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This talk describes our investigation of methods for choosing color, texture, orientation, shape, and other features to
visualize certain types of large, multidimensiona datasets. These datasets are becoming more and more common; ex-
amples include scientific simulation results, geographic information systems, satellite images, and biomedical scans.
The overwhelming amount of information contained in these datasets makes them difficult to analyze using traditional
mathematical or statistical techniques. It aso makes them difficult to visualizein an efficient or useful manner.

Thesize of adataset can be dividedintothree separate characteristics: thenumber of el ementsinthedataset, the number
of attributes or dimensions embedded in each element, and the range of values possible for each attribute. All three
characteristics may need to be considered during visualization.

Many of our techniques make explicit use of the way viewers perceive information in an image. Our visualization
systems display datain amanner that takes advantage of the low-level human visual system. Offloading the majority
of the analysistask on the low-level visual system allows users to perform exploratory visualization very rapidly and
accurately on large multidimensional datasets. Trends and rel ationshi ps, unexpected patternsor results, and other areas
of interest can be quickly identified within the dataset. These data subsets can then be further visuaized or analyzed
as required.

Preattentive Processing

Oneexplicit goa of visuaizationisto present datato human observersin away that isinformative and meaningful, on
the one hand, yet intuitiveand effortless on the other. Multidimensional data visuaization is concerned with the ques-
tion “How can we display high-dimensional data e ements in alow-dimensional environment, such as on a computer
screen or the printed page?’ This goal is often pursued by attaching “features’ such as hue, intensity, spatial location,
and size to each data element. Festures are chosen to revea propertiesof data elements as well as rel ationshipsamong
them. An ad hoc assignment of features to individua data dimensions may not result in a useful visualization tool. In-
deed, too oftenthe tool itself interfereswith the viewer’s ability to extract the desired information due to a poor choice
of feature assignment.

One very interesting result of vision research over the past 20 years has been the discovery of alimited set of visual
properties that are processed preattentively (i.e., without the need for focused attention). Typically, tasks that can be
performed on large multi-element displaysin 200 milliseconds or |ess are considered preattentive. Thisis because eye
movements take at least 200 millisecondsto initiate. Any perception that is possible within thistime frame involves
only the information available in a single glimpse. Random placement of the elements in the displays ensures that
attention cannot be prefocused on any particular location. Observers report that preattentive tasks can be completed
with very little effort. Table 1 lists a number of preattentive features, and provides references that describe the tasks
that can be performed using these features.

For the purpose of visualization, presttentive features and tasks offer a number of attractive and important benefits:

o preattentivetasksare rapid and accurate; usualy, preattentivetasks can be performed in 200 millisecondsor less
with perfect or near-perfect accuracy,



Feature Author
line (blob) orientation  Julész & Bergen (1983); Wolfe (1992)

length Triesman & Gormican (1988)

width Julesz (1984)

size Triesman & Gelade (1980)

curvature Triesman & Gormican (1988)

number Julész (1985); Trick & Pylyshyn (1994)

terminators Julész & Bergen (1983)

intersection Julész & Bergen (1983)

closure Enns (1986); Triesman & Souther (1986)

color (hue) Triesman & Gormican (1988); Nagy & Sanchez (1990); D’ Zmura(1991)
intensity Beck et a. (1983); Triesman & Gormican (1988)

flicker Julész (1971)

direction of motion Nakayama & Silverman (1986); Driver & McLeod (1992)
binocular lustre Wolfe & Franzel (1988)

stereoscopic depth Nakayama & Silverman (1986)

3-D depth cues Enns (1990)

lighting direction Enns (1990)

Table 1: A list of two-dimensional featuresthat “ pop out” during visual search, and alist of authorswho describe preattentive tasks performed using
the given feature.

o thetimerequiredto perform apreattentivetask isindependent of display size; thenumber of e ementsinadisplay
can be increased (to thefidelity of the display device) withlittleor no increase in the amount of time required to
complete the task, and

e experiments in preattentive processing can uncover exactly how different visual features interact with one an-
other; feature preferences, masking effects, and the amount of feature difference required for a specific task can
be identified and used to build high-speed visuaization tools.

A simple example of a preattentive task is the detection of afilled circle in agroup of empty circles (Figure 18). The
target object has thevisua feature “filled” but the empty distractor objects do not (al non-target objectsare considered
distractors). A viewer can tell a a glance whether the target is present or absent.

A conjunction target item isonethat is made up of two or more features, only one of which is contained in each of the
distractors[43]. Figure 1b shows an example of conjunction search. The target is made up of two features, filled and
circular. One of these features is present in each of the distractor objects (filled squares and empty circles). Numerous
studies show that thetarget cannot be preattentively detected, forcing subjectsto search serialy through the display to
find it.

Properties that are processed preattentively can be used to highlight important image characteristics. Experimentsin

both the cognitive psychology and scientific visualization domains have used various features to assist in performing
the following visual tasks:

o target detection, where users attempt to rapidly and accurately detect the presence or absence of a“target” e
ment that uses aunique visual feature within afield of distractor elements (Figure 1),
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Figure 1: Examples of two target detection tasks: (@) target can be detected preattentively becauseit has a unique feature “filled”; (b) target cannot
be detected preattentively becauseit has no visual feature unique fromits distractors

o boundary detection, where users attempt to rapidly and accurately detect atexture boundary between two groups
of elements, where all the elements in each group have a common visua feature (Figure 2), and

e counting and estimation, where users attempt to count or estimate the number or percentage of elementsin a
display that have a unique visua feature.

The conjunction search in Figure 1b shows an example of visual interference, that is, a particular data-feature mapping
that hides the information we are interested in studying. Obviously, we want to control or avoid visua interference
during visualization. Another example of thisproblem, feature hierarchy, isshownin Figure2. Inthefirst display, hue
isused to dividethe elementsinto two groups (i.e. ared group and ablue group). Form varies randomly from element
toelement. Tests show it iseasy for subjectstoidentify the hue boundary as either vertica or horizontal. In the second
display, the data-feature mapping has been reversed. Form is used to group the dements, and hue varies randomly
across the array. It is much harder for subjects to identify the form boundary in these displays. Moreover, it would be
difficult to guess beforehand which data-feature mapping would have provided the best performance. Previous studies
in preattentive processing could have been used to predict the outcome.

Callaghan [6, 7] first reported the interference effects shown in Figure2. Thevisua system seemsto prioritizefeatures
in order of importance. This means that the presence of visually “important” features can interfere with tasks that use
lower priority features. In Figure 2a, the vertical boundary defined by hue is detected preattentively, even though the
shape of each element is random. In Figure 2b, however, it is difficult to detect the horizontal boundary defined by
form due to random hue variations. If hue were fixed to a constant value for each element, the form boundary could
be detected preattentively. Callaghan explains this phenomena by suggesting that the visual system assigns a higher
importanceto huethan to form during boundary detection. Thus, arandom hueinterfereswithform boundary detection,
but a random form has no effect on hue boundary detection. A similar asymmetry exists between hue and intensity.
Random hue has no effect on detecting boundaries defined by intensity. However, random intensity interferes with
hue boundary detection. Callaghan concluded that intensity is more important than hue to the low-level visual system
during boundary identification [5].
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Figure 2: Region segregation by form and hue: (a) hue boundary isidentified preattentively, even though form variesin the two regions; (b) random
hue variationsinterfere with the identification of aregion boundary based on form

Researchers continueto expand preattentive processing in anumber of exciting directions. To date, most of thefeatures
used in preattentive tasks have been rel atively simply properties(e.g., hue, orientation, linelength, and size). Ennsand
Rensink, however, have identified a class of three-dimensional elements that can be detected preattentively [10, 11].
They have shown that three-dimensional orientation, shape, and direction of lighting can be used to make elements
“pop-out” of avisual scene (Figures3b and 3c). Thisisimportant, because it suggeststhat complex high-level concepts
may be processed presttentively by the low-level visua system.

New tasks that can be performed preattentively are a so being investigated. Research has recently been conducted on
counting and estimation in preattentive processing. Varey describes experiments in which subjects were asked to esti-
mate therelativefrequency of white or black dots[49]. Her results showed that subjects could estimate in four different
ways. “percentage” of white dots, “percentage” of black dots, “ratio” of black dotsto white dots, and “difference” be-
tween the number of black and white dots. She also found that subjects consistently overestimated small proportions
and underestimated large proportions. Estimation of relative frequency using hue and orientation was shown to be
preattentivein experiments conducted in our laboratory [16, 18]. Moreover, our results showed that there was no fea-
ture interaction. Random orientation did not interfere with estimation of targets with a unique hue, and random hue
did not interfere with estimation of targets with a unique orientation. Thisisimportant because it suggeststhat hue and
orientation can be used to encode two independent data values in a single display without causing visua interference.

A number of scientists have proposed competing theories to explain how preattentive processing occurs, in particular
Triesman's feature integrationtheory [43], Julész' texton theory [23], Quinlan and Humphreys' similarity theory [31],
and Wolfe's guided search theory [55]. Our interest isin the use of visua features that have aready been shown to
be preattentive. Results from psychology are extended, modified, tested, and then integrated into our visualization
environment.

Real-Time Preattentive Visualization

Most preattentive techniques are validated by studying a single data frame in isolation. This leads to an interesting
guestion with important relevance to visuaization. If a preattentive task can be performed on a single frame in 100
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Figure 3: Combination of simple components to form emergent features: (a) closure, a simple closed figure is seen; (b) three-dimensionality, the
figure appearsto have depth; (c) volume, asolid figure is seen

milliseconds, can the same task can be performed on a real-time sequence of frames displayed at ten frames per sec-
ond? We hypothesized that important aspects of preattentive processing will extend to a rea-time environment. A
visualization tool that uses presttentive features will allow viewersto perform visual tasks such as grouping of similar
datael ements (boundary detection), detection of el ementswith aunique characteristic (target detection), and estimation
of the number of elements with a given value or range of values, al in real-time on temporally animated data frames.
We tested this hypothesi s using experimentsthat simulated the use of our preattentivevisualization toolsin areal-time
environment. Analysisof theexperimenta results supported our hypothesisfor boundary and target detection using hue
and shape. Moreover, interference properties previously reported for static frames were found to apply to a dynamic
environment.

Our initia experiment addressed two genera questions about the preattentive features hue and shape, and their usein
our visuaization tools:
e Question 1: Isit possible for subjects to detect a data frame with a horizontal boundary within a sequence of
random frames? If so, what features alow this and under what conditions?

¢ Question 2: Do Callaghan’sfeature hierarchy effects apply to our real-time visualization environment? Specifi-
caly, doesrandom hueinterfere with form boundary detection within a sequence of frames? Does random form
interfere with hue boundary detection within a sequence of frames?

Experimenta results showed accurate boundary detection can be performed using either hue or form on sequences of
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frames displayed at ten frames per second. Moreover, feature hierarchy effects extended to a dynamic environment,
specifically, hue dominated form during boundary detection. A random hue pattern masked form boundaries, while a
random form pattern had no effect on hue boundary detection.

A corresponding set of experiments were run to test target detection, with similar results. While both hue and form
targets can be detected preattentively in area-time environment (at frame rates of ten to twenty frames per second),
form targets were only visible when the background hue was held constant. Hue variation masked form targets. Form
variation had no effect on the detection of hue targets.

We have built anumber of visualization toolsthat allow users to perform exploratory analysis on their datasetsin real-
time. Experience from using these tools confirmed that our experimental results hold for these datasets and tasks.

Color Selection

Color isapowerful and often-used visual festure. Previouswork has addressed the issue of choosing colorsfor certain
typesof datavisualization. For example, Ware and Bestty describe asimplecol or visualizationtechniquefor displaying
correlation in a five-dimensional dataset [51]. Robertson, Ware, Rheingans and Tebbs, and Levkowitz and Herman
discuss various methods for building effective color gamuts and colormaps [25, 34, 35, 50]. Recent work at the IBM
Thomas J. Watson Research Center has focused on arule-based visualization tool that considers how a user perceives
visual features like hue, luminance, height, and so on [4, 36].

If we use color to represent our data, oneimportant questionto ask is: “How can we choose effective col orsthat provide
good differentiation between data elements during the visuaization task?’ We addressed this problem by trying to
answer threerelated questions:

¢ How can we allow rapid and accurate identification of individual data elements through the use of color?

o What factorsdeterminewhether a“target” element’scolor will makeit easy tofind, relativeto differently colored
“non-target” el ements?

e How many colors can we display at once, while till allowing for rapid and accurate target identification?

None of the currently-available color selection techniques were specifically designed to investigate the rapid and ac-
curate identification of individual data € ements based on color. Also, since the color gamut and colormap work uses
continuouscolor scales to encode information, they have not addressed the question of how many colorswe can effec-
tively display at once, while till providing good differentiation between individual data elements.

We began by using the perceptually balanced CIE LUV color model to providecontrol over color distanceand isolumi-
nance. We a so exploited two specific resultsrelated to col or target detection: linear separation[9, 2] and col or category
[24]. These effects are controlled to alow for the rapid and accurate identification of color targets. Target identification
isanecessary first step towards performing other types of exploratory data analysis. If we can rapidly and accurately
differentiate elements based on their col or, we can apply our resultsto other important visualization techniqueslike de-
tection of data boundaries, the tracking of dataregionsin rea -time, and enumeration taskslike counting and estimation
[18, 44, 49].
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CIELUV

The CIELUYV color model was proposed by the Commission Internationalede L’ Eclai rge(CIE) in1976[57]. Colorsare
specified using the three dimensions L.* (which encodes luminance), «*, and v* (which together encode chromaticity).
CIELUV providestwo useful propertiesfor controlling perceived color difference. First, colorswith the same L* are
isoluminant. Second, Euclidean distance and perceived color difference (specified in A E* units) can be interchanged,
since the color difference between two color stimuli = and y (positionedin CIELUV a (L}, uy, vy) (Ly, uy, vy), re-
spectively) isroughly:

AE;, = /(ALz,)? + (Auz,)2 + (Avz,)? ()

Linear Separation

The linear separation effect has been described by both D’ Zmura and Bauer et. al [2, 9]. D’Zmurawas investigating
how the human visua system finds atarget color in a sea of background non-target colors. D’ Zmura ran experiments
that asked observersto determine the presence or absence of an orange target. Two groups of differently colored non-
target elements were also present in each display (e.g., in one experiment half the non-targets in each display were
colored green and half were colored red). Results showed that when the target could be separated by a straight line
from its non-targets in color space (Figure 4, target T and non-targets A and C), the time required to determine the
target’s presence or absence was constant, and independent of the total number of e ements being displayed. This sug-
gests detection occurs preattentively in the low-level visua system. When the target was collinear with its non-targets
(Figure 4, target T and non-targets A and B), the time required to identify the target was linearly proportiona to the
number of elements being displayed. Observers had to search serialy through each display to determine whether the
target was present or absent. Bauer et. d strengthened D’ Zmura's results by showing that perceptually balanced color
models cannot be used to overcome the linear separation effect. Bauer et. a aso replicated their findingsin three ad-
ditiona color regions. green, blue, and green-yellow. This suggests linear separation applies to colors from different
parts of the visible color domain.

oT

[ J
A

Figure 4: Example of atarget with both collinear and separable non-targets, the colorsare shownin au*, v*-slice fromthe CIE LUV color model,
noticethat target T is equidistant from all three non-targets A, B, and C; in Case 1, target color T is collinear with the non-target colors A and B; in
Case 2, target T islinearly separable from its non-targets A and C
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Color Category

Kawai et. a [24] reported results that suggest that the time required to identify a color target depends in part on the
named color regions occupied by the target and its non-targets. Kawai et. al tested displaysthat contained a uniquely
color target and a constant number of uniformly colored non-targets. They divided an isoluminant, perceptually bal-
anced color dice into named color regions. Their results showed that search times decreased dramatically whenever
the non-target was moved outside the target’s color region. For example, finding a target colored T in a set of non-
targets colored B was significantly more difficult than than finding T in a set of non-targets colored A (Figure5). Since
the target—non-target distances 7'A and 7'B are equal, there was an expectation of perceptual balance that should have
been provided by the underlying color model. This expectation was not met. Kawai et. al suggests the differencein
performance is due to the fact that both T and B are located in the blue color region, but A is not.

B g-axis
T
blue green
boundary boundary
Hj - -
j-axis
purple I
boundary

Figure 5: A target T and two non-targets A and B shownina (7, g) slicefrom the OSA color model; the boundaries of the blue, green, and purple
color regionsare shown as thick lines; T and B occupy the same named color region “blue”, but A does not

Experiments

We ran anumber of experiments to study the effects of color distance, linear separation, and color category. Subjects
were shown displays that contained multiple colored squares. Each subject was asked to determine whether a target
squarewithaparticul ar color was present or absent in each display. The experimentswere designed totest thefollowing
conditions:

e selection criteria, which selection criteria (color distance, linear separation, and color category) need to be con-
sidered to guarantee equally distinguishablecolors,

e simultaneous colors, how many colors can we display at the same time, while still allowing usersto rapidly and
accurately determine the presence or absence of any particular color, and

o display size, is performance affected by the number of elementsin adisplay.

We found that up to seven isoluminant colors can be displayed simultaneously, while still alowing for the rapid and
accurate identification of any one of the seven. The time required to perform identification was i ndependent of display
Size, suggesting that target detection isoccurring presttentively. Our results also showed that all three selection criteria
needed to be considered to guarantee consistent performance. When only some of the selection criteriawere used (e.g.
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only distance and separation, or only category) the amount of time required to identify targets depended on the color
of thetarget: some colorswere very easy to identify, whileother colorswere very difficult. Thisasymmetry suggested
that the col ors we chose were not equally distinguishable, and therefore that the selection criteria being used were not
sufficient to properly control perceived difference between the colors during target detection.

Visualizing CT Medical Scans

One practical application of our color selection technique is the use of color to highlight regions of interest during
volumevisualization[39]. Radiologistsfromthe University Hospital at the University of British Columbiaare studying
methods for visualizing abdominal aneurisms. Traditional repair of an abdomina aneurism entails a mgjor operation
with an incisioninto theaneurism, evacuation of the clot contai ned within, placement of asynthetic graft, and wrapping
of the graft with theremnants of thewall of the aneurism. Recently, anew treatment option, endovascular stenting, has
been proposed and is currently undergoing clinical trials. This procedure does not require general anesthesiaand can
be done less invasively by simply placing a self-expanding stent graft via a catheter into the aneurism to stabilize it.
Lessfit patients are able to withstand the procedure, hospita stay is cut to 1 to 2 days, and post-operativerecovery is
shortened considerably.

After the operation computed tomography (CT) scans are used to obtain two-dimensional dices of a patient’s abdom-
ina region. These dices are reconstructed to produce a three-dimensiona volume. The volume is visuaized by the
radiologiststo perform post-operative analysis. A two-pass segmentation step is used to strip out materia ineach CT
dicethat does not correspond to one of the regions of interest: the artery running through the abdomen, the aneurism,
and the metal hooks (called tynes) used to embed the stent graft within the aneurism. The reconstructed volumes must
show clearly each of these three regions.

Normally, greyscale is used to display reconstructed medical volumes. Changes in luminance are most effective for
representing the high spatial frequency data contained in these kinds of datasets. For our application, however, one of
the most important tasks is identifying the exact position of the tynes (which in turn identify the positions of each of
the corresponding stent grafts). In our greyscale volume the location of tynes within the aneurism are obscured by the
wall of theaneurismitself (Figure6a). Different levels of transparency were used to try to “see through” theaneurism,
however, we could not find any appropriate value that showed the tyne locations within the artery, while at the same
time providing an effective representation of the three-dimensional shape and extent of the wall of the aneurism. We
decided that, for this application, it might be more appropriate to high the three regions of interest using color.

Although theradiol ogistshad already chosen a set of colorsbased on context and aesthetic considerations, it did apoor
job of showing the size and shape of the aneurism (Figure 6b). We replaced their colors with three new ones using
our color selection technique. The radiologistsasked us to avoid greens and green-yellows, since these are associated
with bile. We decided to use yellow to represent the artery, purpleto represent the aneurism, and red to represent the
tynes(Figure6c). These colorsshow clearly thelocation of all threeregionsof interest withinthevolume. For example,
consider thelarge patches of yellow within the aneurism. These are areas of “low support” wherethe graftsin the lower
part of the artery were not inserted far enough to mesh with their upstream partner. Although not dangerous, these are
exactly the kinds of features the radiol ogistswant to identify during post-operative visualization.
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Figure 6: A reconstructed CT volume showing an abdominal aneurism: (a) greyscale hides the location of the tyneswithin the aneurism; (b) a color
scale chosen by the radiol ogists obscuresthe shape and extent of the wall of the aneurism; (c) three colors chosenwith our perceptual color selection
technique

Perceptual Textures

One of the important issues in scientific visualization is designing methods for representing multiple values (or at-
tributes) at asingle spatial location. Althoughit is possibleto assign different visua featuresto each attribute, simply
“stacking” multiplefeatures together will most likely lead to displaysthat are unintelligible.

Rather than choosing multiple individual features (i.e., color, shape, size, orientation, line length), we decided to try
using a single visual feature that could be decomposed into a set of fundamental parts or dimensions. We chose to
investigate texture for this purpose.

Texture has been studied extensively in the computer vision, computer graphics, and cognitive psychology communi-
ties. Although each group focuses on separate tasks (textureidentification and texture segmentation in computer vision,
displayinginformation with texture patterns in computer graphics, and modeling the low-level human visual systemin
cognitive psychology) they each need ways to describe precisely the textures being identified, classified, or displayed.

Researchers have used different methodsto study the perceptual featuresinherent in atexture pattern. BelaJulész [21]
conducted numerous experiments that investigated how a texture's first, second, and third-order statistics affect dis-
crimination in the low-level human visua system. Thisled to the texton theory [22], which suggests that early vision
detects three types of features (or textons, as Julész called them): elongated blobs with specific visual properties(e.g.,
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hue, orientation, and width), ends of line segments, and crossings of line segments. Tamura et a. [40] and Rao and
Lohse[32, 33] identified texturedimensions by conducting experiments that asked subjectsto divide picturesdepicting
different typesof textures(Brodatzimages) intogroups. Tamuraet al. used their resultsto propose methodsfor measur-
ing coarseness, contrast, directionality, line-likeness, regularity, and roughness. Rao and L ohse used multidimensional
scaling to identify the primary texture dimensionsused by their subjectsto groupimages: regularity, directionality, and
complexity. Haralick et al. [13] built greyscale spatial dependency matricesto identify featureslike homogeneity, con-
trast, and linear dependency. Thesefeatureswere usedto classify satelliteimagesinto categorieslikeforest, woodlands,
grasslands, and water. Liu and Picard [26] used Wold features to synthesize texture patterns. A Wold decomposition
dividesa 2D homogeneous pattern (e.g., atexture pattern) into three mutually orthogonal components with perceptual
propertiesthat roughly correspond to periodicity, directionaity, and randomness. Maik and Perona[27] designed com-
puter algorithmsthat use orientation filtering, nonlinear inhibition, and computation of the resulting texture gradient to
mimic the discrimination ability of thelow-level human visua system. We used these results to choose the perceptua
texture dimensionswe wanted to investigate during our experiments.

Work in computer graphics has studied methods for using texture patternsto display information during visualization.
Schweitzer [38] used rotated discsto highlight the orientation of athree-dimensiona surface. Pickett and Grinstein[12]
built “ stick-men” iconsto producetexture patternsthat show spatial coherence inamultidimensional dataset. Ware and
Knight [52, 53] used Gabor filtersto construct texture patterns; attributesin an underlying dataset are used to modify the
orientation, size, and contrast of the Gabor el ements during visualization. Turk and Banks [48] described an iterated
method for placing streamlines to visuaize two-dimensiona vector fields. Interrante [19] displayed texture strokes
to help show three-dimensiona shape and depth on layered transparent surfaces; principal directions and curvatures
are used to orient and advect the strokes across the surface. Finally, Salisbury et a. [37] and Wikenbach and Salesin
[54] used texturing techniquesto build computer-generated pen-and-ink drawingsthat convey arealistic sense of shape,
depth, and orientation. We built upon theseresultsto try to devel op an effective method for displaying multidimensional
data through the use of texture.

Pexels

We wanted to design atechnique that will allow users to visualize multidimensional datasets with perceptual textures.
To thisend, we used amethod similar to Ware and Knight to build our displays. Each dataelement isrepresented with
asingle perceptua texture eement, or pexel. Our visualization environment consists of a large number of elements
arrayed across a three-dimensiona surface (e.g., a topographica map or the surface of a three-dimensional object).
Each element containsone or more attributesto be displayed. Attributevaluesare used to control the visual appearance
of apexel by modifyingitstexture dimensions. Texture patternsformed by groups of spatialy neighboring pexels can
be used to visually analyze the dataset.

We chose to study three perceptual dimensions: density, regularity, and height. Density and regularity have been iden-
tified intheliterature as primary texturedimensions[ 32, 33, 40]. Although height might not be considered an“intrinsic
textura cue’, we notethat height isone aspect of element size, and that element size is an important property of atex-
ture pattern. Moreover, results from cognitive vision have shown that differencesin height are detected preattentively
by thelow-leve visua system [1, 43]. We wanted to build three-dimensiona pexelsthat “sit up” on the underlying sur-
face. Thisallowsthe possibility of applying various orientations (another important perceptua dimension) to a pexd.
Because of this, we chose height as our third texture dimension.

In order to support variation of height, density, and regul arity, we built pexelsthat ook likeacollection of paper strips.
The user maps attributesin the dataset to the density (which controlsthe number of stripsin a pexel), height, and reg-
ularity of each pexel. Examples of each of these perceptua dimensions are shown in Figure 7a. Figure 7b shows an
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Figure 7: Groups of paper strips are used to form a pexel that supports variation of the three perceptual texture dimensions height, density and
randomness: (a) each pexel has one of its dimensionsvaried acrossthree discrete values; (b) a map of North America, pexelsrepresent areas of high
cultivation, height mapped to level of cultivation, density mapped to ground type, greyscale mapped to vegetation type

environmental dataset visualized with texture and greyscale (we used greyscale for printing purposes only; colour is
used to display on-screen images). Locations on the map that contain pexels represent areas in North America with
high levels of cultivation. Height shows the level of cultivation (75-99% for short pexels, 100% for tall pexels), den-
sity showsthegroundtype (sparsefor aluvial, dense for wetlands), and greyscal e showsthe vegetation type (dark grey
for plains, light grey for forest, and whitefor woods). Users can easily identify lower levelsof cultivationin the centra
and eastern plains. Areas containing wetlands can be seen as dense pexelsin Florida, along the eastern coast, and in
the southern parts of the Canadian prairies.

Experiments

In order totest our perceptual dimensionsand theinteractionsthat occur between them during visualization, weran aset
of psychophysical experiments. Our experimentswere designed to investigatea user’sability torapidly and accurately
identify target pexels defined by a particular height, density, or regularity. Users were asked to determine whether a
small group of pexels with a particular type of texture (e.g., a group of taller pexels, asin Figure 8a) was present or
absentina20 x 15 array. Conditionsliketarget pexel type, exposure duration, target group size, and background texture
dimensionsdiffered for each display. Thisalowed usto test for preattentivetask performance, visua interference, and
auser preference for aparticul ar target type. In dl cases, user accuracy was used to measure performance.

Design

Each experimental display contained aregularly-spaced 20 x 15 array of pexelsrotated 45° about the X -axis (Figure8).
All displays were monochromatic (i.e., grey and white), to avoid variationsin color or intensity that might mask the
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Figure 8: Two display typesfrom thetaller and regular pexel experiments: (a) atarget of medium pexelsin a sea of short pexelswith a background
density pattern (2 x 2 target group located left of center); (b) atarget of regular pexelsin aseaof irregular pexelswith no backgroundtexture pattern
(2 x 2 target group located 8 grids step right and 2 grid steps up from the lower-left corner of the array)

underlyingtexture pattern. Grid lineswere drawn at each row and column, to ensure users perceived the pexelsaslying
on atilted 3D plane. After a display was shown, users were asked whether a group of pexels with a particular target
value was present or absent. In order to avoid confusion, each user searched for only onetype of target pexel: taler,
shorter, sparser, denser, more regular, or more irregular. The appearance of the pexelsin each display was varied to
test for preattentive performance, visua interference, and feature preference. For example, the following experimental
conditionswere used toinvestigate auser’s ability toidentify taller pexels (similar conditionswere used for the shorter,
denser, sparse, regular, and irregular experiments):

o two target-background pairings. atarget of medium pexelsin a sea of short pexes, and a target of tall pexels
in a sea of medium pexels; different target-background pairings allowed us to test for a subject preference for a
particular target type,

o three display durations: 50 msec, 150 msec, and 450 msec; we varied exposure duration to test for presttentive
performance, specifically, does the task become more difficult during shorter exposures,

o three secondary texture dimensions. none (every pexel is sparse and regular), density (half the pexels are ran-
domly chosen to be sparse, half to be dense), and regularity (haf the pexels are regular, half are random); we
added a “background” texture feature to test for visual interference, that is, does the task become more difficult
when a secondary texture dimension appears at random spatial locationsin the display, and

o two target group sizes. 2 x 2 pexelsand 4 x 4 pexels, we used different target group sizes to see how large a
group of pexelswas needed before the target could be detected by aviewer.

Our resultssuggest that pexel scan be used to represent multidimensiona dataelements, but only if specific data-feature
mappings are chosen. Some dimensions were more salient than others, and interference occurred when certain types
of pexelswere displayed. Specificaly, we found that:

o taler pexelscan beidentified at preattentive exposure durations (i.e., 150 msec or less) with very high accuracy
(approximately 93%); background density and regularity patterns produce no significant interference,

o shorter, denser, and sparser pexelsare more difficult to identify than taller pexels, although good results are pos-
sibleat both 150 and 450 msec; height, regularity, and density background texture patterns cause interference for
all threetarget types,
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o irregular pexels are difficult to identify, although reasonable accuracy (approximately 76%) is possible at 150
and 450 msec with no background texture pattern, and

o regular pexds cannot be accurately identified; the percentage of correct results approached chance (i.e., 50%)
for every condition.

These results suggest that height and density can be used to to form texture patternsthat can beidentified preattentively.
Regularity, however, can only be used as a secondary dimension. While differences in regularity cannot be detected
consistently by thelow-level visual system, in many cases userswill be able to see changesin regul arity when areas of
interest in a dataset are identified and analyzed in afocused or attentive fashion.

Visualizing Typhoon Data

One of our current testbeds for using pexels to visualize multidimensiona dataisthe analysis of environmental con-
ditionsrelated to typhoons. We used pexels to visuaize typhoon activity in the Northwest Pacific Ocean during the
summer and fal of 1997. The names “typhoon” and “hurricane” are region-specific, and refer to the same type of
weather phenomena: an atmospheric disturbance characterized by low pressure, thunderstorm activity, and a cyclic
wind pattern. Storms of thistype with windspeeds below 17m/s are called “tropical depressions’. When windspeeds
exceed 17m/s, they become “tropica storms’. Thisis also when storms are assigned a specific name. When wind-
speeds reach 33m/s, a storm becomes a typhoon (in the Northwest Pacific) or a hurricane (in the Northeast Pacific and
North Atlantic).

We combined information from a number of different sources to collect the data we needed. A U.S. Navy elevation
dataset® was used to obtain land elevations at ten minute latitude and longitudeintervals. Land-based weather station
readings coll ected from around the world and archived by the National Climatic Data Center? provided daily measure-
mentsfor eighteen separate environmenta conditions. Finaly, satellite archives made available by the Global Hydrol -
ogy and Climate Center® contained daily open-ocean windspeed measurements at thirty minute latitude and longitude
intervals. The National Climatic Data Center defined the 1997 typhoon season to run from August 1 to October 31,
each of our datasets contained measurements for this time period.

We chose to visualize three environmental conditionsrelated to typhoons: windspeed, pressure, and precipitation. All
three values were measured on adaily basis at each land-based westher station, but only daily windspeeds were avail-
able for open-ocean positions. In spite of the missing open-ocean pressure and precipitation, we were able to track
storms as they moved across the Northwest Pacific Ocean. When the storms made landfall the associated windspeed,
sea-level pressure, and preci pitation were provided by weather stations along their path.

Based on our experimental results, we chose to represent windspeed, pressure, and preci pitation with height, density,
and regularity, respectively. Localized areas of high windspeed are an obviousindicator of storm activity. We chose to
map increasing windspeed to an increased pexel height. Our experimental results showed that taller pexelscan beiden-
tified presttentively, regardless of any background texture pattern that might be present. Windspeed has two important
boundaries: 17m/s (where tropical depressions become tropical storms) and 33m/s (where storms become typhoons).
We mirrored these boundaries with height discontinuities. Pexel height increases linearly from 0-17m/s. At 17nv/s,
height approximately doubles, then continueslinearly from 17-33m/s. At 33m/s another height discontinuity is intro-
duced, followed by alinear increase for any windspeeds over 33m/s.

Lhttp://grid2.cr.usgs.gov/dem/
2http://www.ncdc.noaa.gov/ol/climate/online/gsod.html
Shttp://ghrc.msfc.nasa.gov/ims-cgi-bin/execute?mkinfo+mif13owsg
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Figure 9: (a) windspeed mapped to height, pressure mapped to density, preci pitation mapped to regularity: ooking south, typhoon Amber moveseast
to west across the Northwest Pacific (August 26, 1997); (b) typhoon Amber makes landfall on the island of Taiwan (August 28, 1997); (c, d) same
dataas for (a) and (b), but with windspeed mapped to regularity, pressure mapped to height, precipitation mapped to density: the use of regularity
makesit significantly more difficult to track typhoonswhen they make landfall

Pressure is represented with pexel density. Anincreasein pressureis mapped to a decrease in pexel density (i.e., very
dense pexelsrepresent areas of very low pressure). Pressure below 996 millibars producesvery dense pexels. Pressure
between 996 and 1014 millibarsis represented by dense pexels. Pressure over 1014 millibarsresults in sparse pexels.
Our experimental results showed it was easier to find dense pexelsin a sea of sparse pexels, as opposed to sparse in
dense. Our mapping uses high-density pexels to highlight the low-pressure areas associated with typhoon activity.

Precipitation isrepresented with pexel regularity. High levelsof precipitationresult inan irregular pexel pattern. Pexel
positionsare held regular for adaily rainfall of 0.13 inches or less (the median valuefor the time period we visualized).
Daily rainfall over 0.13 inches produces an increased pexel irregularity. Because preci pitation was not as important as
either windspeed or pressure during visualization, it was assigned to our least effective texture dimension, regularity.

We built asimplevisualizationtool that mapswindspeed, pressure, and precipitationto their corresponding hei ght, den-
sSity, and regularity. Our visualization tool allows a user to move forwards and backwards through the dataset day-by-
day. Oneinteresting result wasimmediately evident when we began our analysis. typhoon activity was not represented
by high windspeed values in our open-ocean dataset. Typhoons normally contain severe rain and thunderstorms. The
high levels of cloud-based water vapor produced by these storms block the satellites that are used to measure open-
ocean windspeeds. The result is an absence of any windspeed values within a typhoon's spatial extent. Rather than
appearing as alocal region of high windspeeds, typhoonson the open-ocean are displayed asa“hol€e”, an ocean region
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without any windspeed readings (see Figures9aand 9b). Thisabsence of avisual feature(i.e., aholeinthetexturefield)
islargeenough to be salient in our displays, and can be preattentively identified and tracked over time. Therefore, users
have littledifficulty finding storms and watching them as they move across the open ocean. When a storm makes land-
fal, the weather stations along the storm’s path provide the proper windspeed, as well as pressure and preci pitation.
Westher stations measure windspeed directly, rather than using satellite images, so high levels of cloud-based water
vapor cause no loss of information.

Two display frames from our visuaizationtool are shown in Figure 9. Figure 9a, looking south, tracks typhoon Amber
(one of the region’s major typhoons) approaching along an east to west path across the Northwest Pacific Ocean on
August 26, 1997. Figure 9b showstyphoon Amber two days later asit movesthrough Taiwan. Weather stationswithin
thetyphoon show the expected strong winds, low pressure, and high levelsof rainfal. Theseresultsare easily identified
astall, dense, irregular pexels. Compare these images to Figures 9c-d, where windspeed was mapped to regularity,
pressure to height, and precipitation to density (a mapping that our experiments predict will perform poorly). Although
viewers can identify areas of lower and higher windspeed (e.g., on the open ocean and over Taiwan), it is difficult to
identify a changeinlower or higher windspeeds (e.g., the change in windspeed as typhoon Amber moves onshore over
Taiwan). Infact, viewers often searched for an increase in height that represents a decrease in pressure, rather than an
increase in irregularity; pexels over Taiwan become noticeably taller between Figures 9c and 9d.

Oceanography Simulations

Our final example describes aset of oceanography simulationsbeing jointly conducted at North Carolina State Univer-
sity and the University of British Columbia[15]. Researchers in oceanography are studying the growth and movement
patterns of different species of salmon inthe northern Pacific Ocean. Underlying environmental conditionslike plank-
tondensity, sea surface temperature (SST), current direction, and current strength aff ect wherethe salmon liveand how
they move and grow [41]. For example, sadlmon like cool er water and tend to avoid ocean | ocationsabove a certain tem-
perature. Since the salmon feed on plankton blooms, they will try to move to areas where plankton density is highest.
Currentswill “push” the sdlmon as they swim. Finally, SST, current direction, and current strength affect the size and
location of plankton blooms as they form.

The oceanographers are designing models of how they believe salmon feed and move in the open ocean. These sim-
ulated salmon will be placed in a set of known environmental conditions, then tracked to see if their behavior mirrors
that of thereal fish. For example, salmon that migrate back to the Fraser River to spawn chose one of two routes. When
the Gulf of Alaskaiswarm, salmon make landfdll at the north end of Vancouver 1sland and approach the Fraser River
primarily viaa northern route through the Johnstone Strait (the upper arrow in Figure 10). When the Gulf of Alaska
is cold, salmon are distributed further south, make landfall on the west coast of Vancouver Island, and approach the
Fraser River primarily viaa southern route through the Juan de Fuca Strait (the lower arrow in Figure 10). The ability
to predict salmon distributionsfrom prevailing environmental conditionswould allow the commercid fishing fleet to
estimate how many fish will pass through the Johnstone and Juan de Fuca straits. It would also alow more accurate
predictions of the size of the salmon run, helping to ensure that an adequate number of salmon arrive at the spawning
grounds.

In order to test their hypotheses, the oceanographers have created a database of SSTs and ocean currentsfor theregion
35° north latitude, 180° west longitude to 62° north latitude, 120° west longitude (Figure 10). Measurements within
thisregion areavailableat 1° x 1° grid spacings. Thisarray of values existsfor each month for theyears 1956 to 1964,
and 1980 to 1989.

Partial plankton densities have a so been collected and tabul ated; these are obtained by shipsthat take readings at vari-
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Figure 10: Map of the North Pacific; arrowsrepresent possible salmon migration paths asthey passthrough the either Johnstone Strait (upper arrow)
or the Strait of Juan de Fuca (lower arrow)

ous positionsin the ocean. We estimated missing plankton values using a set of knowledge discovery (KD) algorithms
that we have specifically modified for use during visualization. Our KD algorithmsidentified month, SST, and current
magnitude as the attributes used to estimate missing plankton values. Because of this, we restricted our initial visual-
ization to a monthly time-series of plankton density, SST, and current magnitude.

Displayingthethreeattributestogether allowsthe oceanographersto search for rel ationshi ps between plankton density,
current strength, and SST. Plankton is displayed using colour; SST and current strength are displayed using texture.
Colours for the five plankton ranges were chosen using our colour selection technique [14]. Although other colour
scales were available (for example, by Ware [50]), our colours are specifically designed to highlight outliers, and to
show clearly the boundariesbetween groupsof € ementswith acommon planktondensity. We display thefive plankton
density ranges from low to high using blue (monitor RGB=36, 103, 151), green (monitor RGB=18, 127, 45), brown
(monitor RGB=134, 96, 1), red (monitor RGB=243, 51, 55), and purple (monitor RGB=206, 45, 162),

For the underlyingtexture, we mapped current strengthto height and SST to density. Our choiceswereguided by results
we observed from our texture experiments:

o differencesin height (specificaly, taller elements) may be easier to detect, compared to differencesin density or
randomness,

e variation in height may mask differences in density or randomness; this appears to be due to the occlusion that
occurs when tall pexelsin the foreground hide short pexels in the background; this will be less important when
userscan control their viewpointinto thedataset (our visualizationtool allowstheuser tointeractively manipul ate
the viewpoint), and

¢ tightly spaced grids can support up to three easily distinguishabledensity patterns; placing more stripsinasingle
pexe (e.g., arraysof 3 x 3 or 4 x 4 strips) will either cause the stripsto overlap with their neighbors, or make
each strip too thinto easily identify.
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Because there may be a feature preference for height over density, and because current strength was deemed “more
important” than SST during knowledge discovery, we used height to represent currents and density to represent SSTs.
The five ranges of current strength are mapped to five different heights. We do not use a linear mapping, rather the
lower two ranges (corresponding to the weakest currents) are displayed using two types of short pexds, and the upper
three ranges (corresponding to the strongest currents) are displayed using three types of tall pexels. Thisallowsa user
to rapidly locate boundaries between weak and strong currents, while still being ableto identify each of thefiveranges.
For SSTs, the lower three ranges (corresponding to the coldest SSTs) are displayed with a pexel containing a single
strip, while the upper two ranges (corresponding to the warmest SSTs) are displayed with pexels containing arrays of
2 x 1and 2 x 2 strips, respectively. The densitieswe chose allow auser to see clearly the boundaries between cold and
warm temperature regions. |f necessary, users can change the range boundariesto focus on different SST gradients.

The oceanographerswant to traversetheir datasetsin monthly and yearly steps. Experimentsrunin our laboratory have
shown that preattentivetasks performed on static frames can be extended to adynamic environment, where displaysare
shown one after another inamovie-likefashion [17]. Our visualization tool was designed to allow usersto scan rapidly
forwards and backwards through the dataset. This makes it easy to compare changes in the value and location of any
of the environmental variables being displayed. The oceanographers can track seasonal changes in current strength,
SST, and plankton density as they move month by month through a particular year. They can also see how interannual
variability affects the environmental conditions and corresponding plankton densities for a particular month across a
range of years.

Figure 11 shows three frames from the oceanography dataset: February 1956, June 1956, and October 1956. Colour
showstheseasond variationin planktondensities. Height and density allow the oceanographerstotrack current strengths
and SSTs. In February (Figure 11a), most plankton densitiesarelessthan 28 g/m? (i.e., blueand green strips). Currents
arelow inthe north-centra Pacific; aregion of weak currents also sits off the south coast of Alaska. Most of the ocean
is cold (sparse pexels), although a region of higher temperatures can easily be seen as dense pexels in the south. In
June (Figure 11b) dense plankton blooms (red and purple strips) are present across most of the northern Pacific. The
positions of the strong currents have shifted (viewing the entire dataset shows this current pattern is relatively stable
for the months March to August). Warmer SSTs have pushed north, athough the ocean around Alaska and northern
British Columbiaisstill relatively cold. By October the plankton densities have started to decrease (green, brown, and
red strips); few high or low density patches are visible. Current strengths have also decreased in the eastern regions.
Overdl amuch larger percentage of theocean iswarm (i.e., dense pexels). Thisiscommon, since summer temperatures
will sometimes last in parts of the ocean until October or November.
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