

Sensitivity to 3D Orientation in Textured Surfaces

Geniva Liu¹, James T. Enns¹, & Christopher G. Healey²

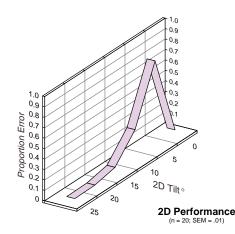
General Goal of Data Visualization

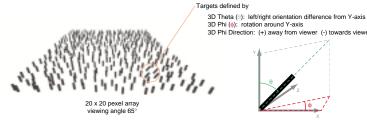
Improve clarity, increase expressive power in visualization of large, complex, multidimensional data sets

Current Goal

Facilitate data visualization via oriented rectangular elements (pexels)

Perception Background

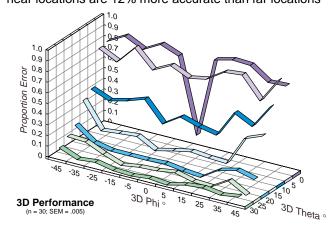

Visual search based on 3D orientation can be preattentive (Enns & Rensink, Psychological Science, 1990)


I. Human Sensitivity to Oriented Pexels

Flat (2D) Arrays

Targets defined by 2D Tilt: target-distractor orientation difference in picture plane

15° orientation differences improve detection by 57%



Slanted (3D) Arrays

15° differences in theta *improve* detection by 48%

 15° differences in phi impair detection by 4.5% near locations are 12% more accurate than far locations

II. Is Detection Based on 2D or 3D Orientation?

Multiple Regression Approach

- 4 Factors: • 2D Tilt • 3D Phi • 3D Theta
 - 3D Phi Direction

Results:

- all 4 factors explain 86% of detection variance . . . but only 3D Theta & 3D Phi are significant
- 2 factor regression model still explains 86% of variance
- · 2D Tilt unnecessary in model!

Conclusions

Similar sensitivity to 2D and 3D orientation

Pexel detection is based on 3D representation (2D Tilt in image contributes nothing)

Unique issues of 3D displays

- foreshortening impairs search (3D Phi result)
- near locations yield better sensitivity than far locations

Future Work

How to enhance 3D displays for even greater sensitivity? (e.g., shading, stereo, motion parallax)

Active vs. passive viewing of depicted surfaces?

Acknowedgments

G. Liu & J. T. Enns thank NSERC (Canada) & UBC Psychology C. G. Healey thanks National Science Foundation (NSF-IIS-9988507, NSF-ACI-0083421)

Further info: www.interchange.ubc.ca/vsearch www.cs.ncsu.edu/faculty/healey