares) are also present in the display. The visual system cannot integrate preattentively the presence
of multiple visual features (circular and red) at the same spatial location. This is a very simple example of a situation where
knowledge of preattentive vision would have allowed us to avoid displays that actively interfere with our analysis task.

In spite of the perceptual salience of the target in Figure 1a-1d, bottom-up influences cannot be assumed to operate indepen-
dently of the current goals and attentional state of the observer. Recent studies have demonstrated that many of the bottom-up
factors only influence perception when the observer is engaged in a task in which they are expected or task-relevant (see the
review by [10]). For example, a target defined as a color singleton will “pop out” of a display only when the observer is looking
for targets defined by color. The same color singleton will not influence perception when observers are searching exclusively for
luminance defined targets. Sometimes observers will fail completely to see otherwise salient targets in their visual field, either
because they are absorbed in the performance of a cognitively-demanding task [31], there are a multitude of other simultane-
ous salient visual events [39], or because the salient event occurs during an eye movement or other change in viewpoint [45].
Therefore, the control of attention must always be understood as an interaction between bottom-up and top-down mechanisms.

1. Visual analysis is rapid, accurate, and relatively effortless since preattentive tasks can be completed in 200 ms or less.
We have shown that tasks performed on static displays extend to a dynamic environment where data frames are shown
one after another in a movie-like fashion [19] (i.e., tasks that can be performed on an individual display in 200 ms can
also be performed on a sequence of displays shown at five frames a second).

2. The time required for task completion is independent of display size (to the resolution limits of the display). This means
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Figure 2: Region segregation by form and hue: (a) hue boundary is identified preattentively, even though form varies in the two regions; (b) random hue
variations interfere with the identification of a region boundary based on form

we can increase the number of data elements in a display with little or no increase in the time required to analyze the
display.

3. Certain combinations of visual features cause interference patterns that mask information in the low-level visual system.
Our experiments are designed to identify these situations. This means our visualization tools can be built to avoid data-
feature mappings that might interfere with the analysis task.

Properties that are processed preattentively can be used to highlight important image characteristics. Experiments in both the
cognitive psychology and scientific visualization domains have used various features to assist in performing the following visual
tasks:

� target detection, where users attempt to rapidly and accurately detect the presence or absence of a “target” element that
uses a unique visual feature within a field of distracter elements (Figure 1),

� boundary detection, where users attempt to rapidly and accurately detect a texture boundary between two groups of
elements, where all the elements in each group have a common visual feature (Figure 2), and

� counting and estimation, where users attempt to count or estimate the number or percentage of elements in a display that
have a unique visual feature.

Callaghan [6, 7] first reported the interference effects shown in Figure 2. The visual system seems to prioritize features in order
of importance. This means that the presence of visually “important” features can interfere with tasks that use lower priority
features. In Figure 2a, the vertical boundary defined by hue is detected preattentively, even though the shape of each element is
random. In Figure 2b, however, it is difficult to detect the horizontal boundary defined by form due to random hue variations. If
hue were fixed to a constant value for each element, the form boundary could be detected preattentively. Callaghan explains this
phenomena by suggesting that the visual system assigns a higher importance to hue than to form during boundary detection.
Thus, a random hue interferes with form boundary detection, but a random form has no effect on hue boundary detection. A
similar asymmetry exists between hue and intensity. Random hue has no effect on detecting boundaries defined by intensity.
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Figure 3: Combination of simple components to form emergent features: (a) closure, a simple closed figure is seen; (b) three-dimensionality, the figure appears
to have depth; (c) volume, a solid figure is seen

However, random intensity interferes with hue boundary detection. Callaghan concluded that intensity is more important than
hue to the low-level visual system during boundary identification [5].

Researchers continue to expand preattentive processing in a number of exciting directions. To date, most of the features used
in preattentive tasks have been relatively simply properties (e.g.,hue, orientation, line length, and size). Enns and Rensink,
however, have identified a class of three-dimensional elements that can be detected preattentively [11, 12]. They have shown
that three-dimensional orientation, shape, and direction of lighting can be used to make elements “pop-out” of a visual scene
(Figures 3b and 3c). This is important, because it suggests that complex high-level concepts may be processed preattentively
by the low-level visual system.

New tasks that can be performed preattentively are also being investigated. Research has recently been conducted on counting
and estimation in preattentive processing. Varey describes experiments in which subjects were asked to estimate the relative
frequency of white or black dots [57]. Her results showed that subjects could estimate in four different ways: “percentage” of
white dots, “percentage” of black dots, “ratio” of black dots to white dots, and “difference” between the number of black and
white dots. She also found that subjects consistently overestimated small proportions and underestimated large proportions.
Estimation of relative frequency using hue and orientation was shown to be preattentive in experiments conducted in our labo-
ratory [18, 20]. Moreover, our results showed that there was no feature interaction. Random orientation did not interfere with
estimation of targets with a unique hue, and random hue did not interfere with estimation of targets with a unique orientation.
This is important because it suggests that hue and orientation can be used to encode two independent data values in a single
display without causing visual interference.
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A number of scientists have proposed competing theories to explain how preattentive processing occurs, in particular Triesman’s
feature integration theory [51], Jul´esz’ texton theory [27], Quinlan and Humphreys’ similarity theory [36], and Wolfe’s guided
search theory [63]. Our interest is in the use of visual features that have already been shown to be preattentive. Results from
psychology are extended, modified, tested, and then integrated into our visualization environment.

Since preattentive tasks are rapid and insensitive to display size, we believe visualization techniques that make use of these
properties will support high-speed exploratory analysis of large, multivariate datasets. Care must be taken, however, to ensure
that we choose data-feature mappings that maximize the perceptual salience of all the data attributes being displayed.

Real-Time Preattentive Visualization

Most preattentive techniques are validated by studying a single data frame in isolation. This leads to an interesting question
with important relevance to visualization. If a preattentive task can be performed on a single frame in 100 milliseconds, can
the same task can be performed on a real-time sequence of frames displayed at ten frames per second? We hypothesized that
important aspects of preattentive processing will extend to a real-time environment. A visualization tool that uses preattentive
features will allow viewers to perform visual tasks such as grouping of similar data elements (boundary detection), detection of
elements with a unique characteristic (target detection), and estimation of the number of elements with a given value or range of
values, all in real-time on temporally animated data frames. We tested this hypothesis using experiments that simulated the use
of our preattentive visualization tools in a real-time environment. Analysis of the experimental results supported our hypothesis
for boundary and target detection using hue and shape. Moreover, interference properties previously reported for static frames
were found to apply to a dynamic environment.

Our initial experiment addressed two general questions about the preattentive features hue and shape, and their use in our
visualization tools:

� Question 1:Is it possible for subjects to detect a data frame with a horizontal boundary within a sequence of random
frames? If so, what features allow this and under what conditions?

� Question 2:Do Callaghan’s feature hierarchy effects apply to our real-time visualization environment? Specifically, does
random hue interfere with form boundary detection within a sequence of frames? Does random form interfere with hue
boundary detection within a sequence of frames?

Experimental results showed accurate boundary detection can be performed using either hue or form on sequences of frames
displayed at ten frames per second. Moreover, feature hierarchy effects extended to a dynamic environment, specifically, hue
dominated form during boundary detection. A random hue pattern masked form boundaries, while a random form pattern had
no effect on hue boundary detection.

A corresponding set of experiments were run to test target detection, with similar results. While both hue and form targets can
be detected preattentively in a real-time environment (at frame rates of ten to twenty frames per second), form targets were only
visible when the background hue was held constant. Hue variation masked form targets. Form variation had no effect on the
detection of hue targets.

We have built a number of visualization tools that allow users to perform exploratory analysis on their datasets in real-time.
Experience from using these tools confirmed that our experimental results hold for these datasets and tasks.
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Color Selection

Color is a powerful and often-used visual feature. Previous work has addressed the issue of choosing colors for certain types of
data visualization. For example, Ware and Beatty describe a simple color visualization technique for displaying correlation in
a five-dimensional dataset [59]. Robertson, Ware, Rheingans and Tebbs, and Levkowitz and Herman discuss various methods
for building effective color gamuts and colormaps [29, 40, 41, 58]. Recent work at the IBM Thomas J. Watson Research Center
has focused on a rule-based visualization tool that considers how a user perceives visual features like hue, luminance, height,
and so on [4, 42].

If we use color to represent our data, one important question to ask is: “How can we choose effective colors that provide good
differentiation between data elements during the visualization task?” We addressed this problem by trying to answer three
related questions:

� How can we allow rapid and accurate identification of individual data elements through the use of color?

� What factors determine whether a “target” element’s color will make it easy to find, relative to differently colored “non-
target” elements?

� How many colors can we display at once, while still allowing for rapid and accurate target identification?

None of the currently-available color selection techniques were specifically designed to investigate the rapid and accurate
identification of individual data elements based on color. Also, since the color gamut and colormap work uses continuous color
scales to encode information, they have not addressed the question of how many colors we can effectively display at once, while
still providing good differentiation between individual data elements.

We began by using the perceptually balanced CIE LUV color model to provide control over color distance and isoluminance.
We also exploited two specific results related to color target detection: linear separation [9, 2] and color category [28]. These
effects are controlled to allow for the rapid and accurate identification of color targets. Target identification is a necessary
first step towards performing other types of exploratory data analysis. If we can rapidly and accurately differentiate elements
based on their color, we can apply our results to other important visualization techniques like detection of data boundaries, the
tracking of data regions in real-time, and enumeration tasks like counting and estimation [20, 52, 57].

CIE LUV

The CIE LUV color model was proposed by the Commission Internationale de L’Èclairge (CIE) in 1976 [65]. Colors are spec-
ified using the three dimensionsL� (which encodes luminance),u�, andv� (which together encode chromaticity). CIE LUV
provides two useful properties for controlling perceived color difference. First, colors with the sameL� are isoluminant. Sec-
ond, Euclidean distance and perceived color difference (specified in�E� units) can be interchanged, since the color difference
between two color stimulix andy (positioned in CIE LUV at(L�
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Linear Separation

The linear separation effect has been described by both D’Zmura and Bauer et. al [2, 9]. D’Zmura was investigating how
the human visual system finds a target color in a sea of background non-target colors. D’Zmura ran experiments that asked
observers to determine the presence or absence of an orange target. Two groups of differently colored non-target elements
were also present in each display (e.g., in one experiment half the non-targets in each display were colored green and half
were colored red). Results showed that when the target could be separated by a straight line from its non-targets in color space
(Figure 4, target T and non-targets A and C), the time required to determine the target’s presence or absence was constant, and
independent of the total number of elements being displayed. This suggests detection occurs preattentively in the low-level
visual system. When the target was collinear with its non-targets (Figure 4, target T and non-targets A and B), the time required
to identify the target was linearly proportional to the number of elements being displayed. Observers had to search serially
through each display to determine whether the target was present or absent. Bauer et. al strengthened D’Zmura’s results by
showing that perceptually balanced color models cannot be used to overcome the linear separation effect. Bauer et. al also
replicated their findings in three additional color regions: green, blue, and green-yellow. This suggests linear separation applies
to colors from different parts of the visible color domain.

T-BC
linear separation

C

A

T

B

blue-purple
color category boundary

blue

purple

Figure 4: A small, isoluminant patch within the CIE LUV color model, showing a target colorT and three background distracter colorsA, B, andC; note that
T is collinear withA andB, but can be separated by a straight line fromB andC; note also thatT, A, andC occupy the “blue” color region, whileB occupies
the “purple” color region

Color Category

Kawai et. al [28] reported results that suggest that the time required to identify a color target depends in part on the named
color regions occupied by the target and its non-targets. Kawai et. al tested displays that contained a uniquely color target and a
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constant number of uniformly colored non-targets. They divided an isoluminant, perceptually balanced color slice into named
color regions. Their results showed that search times decreased dramatically whenever the non-target was moved outside the
target’s color region. For example, finding a target colored T in a set of non-targets colored A was significantly more difficult
than than finding T in a set of non-targets colored B (Figure 4). Since the target–non-target distancesTA andTB are equal,
there was an expectation of perceptual balance that should have been provided by the underlying color model. This expectation
was not met. Kawai et. al suggests the difference in performance is due to the fact that both T and A are located in the blue
color region, but A is not.

Experiments

We ran a number of experiments to study the effects of color distance, linear separation, and color category. Subjects were
shown displays that contained multiple colored squares. Each subject was asked to determine whether a target square with a
particular color was present or absent in each display. The experiments were designed to test the following conditions:

� selection criteria, which selection criteria (color distance, linear separation, and color category) need to be considered to
guarantee equally distinguishable colors,

� simultaneous colors, how many colors can we display at the same time, while still allowing users to rapidly and accurately
determine the presence or absence of any particular color, and

� display size, is performance affected by the number of elements in a display.

We found that up to seven isoluminant colors can be displayed simultaneously, while still allowing for the rapid and accurate
identification of any one of the seven. The time required to perform identification was independent of display size, suggesting
that target detection is occurring preattentively. Our results also showed that all three selection criteria needed to be considered
to guarantee consistent performance. When only some of the selection criteria were used (e.g. only distance and separation,
or only category) the amount of time required to identify targets depended on the color of the target: some colors were very
easy to identify, while other colors were very difficult. This asymmetry suggested that the colors we chose were notequally
distinguishable, and therefore that the selection criteria being used were not sufficient to properly control perceived difference
between the colors during target detection.

Visualizing CT Medical Scans

One practical application of our color selection technique is the use of color to highlight regions of interest during volume
visualization [47]. Radiologists from the University Hospital at the University of British Columbia are studying methods for
visualizing abdominal aneurisms. Traditional repair of an abdominal aneurism entails a major operation with an incision into the
aneurism, evacuation of the clot contained within, placement of a synthetic graft, and wrapping of the graft with the remnants
of the wall of the aneurism. Recently, a new treatment option, endovascular stenting, has been proposed and is currently
undergoing clinical trials. This procedure does not require general anesthesia and can be done less invasively by simply placing
a self-expanding stent graft via a catheter into the aneurism to stabilize it. Less fit patients are able to withstand the procedure,
hospital stay is cut to 1 to 2 days, and post-operative recovery is shortened considerably.

After the operation computed tomography (CT) scans are used to obtain two-dimensional slices of a patient’s abdominal region.
These slices are reconstructed to produce a three-dimensional volume. The volume is visualized by the radiologists to perform
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Figure 5: A reconstructed CT volume showing an abdominal aneurism: (a) greyscale hides the location of the tynes within the aneurism; (b) a color scale
chosen by the radiologists obscures the shape and extent of the wall of the aneurism; (c) three colors chosen with our perceptual color selection technique

post-operative analysis. A two-pass segmentation step is used to strip out material in each CT slice that does not correspond to
one of the regions of interest: the artery running through the abdomen, the aneurism, and the metal hooks (called tynes) used
to embed the stent graft within the aneurism. The reconstructed volumes must show clearly each of these three regions.

Normally, greyscale is used to display reconstructed medical volumes. Changes in luminance are most effective for representing
the high spatial frequency data contained in these kinds of datasets. For our application, however, one of the most important
tasks is identifying the exact position of the tynes (which in turn identify the positions of each of the corresponding stent grafts).
In our greyscale volume the location of tynes within the aneurism are obscured by the wall of the aneurism itself (Figure 5a).
Different levels of transparency were used to try to “see through” the aneurism, however, we could not find any appropriate
value that showed the tyne locations within the artery, while at the same time providing an effective representation of the three-
dimensional shape and extent of the wall of the aneurism. We decided that, for this application, it might be more appropriate to
high the three regions of interest using color.

Although the radiologists had already chosen a set of colors based on context and aesthetic considerations, it did a poor job of
showing the size and shape of the aneurism (Figure 5b). We replaced their colors with three new ones using our color selection
technique. The radiologists asked us to avoid greens and green-yellows, since these are associated with bile. We decided to use
yellow to represent the artery, purple to represent the aneurism, and red to represent the tynes (Figure 5c). These colors show
clearly the location of all three regions of interest within the volume. For example, consider the large patches of yellow within
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the aneurism. These are areas of “low support”where the grafts in the lower part of the artery were not inserted far enough
to mesh with their upstream partner. Although not dangerous, these are exactly the kinds of features the radiologists want to
identify during post-operative visualization.

Perceptual Textures

One of the important issues in scientific visualization is designing methods for representing multiple values (or attributes) at a
single spatial location. Although it is possible to assign different visual features to each attribute, simply “stacking” multiple
features together will most likely lead to displays that are unintelligible.

Rather than choosing multiple individual features (i.e., color, shape, size, orientation, line length), we decided to try using a
single visual feature that could be decomposed into a set of fundamental parts or dimensions. We chose to investigate texture
for this purpose.

Texture has been studied extensively in the computer vision, computer graphics, and cognitive psychology communities. Al-
though each group focuses on separate tasks (texture identification and texture segmentation in computer vision, displaying
information with texture patterns in computer graphics, and modeling the low-level human visual system in cognitive psychol-
ogy) they each need ways to describe precisely the textures being identified, classified, or displayed.

Researchers have used different methods to study the perceptual features inherent in a texture pattern. Bela Jul´esz [25] con-
ducted numerous experiments that investigated how a texture’s first, second, and third-order statistics affect discrimination in
the low-level human visual system. This led to the texton theory [26], which suggests that early vision detects three types of
features (or textons, as Jul´esz called them): elongated blobs with specific visual properties (e.g.,hue, orientation, and width),
ends of line segments, and crossings of line segments. Tamura et al. [48] and Rao and Lohse [37, 38] identified texture dimen-
sions by conducting experiments that asked subjects to divide pictures depicting different types of textures (Brodatz images)
into groups. Tamura et al. used their results to propose methods for measuring coarseness, contrast, directionality, line-likeness,
regularity, and roughness. Rao and Lohse used multidimensional scaling to identify the primary texture dimensions used by
their subjects to group images: regularity, directionality, and complexity. Haralick et al. [14] built greyscale spatial dependency
matrices to identify features like homogeneity, contrast, and linear dependency. These features were used to classify satellite
images into categories like forest, woodlands, grasslands, and water. Liu and Picard [30] used Wold features to synthesize
texture patterns. A Wold decomposition divides a 2D homogeneous pattern (e.g.,a texture pattern) into three mutually orthog-
onal components with perceptual properties that roughly correspond to periodicity, directionality, and randomness. Malik and
Perona [32] designed computer algorithms that use orientation filtering, nonlinear inhibition, and computation of the resulting
texture gradient to mimic the discrimination ability of the low-level human visual system. We used these results to choose the
perceptual texture dimensions we wanted to investigate during our experiments.

Work in computer graphics has studied methods for using texture patterns to display information during visualization. Schweitzer
[44] used rotated discs to highlight the orientation of a three-dimensional surface. Pickett and Grinstein [13] built “stick-men”
icons to produce texture patterns that show spatial coherence in a multidimensional dataset. Ware and Knight [60, 61] used
Gabor filters to construct texture patterns; attributes in an underlying dataset are used to modify the orientation, size, and con-
trast of the Gabor elements during visualization. Turk and Banks [56] described an iterated method for placing streamlines
to visualize two-dimensional vector fields. Interrante [23] displayed texture strokes to help show three-dimensional shape and
depth on layered transparent surfaces; principal directions and curvatures are used to orient and advect the strokes across the
surface. Finally, Salisbury et al. [43] and Wikenbach and Salesin [62] used texturing techniques to build computer-generated
pen-and-ink drawings that convey a realistic sense of shape, depth, and orientation. We built upon these results to try to develop
an effective method for displaying multidimensional data through the use of texture.
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Pexels

We wanted to design a technique that will allow users to visualize multidimensional datasets with perceptual textures. To
this end, we used a method similar to Ware and Knight to build our displays. Each data element is represented with a single
perceptual texture element, or pexel. Our visualization environment consists of a large number of elements arrayed across a
three-dimensional surface (e.g.,a topographical map or the surface of a three-dimensional object). Each element contains one
or more attributes to be displayed. Attribute values are used to control the visual appearance of a pexel by modifying its texture
dimensions. Texture patterns formed by groups of spatially neighboring pexels can be used to visually analyze the dataset.

We chose to study three perceptual dimensions: density, regularity, and height. Density and regularity have been identified in
the literature as primary texture dimensions [37, 38, 48]. Although height might not be considered an “intrinsic textural cue”,
we note that height is one aspect of element size, and that element size is an important property of a texture pattern. Moreover,
results from cognitive vision have shown that differences in height are detected preattentively by the low-level visual system
[1, 51]. We wanted to build three-dimensional pexels that “sit up” on the underlying surface. This allows the possibility of
applying various orientations (another important perceptual dimension) to a pexel. Because of this, we chose height as our third
texture dimension.

In order to support variation of height, density, and regularity, we built pexels that look like a collection of paper strips. The user
maps attributes in the dataset to the density (which controls the number of strips in a pexel), height, and regularity of each pexel.
Examples of each of these perceptual dimensions are shown in Figure 6a. Figure 6b shows an example of our technique applied
to the oceanographic dataset: environmental conditions in the northern Pacific Ocean are visualized using multicolored pexels.
In this display, color represents open-ocean plankton density, height represents ocean current strength (taller for stronger), and
density represents sea surface temperature (denser for warmer). Figure 6b is only one frame from a much larger time-series of
historical ocean conditions. Our choice of visual features was guided by experimental results that show how different color and
texture properties can be used in combination to represent multivariate data elements.

Experiments

In order to test our perceptual dimensions and the interactions that occur between them during visualization, we ran a set of
psychophysical experiments. Our experiments were designed to investigate a user’s ability to rapidly and accurately identify
target pexels defined by a particular height, density, or regularity. Users were asked to determine whether a small group of
pexels with a particular type of texture (e.g.,a group of taller pexels, as in Figure 7a) was present or absent in a20� 15 array.
Conditions like target pexel type, exposure duration, target group size, and background texture dimensions differed for each
display. This allowed us to test for preattentive task performance, visual interference, and a user preference for a particular
target type. In all cases, user accuracy was used to measure performance.

Design

Each experimental display contained a regularly-spaced20 � 15 array of pexels rotated45� about the X-axis (Figure 7). All
displays were monochromatic (i.e., grey and white), to avoid variations in color or intensity that might mask the underlying
texture pattern. Grid lines were drawn at each row and column, to ensure users perceived the pexels as lying on a tilted 3D plane.
After a display was shown, users were asked whether a group of pexels with a particular target value was present or absent. In
order to avoid confusion, each user searched for only one type of target pexel: taller, shorter, sparser, denser, more regular, or
more irregular. The appearance of the pexels in each display was varied to test for preattentive performance, visual interference,
and feature preference. For example, the following experimental conditions were used to investigate a user’s ability to identify
taller pexels (similar conditions were used for the shorter, denser, sparse, regular, and irregular experiments):
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(a)

temperature gradients (density)

dense plankton blooms (color)current strength gradient (height)

(b)

Figure 6: Pexel examples: (a) a background array of short, sparse, regular pexels; the lower and upper groups on the left contain irregular and random pexels,
respectively; the lower and upper groups in the center contain dense and very dense pexels; the lower and upper groups to the right contain medium and tall
pexels; (b) Color, height, and density used to visualize open-ocean plankton density, ocean current strength, and sea surface temperature, respectively; low
to high plankton densities represented with blue, green, brown, red, and purple, stronger currents represented with taller pexels, and warmer temperatures
represented with denser pexels
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(a) (b)

Figure 7: Two display types from the taller and regular pexel experiments: (a) a target of medium pexels in a sea of short pexels with a background density
pattern (2 � 2 target group located left of center); (b) a target of regular pexels in a sea of irregular pexels with no background texture pattern (2 � 2 target
group located 8 grids step right and 2 grid steps up from the lower-left corner of the array)

� two target-background pairings: a target of medium pexels in a sea of short pexels, and a target of tall pexels in a sea
of medium pexels; different target-background pairings allowed us to test for a subject preference for a particular target
type,

� three display durations: 50 msec, 150 msec, and 450 msec; we varied exposure duration to test for preattentive perfor-
mance, specifically, does the task become more difficult during shorter exposures,

� three secondary texture dimensions: none (every pexel is sparse and regular), density (half the pexels are randomly chosen
to be sparse, half to be dense), and regularity (half the pexels are regular, half are random); we added a “background”
texture feature to test for visual interference, that is, does the task become more difficult when a secondary texture
dimension appears at random spatial locations in the display, and

� two target group sizes:2 � 2 pexels and4 � 4 pexels; we used different target group sizes to see how large a group of
pexels was needed before the target could be detected by a viewer.

Our results suggest that pexels can be used to represent multidimensional data elements, but only if specific data-feature
mappings are chosen. Some dimensions were more salient than others, and interference occurred when certain types of pexels
were displayed. Specifically, we found that:

� taller pexels can be identified at preattentive exposure durations (i.e.,150 msec or less) with very high accuracy (approx-
imately 93%); background density and regularity patterns produce no significant interference,

� shorter, denser, and sparser pexels are more difficult to identify than taller pexels, although good results are possible at
both 150 and 450 msec; height, regularity, and density background texture patterns cause interference for all three target
types,

� irregular pexels are difficult to identify, although reasonable accuracy (approximately 76%) is possible at 150 and
450 msec with no background texture pattern, and

� regular pexels cannot be accurately identified; the percentage of correct results approached chance (i.e.,50%) for every
condition.
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These results suggest that height and density can be used to to form texture patterns that can be identified preattentively.
Regularity, however, can only be used as a secondary dimension. While differences in regularity cannot be detected consistently
by the low-level visual system, in many cases users will be able to see changes in regularity when areas of interest in a dataset
are identified and analyzed in a focused or attentive fashion.

Combining Color and Texture

Although texture and color have been studied extensively in isolation, much less work has focused on their combined use for
information representation. An effective method of displaying color and texture patterns simultaneously would increase the
number of attributes we can represent at one time. The first step towards supporting this goal is the determination of the amount
of visual interference that occurs between these features during visualization.

Experiments in psychophysics have produced interesting but contradictory answers to this question. Callaghan reported asym-
metric interference of color on form during texture segmentation: a random color pattern interfered with the identification of
a boundary between two groups of different forms, but a random form pattern had no effect on identifying color boundaries
[6, 7]. Triesman, however, showed that random variation of color had no effect on detecting the presence or absence of a target
element defined by a difference in orientation (recall that directionality has been identified as a fundamental perceptual texture
dimension) [54]. Recent work by Snowden [46] recreated the differing results of both Callaghan and Triesman. Snowden ran a
number of additional experiments to test the effects of random color and stereo depth variation on the detection of a target line
element with a unique orientation. As with Callaghan and Triesman, results differed depending on the target type. Search for a
single line element was rapid and accurate, even with random color or depth variation. Search for a spatial collection of targets
was easy only when color and depth were fixed to a constant value. Random variation of color or depth produced a significant
reduction in detection accuracy. Snowden suggests that the visual system wants to try to group spatially neighboring elements
with common visual features, even if this grouping is not helpful for the task being performed. Any random variation of color
or depth interferes with this grouping process, thereby forcing a reduction in performance.

These results left unanswered the question of whether color variation would interfere with texture identification during visu-
alization. Moreover, work in psychophysics studied two-dimensional texture segmentation. Our pexels are arrayed over an
underlying height field, then displayed in 3D using a perspective projection. Most of the research to date has focused on color
on texture interference. Less work has been conducted to study how changes in texture dimensions like height, density, or reg-
ularity will affect the identification of data elements with a particular target color. The question of interference in this kind of
height-field environment needs to be addressed before we can recommend methods for the combined use of color and texture.

Experiments

In order to investigate the combined use of color and texture, we designed a new set of psychophysical experiments. Our two
specific questions were:

1. Does random variation in pexel color influence the detection of a region of target pexels defined by height or density?

2. Does random variation in pexel height or density influence the detection of a region of target pexels defined by color?

We chose to ignore regularity, since it performed poorly as a target defining property during all phases of our original texture
experiments [17, 21, 22]. We chose three different colors using our perceptual color selection technique [15, 21]. Colors
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were initially selected in the CIE LUV color space, then converted to our monitor’s RGB gamut. The three colors corresponded
approximately to red (monitor RGB = 246, 73, 50), green (monitor RGB = 49, 144, 21) and blue (monitor RGB = 82, 109, 168).
Our new experiments were constructed around a set of conditions similar to those used during the original texture experiments.
We varied target-background pairings, exposure duration, the presence or absence of a secondary background feature, and target
patch size from trial to trial to test user performance in a number of different circumstances.

Mean percentage target detection accuracy was the measure of performance. Observer responses were collected, averaged, and
analyzed using multi-factor ANOVA. In summary, we found:

1. Color targets were detected rapidly (i.e.,at 150 ms) with very high accuracy (96%). Background variation in height and
density produced no interference effects in this detection task.

2. Detection accuracy for targets defined by density or height were very similar to results from our original texture exper-
iments [17, 21, 22]. When there was no background variation in color, excellent detection accuracy was obtained for
density defined targets (i.e.,denser and sparser targets) at 150 ms (94%). Height defined targets (i.e., taller and shorter)
were detected somewhat less accurately at 150 ms (88%) but were highly detectable at 450 ms (93%). As we had also
found previously, taller targets were generally easier to detect than shorter targets, and denser targets were easier than
sparser targets.

3. In all four texture experiments, background variation in color produced a small but significant interference effect, aver-
aging 6% in overall accuracy reduction.

4. The absolute reduction in accuracy due to color interference depended on the difficulty of the detection task. Specifically,
color interfered more with the less visible target values (shorter and sparser targets yielded a mean accuracy reduction of
8%) than with the more visible targets (taller and denser targets yield a mean accuracy reduction of 4%).

Our results showed an asymmetric interference effect, similar to those reported in the psychophysical literature. As described by
[46], we found that color produces a small but statistically reliable interference effect during texture segmentation. Moreover,
we found color and texture form a “feature hierarchy” that produces asymmetric interference: color variation interferes with an
observer’s ability to see texture regions based on height or density, but variation in texture has no effect on region detection based
on color. This is similar to reports by [6, 7], who reported asymmetric color on shape interference in a boundary detection task
involving two-dimensional textures. The amount of color on texture interference depended on the difficulty of the segmentation
task. Targets that were harder to identify in isolation (e.g.,shorter and sparser targets) showed a much higher sensitivity to color
interference, compared to targets that were easy to identify (e.g.,taller and denser targets). This suggests that color and texture
can be combined in a single display, but only in cases where the texture targets have a strong perceptual salience.

Visualizing Typhoon Data

One of our current testbeds for using pexels to visualize multidimensional data is the analysis of environmental conditions
related to typhoons. We used pexels to visualize typhoon activity in the Northwest Pacific Ocean during the summer and
fall of 1997. The names “typhoon” and “hurricane” are region-specific, and refer to the same type of weather phenomena:
an atmospheric disturbance characterized by low pressure, thunderstorm activity, and a cyclic wind pattern. Storms of this
type with windspeeds below 17m/s are called “tropical depressions”. When windspeeds exceed 17m/s, they become “tropical
storms”. This is also when storms are assigned a specific name. When windspeeds reach 33m/s, a storm becomes a typhoon (in
the Northwest Pacific) or a hurricane (in the Northeast Pacific and North Atlantic).
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We combined information from a number of different sources to collect the data we needed. A U.S. Navy elevation dataset1

was used to obtain land elevations at ten minute latitude and longitude intervals. Land-based weather station readings collected
from around the world and archived by the National Climatic Data Center2 provided daily measurements for eighteen separate
environmental conditions. Finally, satellite archives made available by the Global Hydrology and Climate Center3 contained
daily open-ocean windspeed measurements at thirty minute latitude and longitude intervals. The National Climatic Data Center
defined the 1997 typhoon season to run from August 1 to October 31; each of our datasets contained measurements for this
time period.

We chose to visualize three environmental conditions related to typhoons: windspeed, pressure, and precipitation. All three val-
ues were measured on a daily basis at each land-based weather station, but only daily windspeeds were available for open-ocean
positions. In spite of the missing open-ocean pressure and precipitation, we were able to track storms as they moved across the
Northwest Pacific Ocean. When the storms made landfall the associated windspeed, sea-level pressure, and precipitation were
provided by weather stations along their path.

Based on our experimental results, we chose to represent windspeed, pressure, and precipitation with height, density, and color,
respectively. Localized areas of high windspeed are obvious indicators of storm activity. We chose to map increasing windspeed
to an increased pexel height. Although our experimental results showed statistically significant interference from background
color variation, the absolute effect was very small. Taller and denser pexels were easily identified in all other cases, suggesting
there should be no changes in color interference due to an increase in task difficulty. Windspeed has two important boundaries:
17m/s (where tropical depressions become tropical storms) and 33m/s (where storms become typhoons). We mirrored these
boundaries with height discontinuities. Pexel height increases linearly from 0-17m/s. At 17m/s, height approximately doubles,
then continues linearly from 17-33m/s. At 33m/s another height discontinuity is introduced, followed by a linear increase for
any windspeeds over 33m/s.

Pressure is represented with pexel density. Since our results showed it was easier to find dense pexels in a sea of sparse
pexels (as opposed to sparse in dense), an increase in pressure is mapped to a decrease in pexel density (i.e.,very dense pexels
represent the low pressure regions associated with typhoons). Three different texture densities were used to represent three
pressure ranges. Pressure readings less than 996 millibars, between 996 and 1014 millibars, and greater than 1014 millibars
produce very dense, dense, and sparse pexels, respectively.

Precipitation is represented with color. We used our perceptual color selection technique to choose five perceptually uniform
colors. Daily precipitation readings of zero, 0–0.03 inches, 0.03–0.4 inches, 0.4–1.0 inches, and 1.0–10.71 inches were colored
green, yellow, orange, red, and purple, respectively (each precipitation range had an equal number of entries in our typhoon
dataset). Pexels on the open ocean or at weather stations where no precipitation values were reported were colored blue-
green. Our experimental results showed no texture-on-color interference. Moreover, our color selection technique is designed
to produce colors that are equally distinguishable from one another. Our mapping uses red and purple to highlight the high-
precipitation areas associated with typhoon activity.

We built a simple visualization tool that maps windspeed, pressure, and precipitation to their corresponding height, density, and
color. Our visualization tool allows a user to move forwards and backwards through the dataset day-by-day. One interesting
result was immediately evident when we began our analysis: typhoon activity was not represented by high windspeed values in
our open-ocean dataset. Typhoons normally contain severe rain and thunderstorms. The high levels of cloud-based water vapor
produced by these storms block the satellites that are used to measure open-ocean windspeeds. The result is an absence of
any windspeed values within a typhoon’s spatial extent. Rather than appearing as a local region of high windspeeds, typhoons
on the open-ocean are displayed as a “hole”, an ocean region without any windspeed readings (see Figure 8a and 8c). This
absence of a visual feature (i.e.,a hole in the texture field) is large enough to be salient in our displays, and can be preattentively

1http://grid2.cr.usgs.gov/dem/
2http://www.ncdc.noaa.gov/ol/climate/online/gsod.html
3http://ghrc.msfc.nasa.gov/ghrc/list.html
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Typhoon Amber

(a)

Typhoon Amber

(b)

(c) (d)

Figure 8: Typhoon conditions across Southeast Asia during the summer of 1997: (a) August 27, 1997, typhoon Amber approaches the island of Taiwan from the
southeast; (b) August 28, 1997, typhoon Amber strikes Taiwan, producing tall, dense pexels colored orange, red, and purple (representing high precipitation);
(c, d) the same data as in (a) and (b) but with windspeed represented by regularity, pressure by height, and precipitation by density
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identified and tracked over time. Therefore, users have little difficulty finding storms and watching them as they move across
the open ocean. When a storm makes landfall, the weather stations along the storm’s path provide the proper windspeed, as well
as pressure and precipitation. Weather stations measure windspeed directly, rather than using satellite images, so high levels of
cloud-based water vapor cause no loss of information.

Figure 8 shows windspeed, pressure, and precipitation around Japan, Korea, and Taiwan during August 1997. Figure 8a,
looking northeast, tracks typhoon Amber (one of the region’s major typhoons) approaching along an east to west path across
the Northwest Pacific Ocean on August 27, 1997. Figure 8b shows typhoon Amber one day later as it moves through Taiwan.
Weather stations within the typhoon show the expected strong winds, low pressure, and high levels of rainfall. These results are
easily identified as tall, dense, red and purple pexels. Compare these images to Figure 8c and 8d, where windspeed was mapped
to regularity, pressure to height, and precipitation to density (a mapping without color that our original texture experiments
predict will perform poorly). Although viewers can identify areas of lower and higher windspeed (e.g.,on the open ocean
and over Taiwan), it is difficult to identifya changein lower or higher windspeeds (e.g., the change in windspeed as typhoon
Amber moves onshore over Taiwan). In fact, viewers often searched for an increase in density that represents an increase in
precipitation, rather than an increase in irregularity; pexels over Taiwan become noticeably denser between Figure 8c and 8d.

Oceanography Simulations

Our final example describes a set of oceanography simulations being jointly conducted at North Carolina State University
and the University of British Columbia [16]. Researchers in oceanography are studying the growth and movement patterns
of different species of salmon in the northern Pacific Ocean. Underlying environmental conditions like plankton density, sea
surface temperature (SST), current direction, and current strength affect where the salmon live and how they move and grow
[49]. For example, salmon like cooler water and tend to avoid ocean locations above a certain temperature. Since the salmon
feed on plankton blooms, they will try to move to areas where plankton density is highest. Currents will “push” the salmon as
they swim. Finally, SST, current direction, and current strength affect the size and location of plankton blooms as they form.

The oceanographers are designing models of how they believe salmon feed and move in the open ocean. These simulated
salmon will be placed in a set of known environmental conditions, then tracked to see if their behavior mirrors that of the real
fish. For example, salmon that migrate back to the Fraser River to spawn chose one of two routes. When the Gulf of Alaska
is warm, salmon make landfall at the north end of Vancouver Island and approach the Fraser River primarily via a northern
route through the Johnstone Strait (the upper arrow in Figure 9). When the Gulf of Alaska is cold, salmon are distributed
further south, make landfall on the west coast of Vancouver Island, and approach the Fraser River primarily via a southern
route through the Juan de Fuca Strait (the lower arrow in Figure 9). The ability to predict salmon distributions from prevailing
environmental conditions would allow the commercial fishing fleet to estimate how many fish will pass through the Johnstone
and Juan de Fuca straits. It would also allow more accurate predictions of the size of the salmon run, helping to ensure that an
adequate number of salmon arrive at the spawning grounds.

In order to test their hypotheses, the oceanographers have created a database of SSTs and ocean currents for the region 35�

north latitude, 180� west longitude to 62� north latitude, 120� west longitude (Figure 9). Measurements within this region are
available at1� � 1� grid spacings. This array of values exists for each month for the years 1956 to 1964, and 1980 to 1989.

Partial plankton densities have also been collected and tabulated; these are obtained by ships that take readings at various
positions in the ocean. We estimated missing plankton values using a set of knowledge discovery (KD) algorithms that we
have specifically modified for use during visualization. Our KD algorithms identified month, SST, and current magnitude as
the attributes used to estimate missing plankton values. Because of this, we restricted our initial visualization to a monthly
time-series of plankton density, SST, and current magnitude.
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Figure 9: Map of the North Pacific; arrows represent possible salmon migration paths as they pass through the either Johnstone Strait (upper arrow) or the
Strait of Juan de Fuca (lower arrow)

Displaying the three attributes together allows the oceanographers to search for relationships between plankton density, current
strength, and SST. Plankton is displayed using color; SST and current strength are displayed using texture. Colors for the five
plankton ranges were chosen using our color selection technique [15]. Although other color scales were available (for example,
by Ware [58]), our colors are specifically designed to highlight outliers, and to show clearly the boundaries between groups of
elements with a common plankton density. We display the five plankton density ranges from low to high using blue (monitor
RGB=36, 103, 151), green (monitor RGB=18, 127, 45), brown (monitor RGB=134, 96, 1), red (monitor RGB=243, 51, 55),
and purple (monitor RGB=206, 45, 162),

For the underlying texture, we mapped current strength to height and SST to density. Our choices were guided by results we
observed from our texture experiments:

� differences in height (specifically, taller elements) may be easier to detect, compared to differences in density or random-
ness,

� variation in height may mask differences in density or randomness; this appears to be due to the occlusion that occurs
when tall pexels in the foreground hide short pexels in the background; this will be less important when users can control
their viewpoint into the dataset (our visualization tool allows the user to interactively manipulate the viewpoint), and

� tightly spaced grids can support up to three easily distinguishable density patterns; placing more strips in a single pexel
(e.g.,arrays of3 � 3 or 4 � 4 strips) will either cause the strips to overlap with their neighbors, or make each strip too
thin to easily identify.

Because there may be a feature preference for height over density, and because current strength was deemed “more important”
than SST during knowledge discovery, we used height to represent currents and density to represent SSTs. The five ranges of
current strength are mapped to five different heights. We do not use a linear mapping, rather the lower two ranges (corresponding
to the weakest currents) are displayed using two types of short pexels, and the upper three ranges (corresponding to the strongest
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currents) are displayed using three types of tall pexels. This allows a user to rapidly locate boundaries between weak and strong
currents, while still being able to identify each of the five ranges. For SSTs, the lower three ranges (corresponding to the coldest
SSTs) are displayed with a pexel containing a single strip, while the upper two ranges (corresponding to the warmest SSTs) are
displayed with pexels containing arrays of2�1 and2�2 strips, respectively. The densities we chose allow a user to see clearly
the boundaries between cold and warm temperature regions. If necessary, users can change the range boundaries to focus on
different SST gradients.

The oceanographers want to traverse their datasets in monthly and yearly steps. Experiments run in our laboratory have shown
that preattentive tasks performed on static frames can be extended to a dynamic environment, where displays are shown one
after another in a movie-like fashion [19]. Our visualization tool was designed to allow users to scan rapidly forwards and
backwards through the dataset. This makes it easy to compare changes in the value and location of any of the environmental
variables being displayed. The oceanographers can track seasonal changes in current strength, SST, and plankton density as
they move month by month through a particular year. They can also see how interannual variability affects the environmental
conditions and corresponding plankton densities for a particular month across a range of years.

Figure 10 shows three frames from the oceanography dataset: February 1956, June 1956, and October 1956. Color shows
the seasonal variation in plankton densities. Height and density allow the oceanographers to track current strengths and SSTs.
In February (Figure 10a), most plankton densities are less than 28 g/m3 (i.e., blue and green strips). Currents are low in the
north-central Pacific; a region of weak currents also sits off the south coast of Alaska. Most of the ocean is cold (sparse pexels),
although a region of higher temperatures can easily be seen as dense pexels in the south. In June (Figure 10b) dense plankton
blooms (red and purple strips) are present across most of the northern Pacific. The positions of the strong currents have shifted
(viewing the entire dataset shows this current pattern is relatively stable for the months March to August). Warmer SSTs have
pushed north, although the ocean around Alaska and northern British Columbia is still relatively cold. By October the plankton
densities have started to decrease (green, brown, and red strips); few high or low density patches are visible. Current strengths
have also decreased in the eastern regions. Overall a much larger percentage of the ocean is warm (i.e.,dense pexels). This is
common, since summer temperatures will sometimes last in parts of the ocean until October or November.
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[24] JULÉSZ, B. Foundations of Cyclopean Perception. University of Chicago Press, Chicago, Illinois, 1971.
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