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This talk describes our investigation of methods for choosing color, texture, orientation, shape, and other features to
visualize certain types of large, multidimensional datasets. These datasets are becoming more and more common; ex-
amples include scientific simulation results, geographic information systems, satellite images, and biomedical scans.
The overwhelming amount of information contained in these datasets makes them difficult to analyze using traditional
mathematical or statistical techniques. It also makes them difficult to visualize in an efficient or useful manner.

The size of a dataset can be divided into three separate characteristics: the number of elements in the dataset, the number
of attributes or dimensions embedded in each element, and the range of values possible for each attribute. All three
characteristics may need to be considered during visualization.

Many of our techniques make explicit use of the way viewers perceive information in an image. Our visualization
systems display data in a manner that takes advantage of the low-level human visual system. Offloading the majority
of the analysis task on the low-level visual system allows users to perform exploratory visualization very rapidly and
accurately on large multidimensional datasets. Trends and relationships, unexpected patterns or results, and other areas
of interest can be quickly identified within the dataset. These data subsets can then be further visualized or analyzed
as required.

Preattentive Processing

One explicit goal of visualization is to present data to human observers in a way that is informative and meaningful, on
the one hand, yet intuitive and effortless on the other. Multidimensional data visualization is concerned with the ques-
tion “How can we display high-dimensional data elements in a low-dimensional environment, such as on a computer
screen or the printed page?” This goal is often pursued by attaching “features” such as hue, intensity, spatial location,
and size to each data element. Features are chosen to reveal properties of data elements as well as relationships among
them. An ad hoc assignment of features to individual data dimensions may not result in a useful visualization tool. In-
deed, too often the tool itself interferes with the viewer’s ability to extract the desired information due to a poor choice
of feature assignment.

One very interesting result of vision research over the past 20 years has been the discovery of a limited set of visual
properties that are processed preattentively (i.e., without the need for focused attention). Typically, tasks that can be
performed on large multi-element displays in 200 milliseconds or less are considered preattentive. This is because eye
movements take at least 200 milliseconds to initiate. Any perception that is possible within this time frame involves
only the information available in a single glimpse. Random placement of the elements in the displays ensures that
attention cannot be prefocused on any particular location. Observers report that preattentive tasks can be completed
with very little effort. Table 1 lists a number of preattentive features, and provides references that describe the tasks
that can be performed using these features.

For the purpose of visualization, preattentive features and tasks offer a number of attractive and important benefits:

� preattentive tasks are rapid and accurate; usually, preattentive tasks can be performed in 200 milliseconds or less
with perfect or near-perfect accuracy,



Feature Author

line (blob) orientation Julész & Bergen (1983); Wolfe (1992)
length Triesman & Gormican (1988)
width Julész (1984)
size Triesman & Gelade (1980)
curvature Triesman & Gormican (1988)
number Julész (1985); Trick & Pylyshyn (1994)
terminators Julész & Bergen (1983)
intersection Julész & Bergen (1983)
closure Enns (1986); Triesman & Souther (1986)
color (hue) Triesman & Gormican (1988); Nagy & Sanchez (1990); D’Zmura (1991)
intensity Beck et al. (1983); Triesman & Gormican (1988)
flicker Julész (1971)
direction of motion Nakayama & Silverman (1986); Driver & McLeod (1992)
binocular lustre Wolfe & Franzel (1988)
stereoscopic depth Nakayama & Silverman (1986)
3-D depth cues Enns (1990)
lighting direction Enns (1990)

Table 1: A list of two-dimensional features that “pop out” during visual search, and a list of authors who describe preattentive tasks performed using
the given feature.

� the time required to perform a preattentive task is independent of display size; the number of elements in a display
can be increased (to the fidelity of the display device) with little or no increase in the amount of time required to
complete the task, and

� experiments in preattentive processing can uncover exactly how different visual features interact with one an-
other; feature preferences, masking effects, and the amount of feature difference required for a specific task can
be identified and used to build high-speed visualization tools.

A simple example of a preattentive task is the detection of a filled circle in a group of empty circles (Figure 1a). The
target object has the visual feature “filled” but the empty distractor objects do not (all non-target objects are considered
distractors). A viewer can tell at a glance whether the target is present or absent.

A conjunction target item is one that is made up of two or more features, only one of which is contained in each of the
distractors [43]. Figure 1b shows an example of conjunction search. The target is made up of two features, filled and
circular. One of these features is present in each of the distractor objects (filled squares and empty circles). Numerous
studies show that the target cannot be preattentively detected, forcing subjects to search serially through the display to
find it.

Properties that are processed preattentively can be used to highlight important image characteristics. Experiments in
both the cognitive psychology and scientific visualization domains have used various features to assist in performing
the following visual tasks:

� target detection, where users attempt to rapidly and accurately detect the presence or absence of a “target” ele-
ment that uses a unique visual feature within a field of distractor elements (Figure 1),
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Figure 1: Examples of two target detection tasks: (a) target can be detected preattentively because it has a unique feature “filled”; (b) target cannot
be detected preattentively because it has no visual feature unique from its distractors

� boundary detection, where users attempt to rapidly and accurately detect a texture boundary between two groups
of elements, where all the elements in each group have a common visual feature (Figure 2), and

� counting and estimation, where users attempt to count or estimate the number or percentage of elements in a
display that have a unique visual feature.

The conjunction search in Figure 1b shows an example of visual interference, that is, a particular data-feature mapping
that hides the information we are interested in studying. Obviously, we want to control or avoid visual interference
during visualization. Another example of this problem, feature hierarchy, is shown in Figure 2. In the first display, hue
is used to divide the elements into two groups (i.e. a red group and a blue group). Form varies randomly from element
to element. Tests show it is easy for subjects to identify the hue boundary as either vertical or horizontal. In the second
display, the data-feature mapping has been reversed. Form is used to group the elements, and hue varies randomly
across the array. It is much harder for subjects to identify the form boundary in these displays. Moreover, it would be
difficult to guess beforehand which data-feature mapping would have provided the best performance. Previous studies
in preattentive processing could have been used to predict the outcome.

Callaghan [6, 7] first reported the interference effects shown in Figure 2. The visual system seems to prioritize features
in order of importance. This means that the presence of visually “important” features can interfere with tasks that use
lower priority features. In Figure 2a, the vertical boundary defined by hue is detected preattentively, even though the
shape of each element is random. In Figure 2b, however, it is difficult to detect the horizontal boundary defined by
form due to random hue variations. If hue were fixed to a constant value for each element, the form boundary could
be detected preattentively. Callaghan explains this phenomena by suggesting that the visual system assigns a higher
importance to hue than to form during boundary detection. Thus, a random hue interferes with form boundary detection,
but a random form has no effect on hue boundary detection. A similar asymmetry exists between hue and intensity.
Random hue has no effect on detecting boundaries defined by intensity. However, random intensity interferes with
hue boundary detection. Callaghan concluded that intensity is more important than hue to the low-level visual system
during boundary identification [5].
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Figure 2: Region segregation by form and hue: (a) hue boundary is identified preattentively, even though form varies in the two regions; (b) random
hue variations interfere with the identification of a region boundary based on form

Researchers continue to expand preattentive processing in a number of exciting directions. To date, most of the features
used in preattentive tasks have been relatively simply properties (e.g., hue, orientation, line length, and size). Enns and
Rensink, however, have identified a class of three-dimensional elements that can be detected preattentively [10, 11].
They have shown that three-dimensional orientation, shape, and direction of lighting can be used to make elements
“pop-out” of a visual scene (Figures 3b and 3c). This is important, because it suggests that complex high-level concepts
may be processed preattentively by the low-level visual system.

New tasks that can be performed preattentively are also being investigated. Research has recently been conducted on
counting and estimation in preattentive processing. Varey describes experiments in which subjects were asked to esti-
mate the relative frequency of white or black dots [49]. Her results showed that subjects could estimate in four different
ways: “percentage” of white dots, “percentage” of black dots, “ratio” of black dots to white dots, and “difference” be-
tween the number of black and white dots. She also found that subjects consistently overestimated small proportions
and underestimated large proportions. Estimation of relative frequency using hue and orientation was shown to be
preattentive in experiments conducted in our laboratory [16, 18]. Moreover, our results showed that there was no fea-
ture interaction. Random orientation did not interfere with estimation of targets with a unique hue, and random hue
did not interfere with estimation of targets with a unique orientation. This is important because it suggests that hue and
orientation can be used to encode two independent data values in a single display without causing visual interference.

A number of scientists have proposed competing theories to explain how preattentive processing occurs, in particular
Triesman’s feature integration theory [43], Julész’ texton theory [23], Quinlan and Humphreys’ similarity theory [31],
and Wolfe’s guided search theory [55]. Our interest is in the use of visual features that have already been shown to
be preattentive. Results from psychology are extended, modified, tested, and then integrated into our visualization
environment.

Real-Time Preattentive Visualization

Most preattentive techniques are validated by studying a single data frame in isolation. This leads to an interesting
question with important relevance to visualization. If a preattentive task can be performed on a single frame in 100
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Figure 3: Combination of simple components to form emergent features: (a) closure, a simple closed figure is seen; (b) three-dimensionality, the
figure appears to have depth; (c) volume, a solid figure is seen

milliseconds, can the same task can be performed on a real-time sequence of frames displayed at ten frames per sec-
ond? We hypothesized that important aspects of preattentive processing will extend to a real-time environment. A
visualization tool that uses preattentive features will allow viewers to perform visual tasks such as grouping of similar
data elements (boundary detection), detection of elements with a unique characteristic (target detection), and estimation
of the number of elements with a given value or range of values, all in real-time on temporally animated data frames.
We tested this hypothesis using experiments that simulated the use of our preattentive visualization tools in a real-time
environment. Analysis of the experimental results supported our hypothesis for boundary and target detection using hue
and shape. Moreover, interference properties previously reported for static frames were found to apply to a dynamic
environment.

Our initial experiment addressed two general questions about the preattentive features hue and shape, and their use in
our visualization tools:

� Question 1: Is it possible for subjects to detect a data frame with a horizontal boundary within a sequence of
random frames? If so, what features allow this and under what conditions?

� Question 2: Do Callaghan’s feature hierarchy effects apply to our real-time visualization environment? Specifi-
cally, does random hue interfere with form boundary detection within a sequence of frames? Does random form
interfere with hue boundary detection within a sequence of frames?

Experimental results showed accurate boundary detection can be performed using either hue or form on sequences of
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frames displayed at ten frames per second. Moreover, feature hierarchy effects extended to a dynamic environment,
specifically, hue dominated form during boundary detection. A random hue pattern masked form boundaries, while a
random form pattern had no effect on hue boundary detection.

A corresponding set of experiments were run to test target detection, with similar results. While both hue and form
targets can be detected preattentively in a real-time environment (at frame rates of ten to twenty frames per second),
form targets were only visible when the background hue was held constant. Hue variation masked form targets. Form
variation had no effect on the detection of hue targets.

We have built a number of visualization tools that allow users to perform exploratory analysis on their datasets in real-
time. Experience from using these tools confirmed that our experimental results hold for these datasets and tasks.

Color Selection

Color is a powerful and often-used visual feature. Previous work has addressed the issue of choosing colors for certain
types of data visualization. For example, Ware and Beatty describe a simple color visualization technique for displaying
correlation in a five-dimensional dataset [51]. Robertson, Ware, Rheingans and Tebbs, and Levkowitz and Herman
discuss various methods for building effective color gamuts and colormaps [25, 34, 35, 50]. Recent work at the IBM
Thomas J. Watson Research Center has focused on a rule-based visualization tool that considers how a user perceives
visual features like hue, luminance, height, and so on [4, 36].

If we use color to represent our data, one important question to ask is: “How can we choose effective colors that provide
good differentiation between data elements during the visualization task?” We addressed this problem by trying to
answer three related questions:

� How can we allow rapid and accurate identification of individual data elements through the use of color?

� What factors determine whether a “target” element’s color will make it easy to find, relative to differently colored
“non-target” elements?

� How many colors can we display at once, while still allowing for rapid and accurate target identification?

None of the currently-available color selection techniques were specifically designed to investigate the rapid and ac-
curate identification of individual data elements based on color. Also, since the color gamut and colormap work uses
continuous color scales to encode information, they have not addressed the question of how many colors we can effec-
tively display at once, while still providing good differentiation between individual data elements.

We began by using the perceptually balanced CIE LUV color model to provide control over color distance and isolumi-
nance. We also exploited two specific results related to color target detection: linear separation [9, 2] and color category
[24]. These effects are controlled to allow for the rapid and accurate identification of color targets. Target identification
is a necessary first step towards performing other types of exploratory data analysis. If we can rapidly and accurately
differentiate elements based on their color, we can apply our results to other important visualization techniques like de-
tection of data boundaries, the tracking of data regions in real-time, and enumeration tasks like counting and estimation
[18, 44, 49].
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CIE LUV

The CIE LUV color model was proposed by the Commission Internationalede L’Èclairge (CIE) in 1976 [57]. Colorsare
specified using the three dimensions L� (which encodes luminance), u�, and v� (which together encode chromaticity).
CIE LUV provides two useful properties for controlling perceived color difference. First, colors with the same L� are
isoluminant. Second, Euclidean distance and perceived color difference (specified in �E� units) can be interchanged,
since the color difference between two color stimuli x and y (positioned in CIE LUV at (L�
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Linear Separation

The linear separation effect has been described by both D’Zmura and Bauer et. al [2, 9]. D’Zmura was investigating
how the human visual system finds a target color in a sea of background non-target colors. D’Zmura ran experiments
that asked observers to determine the presence or absence of an orange target. Two groups of differently colored non-
target elements were also present in each display (e.g., in one experiment half the non-targets in each display were
colored green and half were colored red). Results showed that when the target could be separated by a straight line
from its non-targets in color space (Figure 4, target T and non-targets A and C), the time required to determine the
target’s presence or absence was constant, and independent of the total number of elements being displayed. This sug-
gests detection occurs preattentively in the low-level visual system. When the target was collinear with its non-targets
(Figure 4, target T and non-targets A and B), the time required to identify the target was linearly proportional to the
number of elements being displayed. Observers had to search serially through each display to determine whether the
target was present or absent. Bauer et. al strengthened D’Zmura’s results by showing that perceptually balanced color
models cannot be used to overcome the linear separation effect. Bauer et. al also replicated their findings in three ad-
ditional color regions: green, blue, and green-yellow. This suggests linear separation applies to colors from different
parts of the visible color domain.

T

B

A

C

Figure 4: Example of a target with both collinear and separable non-targets, the colors are shown in a u�; v�-slice from the CIE LUV color model,
notice that target T is equidistant from all three non-targets A, B, and C; in Case 1, target color T is collinear with the non-target colors A and B; in
Case 2, target T is linearly separable from its non-targets A and C
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Color Category

Kawai et. al [24] reported results that suggest that the time required to identify a color target depends in part on the
named color regions occupied by the target and its non-targets. Kawai et. al tested displays that contained a uniquely
color target and a constant number of uniformly colored non-targets. They divided an isoluminant, perceptually bal-
anced color slice into named color regions. Their results showed that search times decreased dramatically whenever
the non-target was moved outside the target’s color region. For example, finding a target colored T in a set of non-
targets colored B was significantly more difficult than than finding T in a set of non-targets colored A (Figure 5). Since
the target–non-target distances TA and TB are equal, there was an expectation of perceptual balance that should have
been provided by the underlying color model. This expectation was not met. Kawai et. al suggests the difference in
performance is due to the fact that both T and B are located in the blue color region, but A is not.

blue
boundary

purple
boundary

green
boundary

T

A

B g-axis

j-axis

Figure 5: A target T and two non-targets A and B shown in a (j; g) slice from the OSA color model; the boundaries of the blue, green, and purple
color regions are shown as thick lines; T and B occupy the same named color region “blue”, but A does not

Experiments

We ran a number of experiments to study the effects of color distance, linear separation, and color category. Subjects
were shown displays that contained multiple colored squares. Each subject was asked to determine whether a target
square with a particular color was present or absent in each display. The experiments were designed to test the following
conditions:

� selection criteria, which selection criteria (color distance, linear separation, and color category) need to be con-
sidered to guarantee equally distinguishable colors,

� simultaneous colors, how many colors can we display at the same time, while still allowing users to rapidly and
accurately determine the presence or absence of any particular color, and

� display size, is performance affected by the number of elements in a display.

We found that up to seven isoluminant colors can be displayed simultaneously, while still allowing for the rapid and
accurate identification of any one of the seven. The time required to perform identification was independent of display
size, suggesting that target detection is occurring preattentively. Our results also showed that all three selection criteria
needed to be considered to guarantee consistent performance. When only some of the selection criteria were used (e.g.

212



only distance and separation, or only category) the amount of time required to identify targets depended on the color
of the target: some colors were very easy to identify, while other colors were very difficult. This asymmetry suggested
that the colors we chose were not equally distinguishable, and therefore that the selection criteria being used were not
sufficient to properly control perceived difference between the colors during target detection.

Visualizing CT Medical Scans

One practical application of our color selection technique is the use of color to highlight regions of interest during
volume visualization [39]. Radiologists from the UniversityHospital at the University of British Columbia are studying
methods for visualizing abdominal aneurisms. Traditional repair of an abdominal aneurism entails a major operation
with an incision into the aneurism, evacuation of the clot contained within, placement of a synthetic graft, and wrapping
of the graft with the remnants of the wall of the aneurism. Recently, a new treatment option, endovascular stenting, has
been proposed and is currently undergoing clinical trials. This procedure does not require general anesthesia and can
be done less invasively by simply placing a self-expanding stent graft via a catheter into the aneurism to stabilize it.
Less fit patients are able to withstand the procedure, hospital stay is cut to 1 to 2 days, and post-operative recovery is
shortened considerably.

After the operation computed tomography (CT) scans are used to obtain two-dimensional slices of a patient’s abdom-
inal region. These slices are reconstructed to produce a three-dimensional volume. The volume is visualized by the
radiologists to perform post-operative analysis. A two-pass segmentation step is used to strip out material in each CT
slice that does not correspond to one of the regions of interest: the artery running through the abdomen, the aneurism,
and the metal hooks (called tynes) used to embed the stent graft within the aneurism. The reconstructed volumes must
show clearly each of these three regions.

Normally, greyscale is used to display reconstructed medical volumes. Changes in luminance are most effective for
representing the high spatial frequency data contained in these kinds of datasets. For our application, however, one of
the most important tasks is identifying the exact position of the tynes (which in turn identify the positions of each of
the corresponding stent grafts). In our greyscale volume the location of tynes within the aneurism are obscured by the
wall of the aneurism itself (Figure 6a). Different levels of transparency were used to try to “see through” the aneurism,
however, we could not find any appropriate value that showed the tyne locations within the artery, while at the same
time providing an effective representation of the three-dimensional shape and extent of the wall of the aneurism. We
decided that, for this application, it might be more appropriate to high the three regions of interest using color.

Although the radiologists had already chosen a set of colors based on context and aesthetic considerations, it did a poor
job of showing the size and shape of the aneurism (Figure 6b). We replaced their colors with three new ones using
our color selection technique. The radiologists asked us to avoid greens and green-yellows, since these are associated
with bile. We decided to use yellow to represent the artery, purple to represent the aneurism, and red to represent the
tynes (Figure 6c). These colors show clearly the location of all three regions of interest within the volume. For example,
consider the large patches of yellow within the aneurism. These are areas of “low support”where the grafts in the lower
part of the artery were not inserted far enough to mesh with their upstream partner. Although not dangerous, these are
exactly the kinds of features the radiologists want to identify during post-operative visualization.
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Figure 6: A reconstructed CT volume showing an abdominal aneurism: (a) greyscale hides the location of the tynes within the aneurism; (b) a color
scale chosen by the radiologists obscures the shape and extent of the wall of the aneurism; (c) three colors chosen with our perceptual color selection
technique

Perceptual Textures

One of the important issues in scientific visualization is designing methods for representing multiple values (or at-
tributes) at a single spatial location. Although it is possible to assign different visual features to each attribute, simply
“stacking” multiple features together will most likely lead to displays that are unintelligible.

Rather than choosing multiple individual features (i.e., color, shape, size, orientation, line length), we decided to try
using a single visual feature that could be decomposed into a set of fundamental parts or dimensions. We chose to
investigate texture for this purpose.

Texture has been studied extensively in the computer vision, computer graphics, and cognitive psychology communi-
ties. Although each group focuses on separate tasks (texture identification and texture segmentation in computer vision,
displaying information with texture patterns in computer graphics, and modeling the low-level human visual system in
cognitive psychology) they each need ways to describe precisely the textures being identified, classified, or displayed.

Researchers have used different methods to study the perceptual features inherent in a texture pattern. Bela Julész [21]
conducted numerous experiments that investigated how a texture’s first, second, and third-order statistics affect dis-
crimination in the low-level human visual system. This led to the texton theory [22], which suggests that early vision
detects three types of features (or textons, as Julész called them): elongated blobs with specific visual properties (e.g.,
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hue, orientation, and width), ends of line segments, and crossings of line segments. Tamura et al. [40] and Rao and
Lohse [32, 33] identified texture dimensions by conducting experiments that asked subjects to divide pictures depicting
different types of textures (Brodatz images) into groups. Tamura et al. used their results to propose methods for measur-
ing coarseness, contrast, directionality, line-likeness, regularity, and roughness. Rao and Lohse used multidimensional
scaling to identify the primary texture dimensions used by their subjects to group images: regularity, directionality, and
complexity. Haralick et al. [13] built greyscale spatial dependency matrices to identify features like homogeneity, con-
trast, and linear dependency. These features were used to classify satellite images into categories like forest, woodlands,
grasslands, and water. Liu and Picard [26] used Wold features to synthesize texture patterns. A Wold decomposition
divides a 2D homogeneous pattern (e.g., a texture pattern) into three mutually orthogonal components with perceptual
properties that roughly correspond to periodicity, directionality, and randomness. Malik and Perona [27] designed com-
puter algorithms that use orientation filtering, nonlinear inhibition, and computation of the resulting texture gradient to
mimic the discrimination ability of the low-level human visual system. We used these results to choose the perceptual
texture dimensions we wanted to investigate during our experiments.

Work in computer graphics has studied methods for using texture patterns to display information during visualization.
Schweitzer [38] used rotated discs to highlight the orientationof a three-dimensional surface. Pickett and Grinstein [12]
built “stick-men” icons to produce texture patterns that show spatial coherence in a multidimensional dataset. Ware and
Knight [52, 53] used Gabor filters to construct texture patterns; attributes in an underlying dataset are used to modify the
orientation, size, and contrast of the Gabor elements during visualization. Turk and Banks [48] described an iterated
method for placing streamlines to visualize two-dimensional vector fields. Interrante [19] displayed texture strokes
to help show three-dimensional shape and depth on layered transparent surfaces; principal directions and curvatures
are used to orient and advect the strokes across the surface. Finally, Salisbury et al. [37] and Wikenbach and Salesin
[54] used texturing techniques to build computer-generated pen-and-ink drawings that convey a realistic sense of shape,
depth, and orientation. We built upon these results to try to develop an effective method for displayingmultidimensional
data through the use of texture.

Pexels

We wanted to design a technique that will allow users to visualize multidimensional datasets with perceptual textures.
To this end, we used a method similar to Ware and Knight to build our displays. Each data element is represented with
a single perceptual texture element, or pexel. Our visualization environment consists of a large number of elements
arrayed across a three-dimensional surface (e.g., a topographical map or the surface of a three-dimensional object).
Each element contains one or more attributes to be displayed. Attribute values are used to control the visual appearance
of a pexel by modifying its texture dimensions. Texture patterns formed by groups of spatially neighboring pexels can
be used to visually analyze the dataset.

We chose to study three perceptual dimensions: density, regularity, and height. Density and regularity have been iden-
tified in the literature as primary texture dimensions [32, 33, 40]. Although height might not be considered an “intrinsic
textural cue”, we note that height is one aspect of element size, and that element size is an important property of a tex-
ture pattern. Moreover, results from cognitive vision have shown that differences in height are detected preattentively
by the low-level visual system [1, 43]. We wanted to build three-dimensional pexels that “sit up” on the underlying sur-
face. This allows the possibility of applying various orientations (another important perceptual dimension) to a pexel.
Because of this, we chose height as our third texture dimension.

In order to support variation of height, density, and regularity, we built pexels that look like a collection of paper strips.
The user maps attributes in the dataset to the density (which controls the number of strips in a pexel), height, and reg-
ularity of each pexel. Examples of each of these perceptual dimensions are shown in Figure 7a. Figure 7b shows an
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Figure 7: Groups of paper strips are used to form a pexel that supports variation of the three perceptual texture dimensions height, density and
randomness: (a) each pexel has one of its dimensions varied across three discrete values; (b) a map of North America, pexels represent areas of high
cultivation, height mapped to level of cultivation, density mapped to ground type, greyscale mapped to vegetation type

environmental dataset visualized with texture and greyscale (we used greyscale for printing purposes only; colour is
used to display on-screen images). Locations on the map that contain pexels represent areas in North America with
high levels of cultivation. Height shows the level of cultivation (75-99% for short pexels, 100% for tall pexels), den-
sity shows the ground type (sparse for alluvial, dense for wetlands), and greyscale shows the vegetation type (dark grey
for plains, light grey for forest, and white for woods). Users can easily identify lower levels of cultivation in the central
and eastern plains. Areas containing wetlands can be seen as dense pexels in Florida, along the eastern coast, and in
the southern parts of the Canadian prairies.

Experiments

In order to test our perceptual dimensions and the interactions that occur between them during visualization, we ran a set
of psychophysical experiments. Our experiments were designed to investigate a user’s ability to rapidly and accurately
identify target pexels defined by a particular height, density, or regularity. Users were asked to determine whether a
small group of pexels with a particular type of texture (e.g., a group of taller pexels, as in Figure 8a) was present or
absent in a 20�15 array. Conditions like target pexel type, exposure duration, target group size, and background texture
dimensions differed for each display. This allowed us to test for preattentive task performance, visual interference, and
a user preference for a particular target type. In all cases, user accuracy was used to measure performance.

Design

Each experimental display contained a regularly-spaced 20�15 array of pexels rotated 45� about the X-axis (Figure 8).
All displays were monochromatic (i.e., grey and white), to avoid variations in color or intensity that might mask the
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Figure 8: Two display types from the taller and regular pexel experiments: (a) a target of medium pexels in a sea of short pexels with a background
density pattern (2�2 target group located left of center); (b) a target of regular pexels in a sea of irregular pexels with no backgroundtexture pattern
(2� 2 target group located 8 grids step right and 2 grid steps up from the lower-left corner of the array)

underlying texture pattern. Grid lines were drawn at each row and column, to ensure users perceived the pexels as lying
on a tilted 3D plane. After a display was shown, users were asked whether a group of pexels with a particular target
value was present or absent. In order to avoid confusion, each user searched for only one type of target pexel: taller,
shorter, sparser, denser, more regular, or more irregular. The appearance of the pexels in each display was varied to
test for preattentive performance, visual interference, and feature preference. For example, the following experimental
conditions were used to investigate a user’s ability to identify taller pexels (similar conditions were used for the shorter,
denser, sparse, regular, and irregular experiments):

� two target-background pairings: a target of medium pexels in a sea of short pexels, and a target of tall pexels
in a sea of medium pexels; different target-background pairings allowed us to test for a subject preference for a
particular target type,

� three display durations: 50 msec, 150 msec, and 450 msec; we varied exposure duration to test for preattentive
performance, specifically, does the task become more difficult during shorter exposures,

� three secondary texture dimensions: none (every pexel is sparse and regular), density (half the pexels are ran-
domly chosen to be sparse, half to be dense), and regularity (half the pexels are regular, half are random); we
added a “background” texture feature to test for visual interference, that is, does the task become more difficult
when a secondary texture dimension appears at random spatial locations in the display, and

� two target group sizes: 2 � 2 pexels and 4 � 4 pexels; we used different target group sizes to see how large a
group of pexels was needed before the target could be detected by a viewer.

Our results suggest that pexels can be used to represent multidimensional data elements, but only if specific data-feature
mappings are chosen. Some dimensions were more salient than others, and interference occurred when certain types
of pexels were displayed. Specifically, we found that:

� taller pexels can be identified at preattentive exposure durations (i.e., 150 msec or less) with very high accuracy
(approximately 93%); background density and regularity patterns produce no significant interference,

� shorter, denser, and sparser pexels are more difficult to identify than taller pexels, although good results are pos-
sible at both 150 and 450 msec; height, regularity, and density background texture patterns cause interference for
all three target types,
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� irregular pexels are difficult to identify, although reasonable accuracy (approximately 76%) is possible at 150
and 450 msec with no background texture pattern, and

� regular pexels cannot be accurately identified; the percentage of correct results approached chance (i.e., 50%)
for every condition.

These results suggest that height and density can be used to to form texture patterns that can be identified preattentively.
Regularity, however, can only be used as a secondary dimension. While differences in regularity cannot be detected
consistently by the low-level visual system, in many cases users will be able to see changes in regularity when areas of
interest in a dataset are identified and analyzed in a focused or attentive fashion.

Visualizing Typhoon Data

One of our current testbeds for using pexels to visualize multidimensional data is the analysis of environmental con-
ditions related to typhoons. We used pexels to visualize typhoon activity in the Northwest Pacific Ocean during the
summer and fall of 1997. The names “typhoon” and “hurricane” are region-specific, and refer to the same type of
weather phenomena: an atmospheric disturbance characterized by low pressure, thunderstorm activity, and a cyclic
wind pattern. Storms of this type with windspeeds below 17m/s are called “tropical depressions”. When windspeeds
exceed 17m/s, they become “tropical storms”. This is also when storms are assigned a specific name. When wind-
speeds reach 33m/s, a storm becomes a typhoon (in the Northwest Pacific) or a hurricane (in the Northeast Pacific and
North Atlantic).

We combined information from a number of different sources to collect the data we needed. A U.S. Navy elevation
dataset1 was used to obtain land elevations at ten minute latitude and longitude intervals. Land-based weather station
readings collected from around the world and archived by the National Climatic Data Center2 provided daily measure-
ments for eighteen separate environmental conditions. Finally, satellite archives made available by the Global Hydrol-
ogy and Climate Center3 contained daily open-ocean windspeed measurements at thirty minute latitude and longitude
intervals. The National Climatic Data Center defined the 1997 typhoon season to run from August 1 to October 31;
each of our datasets contained measurements for this time period.

We chose to visualize three environmental conditions related to typhoons: windspeed, pressure, and precipitation. All
three values were measured on a daily basis at each land-based weather station, but only daily windspeeds were avail-
able for open-ocean positions. In spite of the missing open-ocean pressure and precipitation, we were able to track
storms as they moved across the Northwest Pacific Ocean. When the storms made landfall the associated windspeed,
sea-level pressure, and precipitation were provided by weather stations along their path.

Based on our experimental results, we chose to represent windspeed, pressure, and precipitation with height, density,
and regularity, respectively. Localized areas of high windspeed are an obvious indicator of storm activity. We chose to
map increasing windspeed to an increased pexel height. Our experimental results showed that taller pexels can be iden-
tified preattentively, regardless of any background texture pattern that might be present. Windspeed has two important
boundaries: 17m/s (where tropical depressions become tropical storms) and 33m/s (where storms become typhoons).
We mirrored these boundaries with height discontinuities. Pexel height increases linearly from 0-17m/s. At 17m/s,
height approximately doubles, then continues linearly from 17-33m/s. At 33m/s another height discontinuity is intro-
duced, followed by a linear increase for any windspeeds over 33m/s.

1http://grid2.cr.usgs.gov/dem/
2http://www.ncdc.noaa.gov/ol/climate/online/gsod.html
3http://ghrc.msfc.nasa.gov/ims-cgi-bin/execute?mkinfo+mif13owsg
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(a) (b)

(c) (d)

Figure 9: (a) windspeed mapped to height, pressure mapped to density, precipitation mapped to regularity: looking south, typhoon Amber moves east
to west across the Northwest Pacific (August 26, 1997); (b) typhoon Amber makes landfall on the island of Taiwan (August 28, 1997); (c, d) same
data as for (a) and (b), but with windspeed mapped to regularity, pressure mapped to height, precipitation mapped to density: the use of regularity
makes it significantly more difficult to track typhoons when they make landfall

Pressure is represented with pexel density. An increase in pressure is mapped to a decrease in pexel density (i.e., very
dense pexels represent areas of very low pressure). Pressure below 996 millibars produces very dense pexels. Pressure
between 996 and 1014 millibars is represented by dense pexels. Pressure over 1014 millibars results in sparse pexels.
Our experimental results showed it was easier to find dense pexels in a sea of sparse pexels, as opposed to sparse in
dense. Our mapping uses high-density pexels to highlight the low-pressure areas associated with typhoon activity.

Precipitation is represented with pexel regularity. High levels of precipitation result in an irregular pexel pattern. Pexel
positions are held regular for a daily rainfall of 0.13 inches or less (the median value for the time period we visualized).
Daily rainfall over 0.13 inches produces an increased pexel irregularity. Because precipitation was not as important as
either windspeed or pressure during visualization, it was assigned to our least effective texture dimension, regularity.

We built a simple visualization tool that maps windspeed, pressure, and precipitation to their corresponding height, den-
sity, and regularity. Our visualization tool allows a user to move forwards and backwards through the dataset day-by-
day. One interesting result was immediately evident when we began our analysis: typhoon activity was not represented
by high windspeed values in our open-ocean dataset. Typhoons normally contain severe rain and thunderstorms. The
high levels of cloud-based water vapor produced by these storms block the satellites that are used to measure open-
ocean windspeeds. The result is an absence of any windspeed values within a typhoon’s spatial extent. Rather than
appearing as a local region of high windspeeds, typhoons on the open-ocean are displayed as a “hole”, an ocean region
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without any windspeed readings (see Figures 9a and 9b). This absence of a visual feature (i.e., a hole in the texture field)
is large enough to be salient in our displays, and can be preattentively identified and tracked over time. Therefore, users
have little difficulty finding storms and watching them as they move across the open ocean. When a storm makes land-
fall, the weather stations along the storm’s path provide the proper windspeed, as well as pressure and precipitation.
Weather stations measure windspeed directly, rather than using satellite images, so high levels of cloud-based water
vapor cause no loss of information.

Two display frames from our visualization tool are shown in Figure 9. Figure 9a, looking south, tracks typhoon Amber
(one of the region’s major typhoons) approaching along an east to west path across the Northwest Pacific Ocean on
August 26, 1997. Figure 9b shows typhoon Amber two days later as it moves through Taiwan. Weather stations within
the typhoon show the expected strong winds, low pressure, and high levels of rainfall. These results are easily identified
as tall, dense, irregular pexels. Compare these images to Figures 9c-d, where windspeed was mapped to regularity,
pressure to height, and precipitation to density (a mapping that our experiments predict will perform poorly). Although
viewers can identify areas of lower and higher windspeed (e.g., on the open ocean and over Taiwan), it is difficult to
identify a change in lower or higher windspeeds (e.g., the change in windspeed as typhoon Amber moves onshore over
Taiwan). In fact, viewers often searched for an increase in height that represents a decrease in pressure, rather than an
increase in irregularity; pexels over Taiwan become noticeably taller between Figures 9c and 9d.

Oceanography Simulations

Our final example describes a set of oceanography simulations being jointly conducted at North Carolina State Univer-
sity and the University of British Columbia [15]. Researchers in oceanography are studying the growth and movement
patterns of different species of salmon in the northern Pacific Ocean. Underlying environmental conditions like plank-
ton density, sea surface temperature (SST), current direction, and current strength affect where the salmon live and how
they move and grow [41]. For example, salmon like cooler water and tend to avoid ocean locations above a certain tem-
perature. Since the salmon feed on plankton blooms, they will try to move to areas where plankton density is highest.
Currents will “push” the salmon as they swim. Finally, SST, current direction, and current strength affect the size and
location of plankton blooms as they form.

The oceanographers are designing models of how they believe salmon feed and move in the open ocean. These sim-
ulated salmon will be placed in a set of known environmental conditions, then tracked to see if their behavior mirrors
that of the real fish. For example, salmon that migrate back to the Fraser River to spawn chose one of two routes. When
the Gulf of Alaska is warm, salmon make landfall at the north end of Vancouver Island and approach the Fraser River
primarily via a northern route through the Johnstone Strait (the upper arrow in Figure 10). When the Gulf of Alaska
is cold, salmon are distributed further south, make landfall on the west coast of Vancouver Island, and approach the
Fraser River primarily via a southern route through the Juan de Fuca Strait (the lower arrow in Figure 10). The ability
to predict salmon distributions from prevailing environmental conditions would allow the commercial fishing fleet to
estimate how many fish will pass through the Johnstone and Juan de Fuca straits. It would also allow more accurate
predictions of the size of the salmon run, helping to ensure that an adequate number of salmon arrive at the spawning
grounds.

In order to test their hypotheses, the oceanographers have created a database of SSTs and ocean currents for the region
35� north latitude, 180� west longitude to 62� north latitude, 120� west longitude (Figure 10). Measurements within
this region are available at 1��1� grid spacings. This array of values exists for each month for the years 1956 to 1964,
and 1980 to 1989.

Partial plankton densities have also been collected and tabulated; these are obtained by ships that take readings at vari-
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Figure 10: Map of the North Pacific; arrows represent possible salmon migration paths as they pass through the either Johnstone Strait (upper arrow)
or the Strait of Juan de Fuca (lower arrow)

ous positions in the ocean. We estimated missing plankton values using a set of knowledge discovery (KD) algorithms
that we have specifically modified for use during visualization. Our KD algorithms identified month, SST, and current
magnitude as the attributes used to estimate missing plankton values. Because of this, we restricted our initial visual-
ization to a monthly time-series of plankton density, SST, and current magnitude.

Displaying the three attributes together allows the oceanographers to search for relationships between plankton density,
current strength, and SST. Plankton is displayed using colour; SST and current strength are displayed using texture.
Colours for the five plankton ranges were chosen using our colour selection technique [14]. Although other colour
scales were available (for example, by Ware [50]), our colours are specifically designed to highlight outliers, and to
show clearly the boundaries between groups of elements with a common plankton density. We display the five plankton
density ranges from low to high using blue (monitor RGB=36, 103, 151), green (monitor RGB=18, 127, 45), brown
(monitor RGB=134, 96, 1), red (monitor RGB=243, 51, 55), and purple (monitor RGB=206, 45, 162),

For the underlying texture, we mapped current strength to height and SST to density. Our choices were guided by results
we observed from our texture experiments:

� differences in height (specifically, taller elements) may be easier to detect, compared to differences in density or
randomness,

� variation in height may mask differences in density or randomness; this appears to be due to the occlusion that
occurs when tall pexels in the foreground hide short pexels in the background; this will be less important when
users can control their viewpoint into the dataset (our visualization tool allows the user to interactively manipulate
the viewpoint), and

� tightly spaced grids can support up to three easily distinguishable density patterns; placing more strips in a single
pexel (e.g., arrays of 3 � 3 or 4 � 4 strips) will either cause the strips to overlap with their neighbors, or make
each strip too thin to easily identify.
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Because there may be a feature preference for height over density, and because current strength was deemed “more
important” than SST during knowledge discovery, we used height to represent currents and density to represent SSTs.
The five ranges of current strength are mapped to five different heights. We do not use a linear mapping, rather the
lower two ranges (corresponding to the weakest currents) are displayed using two types of short pexels, and the upper
three ranges (corresponding to the strongest currents) are displayed using three types of tall pexels. This allows a user
to rapidly locate boundaries between weak and strong currents, while still being able to identify each of the five ranges.
For SSTs, the lower three ranges (corresponding to the coldest SSTs) are displayed with a pexel containing a single
strip, while the upper two ranges (corresponding to the warmest SSTs) are displayed with pexels containing arrays of
2�1 and 2�2 strips, respectively. The densities we chose allow a user to see clearly the boundaries between cold and
warm temperature regions. If necessary, users can change the range boundaries to focus on different SST gradients.

The oceanographers want to traverse their datasets in monthly and yearly steps. Experiments run in our laboratory have
shown that preattentive tasks performed on static frames can be extended to a dynamic environment, where displays are
shown one after another in a movie-like fashion [17]. Our visualization tool was designed to allow users to scan rapidly
forwards and backwards through the dataset. This makes it easy to compare changes in the value and location of any
of the environmental variables being displayed. The oceanographers can track seasonal changes in current strength,
SST, and plankton density as they move month by month through a particular year. They can also see how interannual
variability affects the environmental conditions and corresponding plankton densities for a particular month across a
range of years.

Figure 11 shows three frames from the oceanography dataset: February 1956, June 1956, and October 1956. Colour
shows the seasonal variation in planktondensities. Height and density allow the oceanographers to track current strengths
and SSTs. In February (Figure 11a), most plankton densities are less than 28 g/m3 (i.e., blue and green strips). Currents
are low in the north-central Pacific; a region of weak currents also sits off the south coast of Alaska. Most of the ocean
is cold (sparse pexels), although a region of higher temperatures can easily be seen as dense pexels in the south. In
June (Figure 11b) dense plankton blooms (red and purple strips) are present across most of the northern Pacific. The
positions of the strong currents have shifted (viewing the entire dataset shows this current pattern is relatively stable
for the months March to August). Warmer SSTs have pushed north, although the ocean around Alaska and northern
British Columbia is still relatively cold. By October the plankton densities have started to decrease (green, brown, and
red strips); few high or low density patches are visible. Current strengths have also decreased in the eastern regions.
Overall a much larger percentage of the ocean is warm (i.e., dense pexels). This is common, since summer temperatures
will sometimes last in parts of the ocean until October or November.
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