
E�ective Visualization of Large

Multidimensional Datasets
by

Christopher G. Healey

B.Math, The University of Waterloo, 1990
M.Sc., The University of British Columbia, 1992

A Thesis Submitted in Partial Fulfilment of

the Requirements for the Degree of

Doctor of Philosophy

in the Faculty of Graduate Studies

Department of Computer Science

We accept this thesis as conforming to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

c
 Christopher G. Healey, September 1996

In presenting this thesis in partial ful�lment of the requirements for an advanced degree at
the University of British Columbia, I agree that the Library shall make it freely available
for reference and study. I further agree that permission for extensive copying of this thesis
for scholarly purposes may be granted by the head of my department or by his or her
representatives. It is understood that copying or publication of this thesis for �nancial gain
shall not be allowed without my written permission.

Department of Computer Science
The University of British Columbia
2366 Main Mall
Vancouver, Canada
V6T 1Z4

Date:

Abstract

A new method for assisting with the visualization of large multidimensional datasets is

proposed. We classify datasets with more than one million elements as large. Multidimen-

sional data elements are elements with two or more dimensions, each of which is at least bi-

nary. Multidimensional data visualization involves representation of multidimensional data

elements in a low dimensional environment, such as a computer screen or printed media.

Traditional visualization techniques are not well suited to solving this problem.

Our data visualization techniques are based in large part on a �eld of cognitive psychology

called preattentive processing. Preattentive processing is the study of visual features that

are detected rapidly and with little e�ort by the human visual system. Examples include

hue, orientation, form, intensity, and motion. We studied ways of extending and applying

research results from preattentive processing to address our visualization requirements. We

used our investigations to build visualization tools that allow a user to very rapidly and accu-

rately perform exploratory analysis tasks. These tasks include searching for target elements,

identifying boundaries between groups of common elements, and estimating the number of

elements that have a speci�c visual feature. Our experimental results were positive, sug-

gesting that dynamic sequences of frames can be used to explore large amounts of data in a

relatively short period of time.

Recent work in both scienti�c visualization and database systems has started to address

the problems inherent in managing large scienti�c datasets. One promising technique is

knowledge discovery, \the nontrivial extraction of implicit, previously unknown, and poten-

tially useful information from data". We hypothesise that knowledge discovery can be used

as a �lter to reduce the amount of data sent to the visualization tool. Data elements that do

not belong to a user-chosen group of interest can be discarded, the dimensionality of indi-

vidual data elements can be compressed, and previously unknown trends and relationships

ii

can be discovered and explored.

We illustrate how our techniques can be used by applying them to real-world data and

tasks. This includes the visualization of simulated salmon migration results, computerized

tomography medical slices, and environmental datasets that track ocean and atmospheric

conditions.

iii

Contents

Abstract ii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgements xii

Chapter 1 Introduction 1

1.1 Research Goals . 3

Standard Visualization Systems . 4

Multidimensional Visualization Techniques 5

Hybrid Visualization Packages . 6

1.2 Research Overview . 6

1.3 Multidimensional Visualization . 7

1.4 Knowledge Discovery . 12

1.5 Contributions . 15

Chapter 2 Preattentive Processing 18

2.1 Feature Integration Theory . 20

2.2 Texton Theory . 24

2.3 Similarity Theory . 26

2.4 Guided Search Theory . 29

2.5 Interference Experiments . 31

2.6 Three-Dimensional Icons . 34

iv

2.7 Motion and Depth . 38

2.8 Iconographic Displays . 41

Chapter 3 Preattentive Estimation 45

3.1 Salmon Migration Simulations . 47

Task Selection . 50

3.2 Original Estimation Experiments . 51

3.3 Experiment 1: Display Duration . 55

3.4 Experiment 2: Feature Di�erence . 58

Chapter 4 Colour and Orientation 62

4.1 Properties of Colour . 63

4.2 CIE XYZ Colour Model . 64

4.3 Monitor RGB Colour Model . 67

4.4 CIE LUV Colour Model . 69

4.5 Munsell Colour Model . 71

4.6 Colour in Scienti�c Visualization . 73

4.7 Colour in Preattentive Processing . 80

4.8 Linear Separation E�ect . 85

4.9 Colour Category E�ect . 89

4.10 Orientation and Texture . 91

Chapter 5 E�ective Colour Selection 98

5.1 Colour Selection Technique . 99

5.2 Estimating Monitor Gamut . 101

5.3 Segmenting Colour Regions . 106

Method . 109

Results . 110

5.4 Evaluating Colour Categories . 115

Method . 115

Results . 117

5.5 Perceptual Overlap . 118

5.6 Experiment 1: Distance and Separation . 121

Method . 124

Results . 128

5.7 Colour Category Integration . 133

v

5.8 Experiment 2: Colour Category . 135

5.9 Experiment 3: Colour Selection . 137

Chapter 6 Real-Time Visualization 139

6.1 Experiment 1: Boundary Detection . 141

Method . 143

Results . 148

6.2 Experiment 2: Target Detection . 151

Method . 152

Results . 156

Chapter 7 Dataset Management 160

7.1 Database Management Systems . 162

7.2 Knowledge Discovery . 167

7.3 Managing Large Multidimensional Datasets 170

7.4 Decision Trees . 172

7.5 Statistical Tables . 176

7.6 Interval Classi�cation . 179

7.7 Rough Sets . 183

Chapter 8 Knowledge Discovery in Visualization 189

8.1 Classi�cation Weights . 191

Decision Trees . 192

Statistical Tables . 193

Interval Classi�cation . 193

Rough Sets . 194

8.2 Results . 195

Decision Trees . 196

Statistical Tables . 198

Interval Classi�cation . 199

Rough Sets . 199

8.3 Attribute Signi�cance Weights . 204

Decision Trees . 205

Statistical Tables . 206

Interval Classi�cation . 207

Rough Sets . 207

vi

8.4 Results . 208

Chapter 9 Future Work and Applications 210

9.1 Texture . 210

9.2 Emergent Features . 213

9.3 Practical Applications . 214

Oceanography . 216

Computerized Tomography Slices . 219

Sea Surface Temperatures . 223

Bibliography 231

vii

List of Tables

2.1 Preattentive Visual Features . 20

5.1 Grey-Line Colour Names . 112

5.2 User-Chosen Category Names . 118

5.3 Perceptual Overlap Table . 120

5.4 Distance and Separation Values . 125

5.5 Colour Selection Experiment Summary . 127

5.6 Seven-Colour Overlap Table . 134

5.7 Neighbour and Linear Separation Distances 136

7.1 Knowledge Discovery Glossary . 172

7.2 Interval Classi�cation Grouping . 177

7.3 Interval Classi�cation Training Set Example 180

7.4 Range Boundary Frequency Calculation . 182

8.1 Decision Tree Leaf Node . 192

8.2 Signi�cance Weight Table . 208

9.1 Oceanography Dataset Format . 218

9.2 Oceanography Attribute-Feature Mapping 218

9.3 CT Dataset Format . 219

9.4 CT Intensity Ranges . 220

9.5 CT Attribute-Feature Mapping . 222

9.6 COADS Dataset Format . 224

9.9 COADS Attribute Ranges . 225

9.10 Classi�cation Error Rates . 226

9.11 Filtered Classi�cation Error Rates . 226

viii

List of Figures

1.1 Research Map . 16

2.1 Target Detection . 19

2.2 Boundary Detection . 21

2.3 Feature Map From Early Vision . 23

2.4 Textons . 25

2.5 N-N Similarity . 27

2.6 Guided Search Theory . 30

2.7 Form and Hue Segregation . 32

2.8 Hue and Brightness Segregation . 32

2.9 Three-Dimensional Icons . 35

2.10 Emergent Features . 36

2.11 Emergent Feature Targets . 37

2.12 Size and Deformation Motion . 40

2.13 \Stick-Men" Icons . 42

2.14 Cherno� Faces . 44

3.1 British Columbia Coast . 48

3.2 OSCURS Example Output . 49

3.3 Example Estimation Experiment Displays 53

3.4 Hue Estimation Display Duration vs. Mean Error 56

3.5 Orientation Estimation Display Duration vs. Average Error 57

3.6 Hue Estimation Feature Di�erence vs. Average Error 59

3.7 Orientation Estimation Feature Di�erence vs. Average Error 60

4.1 Colour Wavelength Graph . 63

4.2 RGB and XYZ Colour Matching Curves . 65

4.3 CIE Chromaticity Diagram . 67

ix

4.4 RGB Colour Cube . 68

4.5 Munsell Colour Space . 72

4.6 Coherency Visualization . 74

4.7 Critical Colour Di�erence . 83

4.8 Boundary Colour Positions . 84

4.9 Linear Separation Experiments . 87

4.10 Linear Separation in CIELUV . 88

4.11 Colour Category Experiments . 90

4.12 Orientation Category Examples . 93

5.1 Constant Colour Distance and Linear Separation 101

5.2 Estimating Boundary Lines . 102

5.3 Computing Convex Polytope . 104

5.4 Inscribed Circle Within Polytope . 105

5.5 Monitor RGB Segmentation . 111

5.6 HSV Segmentation . 113

5.7 LUV Segmentation . 114

5.8 LUV Circle Segmentation . 116

5.9 Example Experiment Displays . 123

5.10 Monitor's Gamut at L�=67.1 . 125

5.11 3-Colour and 5-Colour Response Time Graphs 129

5.12 7-Colour and 9-Colour Response Time Graphs 131

5.13 Colour Category Response Time Graphs . 135

5.14 Colour Selection Response Time Graphs . 138

6.1 Hue Boundary Detection Examples . 145

6.2 Form Boundary Detection Examples . 146

6.3 Boundary Detection: Error vs. Exposure Duration Graph 150

6.4 Hue Target Detection . 154

6.5 Form Target Detection . 155

6.6 Target Detection: Error vs. Exposure Duration Graph 157

7.1 Decision Tree Example . 175

7.2 Rough Set Diagram . 184

8.1 Decision Tree Classi�cation Error Graph . 197

x

8.2 Statistical Table Classi�cation Error Graph 200

8.3 Interval Classi�cation Error Graph . 201

8.4 Rough Set Classi�cation Error Graph . 203

8.5 Signi�cance Values for Decision Trees . 206

9.1 Varying Texture Dimensions . 212

9.2 Visualizing Salmon with Emergent Features 215

9.3 Sample PV Output . 217

9.4 Examples CT Image Slices . 221

9.5 Worldwide Sea Surface Temperatures . 228

9.6 North American Sea Surface Temperatures 229

xi

Acknowledgements

A lot of di�erent people helped me with various parts of this thesis. Technical support,

moral support, mental support, you name it.

I want to thank both my supervisors, Kelly Booth and JimEnns, for their advice, support,

and guidance. I would also like to thank my committee members, Dr. Alain Fournier, Dr.

Raymond Ng, Dr. Uri Ascher, Dr. Peter Graf, and Dr. Brian Funt, for the time and e�ort

they spent to read and comment on my work.

Ron Rensink wrote the software which was used to run a number of our experiments. He

also provided many helpful references in the area of preattentive processing. Ron was the

one who introduced me to both preattentive processing and Jim Enns, so if I ever become

famous, he can tell everyone \I'm the one who started his career".

I have friends here, but some have been with me (on and o�) longer than others. In no

particular order: Bill Gates, Gwen Litch�eld, Raza Khan, and Vishwa Ranjan. There are

also some people who left early, but with whom I still keep in touch: Chris Romanzin and

Pierre Poulin.

The most important \acknowledgement" goes to my parents and my girlfriend. My

parents put up with me for the �rst twenty-four years. Hiroko put up with me for the last

�ve. I'm not sure who did more work. Either way, they both loved me, supported me, and

pushed me when I needed motivation. What more could you ask for?

xii

Chapter 1

Introduction

Scienti�c visualization in computer graphics is a relatively new �eld of research. The term

\visualization" was used during a 1987 National Science Foundation (NSF) panel report

on how to apply computer science techniques to data analysis problems [McCormick et al.,

1987]. The panel de�ned the domain of visualization to be the development of general

purpose tools and the study of research problems that arise in the process. Participants on

the panel emphasised a number of research goals, speci�cally:

� visualization should combine research results from di�erent disciplines (e.g., computer

science, computer graphics, psychology, and visual arts)

� visualization should address both the intelligent display of data and the intelligent

management of the underlying dataset

� visualization does not have to be complicated in order to be useful

� visualization should be performed interactively while the data is being generated

Panel members at a similar visualization roundtable noted that the desire for computer-

based data visualization arose from the need to analyse larger and more complex datasets

[Wolfe and Franzel, 1988]. Scienti�c visualization has grown rapidly in recent years as a direct

1

Chapter 1. Introduction 2

result of the overwhelming amount of data being generated. New visualization techniques

need to be developed that address this \�rehose of information" if users hope to analyse

even a small portion of their data repositories.

Many traditional computer software tools are now being extended to provide user in-

teraction and real-time visualization of results. For example, visual interactive simulation

studies ways of adding useful visualization and user interaction components to simulation

programs [Hurrion, 1980; Bell and O'Keefe, 1987; Bell and O'Keefe, 1994]. Other types of

applications also need to display data in real-time. In air tra�c control screens are often

shared by di�erent operators who acquire visual data from di�erent parts of the display at

the same time. Visualization techniques for this environment must allow a variety of tasks to

be performed rapidly and accurately on dynamically changing subsets of the overall display.

Medical imaging systems such as CT, MRI, PET, and ultrasound are another type of ap-

plication that could bene�t from real-time visualization. Techniques that allowed rapid and

accurate visual analysis of more than one aspect of the data might decrease the amount of

time needed to complete the diagnostic task. This is important, since these types of systems

often cannot be time-shared by multiple users. Any improvement in visualization would in-

crease total throughput for the system. Moreover, better displays might reduce errors made

during analysis. Even a small increase in accuracy is important in this type of environment.

A variety of methods have been used to convert raw data into a more usable visual for-

mat. Both Tufte [1983, 1990] and Collins [1993] give an interesting review of pre-computer

visualization techniques. Two of the best known examples are maps and the conversion of nu-

meric data into di�erent types of graphs. Diverse solutions for displaying high-dimensional

datasets in a low-dimensional environment such as the computer screen have been pro-

posed [Pickett and Grinstein, 1988; Ware and Beatty, 1988; Grinstein et al., 1989; Enns,

1990a; Enns, 1990b]. Specialized software tools such as the Application Visualization Sys-

tem (AVS), apE, VIS-5D, and the Wavefront Data Visualizer [Upson, 1989; Hibbard and

Chapter 1. Introduction 3

Santek, 1990; Vande Wettering, 1990] have been developed for performing visualization on

computer graphics workstations.

A recent update on the NSF visualization report described research being performed at

a number of academic institutions [Rosenblum, 1994]. Although many visual presentation

techniques have been studied (e.g., volume visualization,
uid
ow, and perceptual visual-

ization), much less work has focused on formulating guidelines for their design. Results in

this thesis are meant to address this more general issue.

1.1 Research Goals

Our goal is the investigation and development of techniques for visualizing rapidly and accu-

rately large multidimensional datasets. We formally de�ne \large" and \multidimensional"

as follows:

� large: the size of a dataset is the combination of two separate characteristics: the

absolute number of data elements within a single data frame, and the number of data

frames that make up the dataset

� multidimensional: the dimensionality of a data element also depends on two separate

characteristics: the number of di�erent attributes or dimensions embedded in the el-

ement, and the number of unique values each attribute can represent (e.g., a binary,

multivalued, or continuous attribute)

A typical workstation monitor has a resolution of approximately one million pixels. This

represents a limit on the number of data elements (one per pixel) that can be displayed on

a single screen. We de�ne large to be a dataset with more than one million elements (i.e.,

Chapter 1. Introduction 4

more than can be displayed on a single screen). We de�ne multidimensional to be a data

element with two or more dimensions, where each dimension is at least binary.

It is important to understand how existing visualization systems and techniques address

our problem environment. We describe three types of visualization environments: standard

visualization systems, multidimensional visualization techniques, and hybrid visualization

packages that have access to an underlying database management system.

Standard Visualization Systems

A number of specialized software tools (e.g., AVS, apE, Wavefront Data Visualizer, and

Iris Explorer) have been developed to perform scienti�c visualization on computer graphics

workstations. These systems have the potential to visualize large multidimensional datasets,

in particular because they are extensible and because they support a wide range of simple

visual presentation methods. In spite of this, we feel these systems are missing a number of

key components that are necessary for solving the multidimensional visualization problem.

First, the built-in data management facilities are usually limited to reading and writing

�les, plus simple �ltering using comparison operators. Attempts to process large datasets

often result in the visualization tool being overwhelmed by the amount of data that needs

to be managed. Beyond that, no rules or guidelines are provided to deal speci�cally with

displaying either large or multidimensional datasets. Users are left to answer key questions

on their own, such as: How can I display a dataset that does not \�t" in one screen?

How can I e�ectively display multidimensional data elements? How can I show structure in

the data (e.g., coherent regions, related elements, elements with unique attributes)? These

packages o�er a
exible foundation for building tools that deal with visualization of large

multidimensional datasets, but proper data management and visualization techniques must

�rst be identi�ed and made available to the user. This thesis investigates exactly these kinds

Chapter 1. Introduction 5

of data management and visualization guidelines.

Multidimensional Visualization Techniques

Our research focuses on multidimensional data visualization. We are trying to address the

question: How can I display multidimensional data in a spatially low-dimensional envi-

ronment, such as a computer screen or printed media? Researchers have approached this

problem in di�erent ways. Enns and Rensink [1990a, 1990b] discuss using the human visual

system to e�ciently process multidimensional datasets; they describe geometric icons that

combine the power of the computer and the human visual system. Ware and Beatty [1988]

have designed a method that uses colour and spatial location to represent multidimensional

data elements; subsets of the data with similar values appear as a spatial \cloud" of similarly

coloured squares. Pickett and Grinstein [1988, 1989] use results from cognitive psychology

as a basis for the design of their visualization tools; they display structure in the data as a

set of textures and boundaries, so that groups of data elements with similar values appear

as a spatial group with a unique texture in the display. None of these techniques explicitly

address the problem of large datasets since they are restricted to, at best, the number of

pixels that can be displayed on a single screen. Some of the techniques are limited to a spe-

ci�c task, for example, Ware and Beatty's tool helps a user perform coherency testing, while

Pickett and Grinstein's displays regions and boundaries in a dataset. An important question

to ask is whether additional visual features can be integrated into any of these techniques.

For example, could Pickett and Grinstein use colour to encode additional information in

their displays? Variations in colour might mask texture boundaries during visualization, or

vise-versa. Finally, it is di�cult to see how either Ware and Beatty or Enns and Rensink

could easily extend their techniques to handle higher dimensional data elements.

Chapter 1. Introduction 6

Hybrid Visualization Packages

In order to address management of large datasets, researchers are now studying the useful-

ness of visualization tools that are a combination of a commercial database package (DBMS)

and a visualization system like those described above [Kochevar et al., 1993; Stonebraker

et al., 1993]. Because both the visualization system and the DBMS are extensible, it is

relatively easy to provide a layer of software to \glue" the two systems together. This

makes the functionality of the underlying database available from within the visualization

system, dramatically enhancing both the scope and e�ciency of data management opera-

tions. Unfortunately, this does not address all of the problems related to the display of large

or multidimensional datasets. Most of the currently available DBMSs are relational. Many

scienti�c datasets contain errors, missing values, or noise, all of which are di�cult to rep-

resent in a relational database. Relational DBMSs have di�culty supporting datasets that

do not map conceptually to a relational model (e.g., spatial or temporal datasets). Finally,

some of the most promising new data management techniques such as statistical databases,

classi�cation, temporal databases, spatial data handling, and knowledge discovery are not

immediately available and are di�cult to provide, even given the extensibility of the current

DBMSs.

1.2 Research Overview

Our investigation of the problem of visualizing large multidimensional datasets is made

up of two parts. First, we studied new methods for visualizing multidimensional data. Our

techniques address the problems of dataset size and data elementdimensionality by exploiting

the built-in processing of the human visual system. Second, we studied the e�ectiveness

of a new database technique, knowledge discovery, for compressing and summarizing the

Chapter 1. Introduction 7

important details buried in large datasets. We used our results to design visualization tools

that allow users to perform rapid and accurate exploratory analysis tasks such as target

detection, boundary detection, region tracking, and estimation. Users can �lter their dataset

using di�erent knowledge discovery algorithms to reduce both its size and dimensionality.

The resulting data is displayed in a 2D spatial environment (the computer screen) using

visual features such as hue and orientation. Large datasets are divided into sequences of data

frames; the frames are displayed rapidly (usually with an exposure duration of 250msec or

less per frame) one after another in an animated, movie-like fashion. This allows a user to

explore large amounts of data in a relatively short period of time.

The next two sections provide a brief overview of our research and the results we obtained.

Each section is divided by chapter titles. More detailed descriptions of our work can be found

in the corresponding chapters.

1.3 Multidimensional Visualization

Within the multidimensional visualization context, we focused on techniques for performing

rapid and accurate exploratory data analysis. This type of analysis is used to inspect a

dataset and quickly identify areas that might bene�t from further, more detailed investiga-

tion. The kinds of tasks performed during this stage of analysis include:

� target detection, where users attempt to rapidly and accurately detect the presence or

absence of a \target" element in a display

� boundary detection, where users attempt to rapidly and accurately identify boundaries

between groups of elements, where all the elements in each group have some property

in common

Chapter 1. Introduction 8

� region tracking, where users attempt to track groups of elements with a common prop-

erty as they move through time and space

� counting and estimation, where users attempt to count or estimate the number or

percentage of elements in a display that have a speci�c attribute

We believe results from research in preattentive processing can be used to assist with the

design of visualization tools that perform these kinds of tasks.

Chapter 2: Preattentive Processing

Researchers in psychology and vision have been working to explain how the human visual

system analyses images. One interesting result has been the discovery of visual properties

that are \preattentively" processed. These properties are detected immediately by the visual

system. Viewers do not have to focus their attention on an image to determine whether

elements with a given property are present or absent. Examples of common preattentive

features include hue, intensity, orientation, length, and motion. Unfortunately, choosing

visual features in an ad hoc manner and matching them to data attributes will not necessarily

result in preattentive displays. Indeed, too often the tool itself inhibits the user's ability to

extract the desired information. Results from research in preattentive processing can be used

to identify and avoid this kind of visual interference.

Properties that are processed preattentively can be used to highlight important image

characteristics. Experiments in psychology by Triesman, Jul�esz, Quinlan, and others have

used preattentive features to assist in performing exactly the visual tasks listed above. Re-

search in visualization has shown that preattentive features allow users to better perform

visual tasks such as grouping of similar data elements, detection of elements with a unique

characteristic, and estimation of the number of elements with a given value or range of values

[Pickett and Grinstein, 1988; Grinstein et al., 1989; Healey et al., 1993; Healey et al., 1996].

Chapter 1. Introduction 9

The key advantage of preattentive visualization techniques is that they are rapid (a preat-

tentive task can usually be completed in less than 250msec, moreover, the time required

to complete the task is independent of the number of data elements being displayed) and

accurate.

Chapter 3: Preattentive Estimation

Target detection, boundary detection, and grouping (for a single data frame) have been

studied in depth in the preattentive processing literature [Jul�esz, 1981; Jul�esz and Bergen,

1983; Triesman, 1985; Triesman and Gormican, 1988; Duncan and Humphreys, 1989; M�uller

et al., 1990]. These results can be extended directly to scienti�c visualization. Researchers

have also studied counting and enumeration in the low-level visual system [Varey et al., 1990;

Trick and Pylyshyn, 1994]. Our work investigated another common analysis task, relative

estimation, that had not been studied by the preattentive processing community. Our initial

results showed that estimation using either hue or orientation was, in fact, preattentive

[Healey et al., 1993]. We extended these results by answering three additional questions

related to the use of hue and orientation during preattentive estimation [Healey et al., 1996]:

� How are hue and orientation estimation a�ected by varying display duration?

� How are hue and orientation estimation a�ected by varying feature di�erence?

� What is the tradeo� between display duration and feature di�erence during estimation?

We chose hue and orientation because they are two features that are commonly used in

existing visualization software. Both hue and orientation have been shown to be preatten-

tive by Triesman, Jul�esz, and others [Jul�esz and Bergen, 1983; Triesman, 1985; Quinlan and

Humphreys, 1987]. Moreover, research has shown that hue exhibits a strong interference ef-

fect over form (or orientation) during certain preattentive tasks [Callaghan, 1984; Callaghan,

Chapter 1. Introduction 10

1989; Healey et al., 1996]. Understanding how hue and orientation interact in a preattentive

visualization environment is important. If a visualization tool is being used to display multi-

ple independent data values, interference among features must be avoided. If a visualization

tool is being used to investigate a speci�c relationship, the \strongest" feature should be

used to encode that relationship. Secondary features used to encode additional data values

should not interfere with the primary feature and task.

Chapter 4: Colour

Colour is a common and often-used visual feature. Unfortunately, choosing colours for

data visualization is complicated, since a number of di�erent factors can a�ect the interac-

tions that occur between colours. We completed a thorough review of colour in preparation

for measuring and controlling these e�ects. Colour is studied from three di�erent perspec-

tives. First, we describe various three-dimensional models used in computer graphics to

accurately represent colour. Next, we examine research on the use of colour in scienti�c

visualization. Finally, we investigate how colour has been studied in the context of preat-

tentive processing. This background information identi�es three separate factors that can

be used to measure the e�ectiveness of a set of colours for representing data values during

scienti�c visualization: colour distance, linear separation, and colour category.

Chapter 5: E�ective Hue Selection

Multidimensional visualization techniques must be able to encode data dimensions with

more than two individual values. Our preattentive estimation experiments were restricted

to data dimensions that were binary, since we wanted to pick hues (and orientations) that

were easy to distinguish from one another. This is simple to do when only two di�erent

values are required (e.g., during estimation two distinct hues, blue and red, were chosen).

Continuous data attributes used during our experiments had to be split into two discrete

Chapter 1. Introduction 11

ranges, to \�t" our visualization design. In order to move beyond this restriction, we wanted

to identify methods for mapping multivalued data attributes onto visual features such as hue

and orientation, while still allowing rapid and accurate analysis on the resulting displays.

The selection of multiple orientations for use during preattentive tasks has been studied

in the preattentive processing literature [Nothdurft, 1985a; Nothdurft, 1991; Wolfe et al.,

1992]. We investigated methods for selecting multiple hues for use during visualization by

answering the following three questions:

� How can we support rapid and accurate identi�cation of individual data elements

through the use of colour?

� What factors determine whether a \target" element's colour will make it easy to �nd,

relative to di�erently coloured \non-target" elements?

� How many colours can we display at once, while still allowing for rapid and accurate

target identi�cation?

Results from our experiments showed that we need to consider three separate factors

when selecting multiple hues: colour distance, linear separation, and colour category. We

developed simple methods for measuring and controlling each of these e�ects. This allowed

us to chose up to seven isoluminant hues for use during visualization. Each hue was equally

distinguishable, and each could be identi�ed preattentively in our data displays.

Chapter 6: Real-Time Visualization

A key consideration for visualizing large datasets involves the di�erence between static

and dynamic data frames. A static frame is shown to a user in isolation. The user then

decides how to proceed based on information in the frame. Research to date in preattentive

visualization has been restricted to static frames. Unfortunately, this limits the display

Chapter 1. Introduction 12

technique to the resolution of the screen. An obvious question to ask is: If I can perform

tasks in 200msec on a static frame, can I perform the same tasks on an sequence of frames

displayed at �ve frames per second? A dynamic environment displays a sequence of frames

to the user one after another in a movie-like fashion. Each frame is shown for a �xed period

of time, after which it is replaced by the next frame in the sequence. The advantage of

such a technique is the ability to scan through large amounts of data in a relatively short

period of time. Suppose a data frame displays 400 elements. Since each element in the frame

has an available screen region of approximately 50 � 50 pixels, it can use visual features an

individual pixel cannot (e.g., shape, size, orientation, length). A dynamic sequence of �ve

frames per second could display one million elements in about nine minutes. Even if a user

spent 20% of their time browsing the dataset and 80% performing more detailed analysis

on individual frames, we can still exceed the display bounds of a single workstation screen

in less than an hour. The ability to perform exploratory analysis in real-time allows us to

access a large dataset in its entirety.

We show through a set of experiments that important aspects of preattentive processing

extend to a real-time environment. A visualization tool that uses preattentive features

allows users to perform rapid and accurate target and boundary detection, all in real-time

on temporally animated data frames. Moreover, interference properties previously reported

for static preattentive visualization were found to exist (with similar consequences) in the

dynamic environment.

1.4 Knowledge Discovery

Current database research is extending the original database model in a number of novel

and interesting ways. An NSF panel on advanced database systems described the focus

Chapter 1. Introduction 13

of past research, and presented a strong argument for continued work [Silbershatz et al.,

1990]. Panel members felt rapid advances in a number of areas that use databases are

overwhelming currently available data management techniques. Scienti�c visualization was

speci�cally cited as an area that is moving beyond the boundaries of traditional database

systems. The panel identi�ed the following problems as essential to future database research:

� new data models that deal with complex objects such as spatial data, time, and un-

certainty

� query and access methods to manage very large databases (i.e., over one terabyte in

size); this involves the scaling of current algorithms, the development of new storage

and access techniques, and support for heterogeneous, distributed databases

� the ability to \mine" implicit patterns, trends, or relationships from very large scien-

ti�c, biomedical, or business databases

� the ability to embed and process e�ciently declarative and imperative rules within a

database

The NSF panel discussed at some length scienti�c visualization and the problems inherent

in managing scienti�c datasets. An area of research well suited to address this problem is

knowledge discovery, \the nontrivial extraction of implicit, previously unknown, and poten-

tially useful information from data" [Frawley et al., 1991]. Statistical, database, and machine

learning algorithms can be combined to uncover trends, dependencies, and relationships im-

plicit in large multidimensional datasets.

Chapter 7: Dataset Management

We believe that knowledge discovery techniques can be used to improve multidimensional

data visualization. These techniques would lie between the visualization tool and the under-

Chapter 1. Introduction 14

lying dataset, acting as a �lter to mark or compress regions of interest in the data. Although

there is always a measure of uncertainty in the results returned by knowledge discovery al-

gorithms, they seem well suited to an exploratory data analysis environment. A user could

control, combine, and most importantly analyse the results of knowledge discovery against

what is known about the original dataset. Users could interactively choose to pursue or

ignore trends, dependencies, or groupings the algorithms suggest. Di�erent techniques could

be combined in various ways to improve results or increase con�dence in the information

being provided. Knowledge discovery could be used to advance our goal of visualizing large

multidimensional datasets in the following ways:

� reducing the amount of data to be visualized, by classifying data elements into groups

and ignoring groups that do not contribute to the relationship being investigated

� reducing the number of attributes associated with each data element, by using a dis-

covered classi�cation to replace multiple data dimensions

� reducing the number of attributes associated with each data element, by ignoring

dimensions that are independent of the relationship being investigated

� showing structure in the dataset; this goes beyond simply showing whether data ele-

ments are coherent or not

� compressing time-varying data along the time axis, to reduce the amount of data to

visualize, and the length of any corresponding \animation" of the data frames

� �nding and visualizing previously unknown trends or relationships within or among

data elements in the dataset

Chapter 1. Introduction 15

Chapter 8: Knowledge Discovery in Visualization

Four di�erent knowledge discovery algorithms were implemented and integrated into our

visualization environment. Each algorithm was modi�ed to identify attribute dependencies

that were found when classi�cation rules were built. The algorithms were also extended to

provide con�dence weights for each classi�cation they performed. This allows a user to assess

the con�dence an algorithm attaches to a particular result. The e�ectiveness of knowledge

discovery in scienti�c visualization was measured by examining the increased accuracy and

size reductions obtained when we visualized NASA's Comprehensive Ocean-Atmospheric

Data Set.

1.5 Contributions

The research reported in this thesis directly addresses the requirements put forward by the

NSF and other visualization panels. Figure 1.1 provides an overview of how our di�erent

experiments �t within the overall goal of visualizing large, multidimensional datasets. Our

techniques build on earlier research in computer graphics, databases, and cognitive psy-

chology. Preattentive visualization is computationally simple, which makes it applicable to

interactive environments such as real-time displays and visual interactive simulation. Our

research investigates both the display of data elements and management of the underlying

dataset. We believe that our work contributes the following advances to current research in

visualization, preattentive processing, and database systems.

1. Hue and orientation feature spaces have been investigated more fully. We determined

through experimentation both the perceived feature di�erence and the display duration

needed to perform an estimation task using either hue or orientation. We also measured

the tradeo� between these two properties.

Chapter 1. Introduction 16

- Colour Selection:

hues which can be rapidly
and accurately distinguished
from one another during
visualization

Method for choosing multiple
- Preattentive Estimation:

in a single display

Hue and orientation do not
interfere with one another
during estimation, so they
can be used simultaneously

Knowledge Discovery:
Compress multiple attributes
into a single classification
value; identify significant
attributes during classification

-

- Knowledge Discovery:
Compress size of dataset by
classifying, then displaying
elements with a specific
classification value

Real-Time Visualization:
Allows a user to rapidly and
accurately visualize large
datasets in their entirety

-

Number of
Elements

Number of
Attribute Values

Dimensionality

Large, Multidimensional Datasets

Figure 1.1: An overview of how research reported in this thesis addresses the three types of large (total
number of elements, dimensionality of each element, and the number of unique values for each attribute)
inherent in large, multidimensional datasets

2. Methods for mapping hue and orientation onto multivalued data attributes were in-

vestigated. Our techniques describe how to choose multiple hues and orientations that

allow rapid and accurate analysis on the resulting displays.

3. Experiments were conducted to show that traditional preattentive tasks such as target

detection and boundary detection (and associated interference e�ects) extend to an

environment where dynamic sequences of frames are displayed rapidly one frame after

another.

4. Various knowledge discovery algorithms were investigated in the context of exploratory

data analysis. Normalized con�dence weights were provided for each task the algo-

rithms performed so that users could assess the con�dence an algorithm assigned to

the results it returned.

Chapter 1. Introduction 17

The results we provide in each of these areas should help to improve understanding of sci-

enti�c visualization in general, and visualization of large multidimensional datasets in par-

ticular. Our results can be interpreted as a set of general guidelines for the use of common

visual features such as hue, form, and orientation. The results also help to describe the

e�ects of visual phenomena such as feature interference and emergent features in scienti�c

visualization. Finally, the integration of knowledge discovery into a visualization environ-

ment demonstrates that intelligent management of the underlying dataset can reduce both

the amount and the dimensionality of the data that is displayed to the user.

Chapter 2

Preattentive Processing

For many years vision researchers have been working to explain how the human visual

system analyses images. One very interesting result has been the discovery of a limited set

of visual properties that are processed preattentively, without the need for focused attention.

Typically, tasks that can be performed on large multi-element displays in less than 200 to

250msec are considered preattentive. Eye movements take at least 200msec to initiate, and

random locations of the elements in the display ensure that attention cannot be prefocused

on any particular location, yet subjects report that these tasks can be completed with very

little e�ort. This suggests that certain information in the display is processed in parallel by

the low-level visual system.

A simple example of preattentive processing is the detection of a �lled circle in a group of

empty circles (Figure 2.1a). The target object has the visual feature \�lled" but the empty

distractor objects do not (all nontarget objects are considered distractors). A viewer can tell

at a glance whether the target is present or absent.

Objects that are made up of a conjunction of unique features cannot be detected preat-

tentively. A conjunction target item is one that is made up of two or more features, only one

of which is contained in each of the distractors. Figure 2.1b shows an example of conjunction

search. The target (again a �lled circle) is made up of two features, �lled and circular. One

18

Chapter 2. Preattentive Processing 19

(a) (b)

Figure 2.1: Examples of target detection: (a) �lled circle target can be preattentively detected because
it contains the unique feature \�lled"; (b) �lled circle target cannot be preattentively detected because it
contains no preattentive feature unique from its distractors

of these features is present in each of the distractor objects (�lled squares and empty circles).

Numerous studies show that the target cannot be preattentively detected, forcing subjects

to search serially through the display to �nd it.

Visual properties that are processed preattentively can be used to highlight important

image characteristics. Table 2.1 lists some of the visual features that have been identi�ed as

preattentive. Experiments in psychology have used these features to perform the following

preattentive visual tasks:

� target detection, where users attempt to rapidly and accurately detect the presence or

absence of a \target" element with a unique visual feature within a �eld of distractor

elements (Figure 2.1)

� boundary detection, where users attempt to rapidly and accurately detect a texture

boundary between two groups of elements, where all of the elements in each group

have a common visual property (Figure 2.2)

Chapter 2. Preattentive Processing 20

Feature Researchers

line (blob) orientation Jul�esz & Bergen [1983]; Wolfe et al. [1992]
length Triesman & Gormican [1988]
width Jul�esz [1985]
size Triesman & Gelade [1980]
curvature Triesman & Gormican [1988]
number Jul�esz [1985]; Trick & Pylyshyn [1994]
terminators Jul�esz & Bergen [1983]
intersection Jul�esz & Bergen [1983]
closure Enns [1986]; Triesman & Souther [1985]
colour (hue) Nagy & Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et

al. [1995]; Bauer et al. [1996]
intensity Beck et al. [1983]; Triesman & Gormican [1988]

icker Jul�esz [1971]
direction of motion Nakayama & Silverman [1986]; Driver & McLeod [1992]
binocular lustre Wolfe & Franzel [1988]
stereoscopic depth Nakayama & Silverman [1986]
3-D depth cues Enns [1990]
lighting direction Enns [1990]

Table 2.1: A list of two-dimensional features that \pop out" during visual search, and a list of researchers
who describe preattentive tasks performed using the given feature.

� counting, where users attempt to count or estimate the number of elements in a display

with a unique visual feature

2.1 Feature Integration Theory

Triesman has provided some exciting insight into preattentive processing by researching

two important problems [Triesman, 1985]. First, she has tried to determine which visual

properties are detected preattentively. She calls these properties \preattentive features".

Second, she has formulated a hypothesis about how the human visual system performs

preattentive processing.

Chapter 2. Preattentive Processing 21

(a) (b)

Figure 2.2: Examples of boundary detection: (a) the horizontal boundary between two groups (empty objects
on the top, �lled objects on the bottom) is preattentively detected because each group contains a unique
feature; (b) the vertical boundary is not apparent (�lled circles and empty squares on the left, empty circles
and �lled squares on the right), because both groups use the same features (�lled versus empty and square
versus circle)

Triesman ran experiments using target and boundary detection to classify preattentive

features. For target detection, subjects had to determine whether a target element was

present or absent in a �eld of background distractor elements. Boundary detection involved

placing a group of target elements with a unique visual feature within a set of distractors to

see if the boundary could be preattentively detected.

Researchers test for preattentive target detection by varying the number of distractors in

a scene. If search time is relatively constant and below some chosen threshold, independent

of the number of distractors, the search is said to be preattentive. Similarly, for boundary

detection, if users can classify the boundary within some �xed exposure duration, the feature

used to de�ne the boundary is said to be preattentive. A common threshold time is 200 to

250msec, because this allows subjects \one look" at the scene. The human visual system

cannot decide to change where the eye is looking within this time frame.

Triesman and others have used their experiments to compile a list of features that can

Chapter 2. Preattentive Processing 22

be preattentively detected (Table 2.1). It is important to note that some of these features

are asymmetric. For example, a sloped line in a sea of vertical lines can be detected preat-

tentively. However, a vertical line in a sea of sloped lines cannot be detected preattentively.

Another important consideration is the e�ect of di�erent types of background distractors on

the target feature. These kinds of factors must be addressed when trying to design display

techniques that rely on preattentive processing.

Triesman breaks low-level human vision into a set of feature maps and a master map of

locations in an e�ort to explain preattentive processing. Each feature map registers activity

in response to a given feature. Triesman proposes a manageable number of feature maps,

including one for each of the opponent colour primaries green, red, yellow, and blue, as well

as separate maps for orientation, shape, texture, and other preattentive features.

When the human visual system �rst sees an image, all the features are encoded in parallel

into their respective maps. One can check to see if there is activity in a given map, and

perhaps get some indication of the amount of activity. The individual feature maps give no

information about location, spatial arrangement, or relationships to activity in other maps.

The master map of locations holds information about intensity or hue discontinuities at

speci�c spatial locations. Focused attention acts through the master map. By examining

a given location, one automatically gets information about all the features present at that

location. This is provided through a set of links to individual feature maps (Figure 2.3).

This framework provides a general hypothesis that explains how preattentive processing

occurs. If the target has a unique feature, one can simply access the given feature map to

see if any activity is occurring. Feature maps are encoded in parallel, so feature detection is

almost instantaneous. A conjunction target cannot be detected by accessing an individual

feature map. Activity there may be caused by the target, or by distractors that share the

given preattentive feature. In order to locate the target, one must search serially through

Chapter 2. Preattentive Processing 23

Colour
Maps

Orientation
Maps

Map of
Locations

blue

yellow

red

Attention

Figure 2.3: Framework for early vision that explains preattentive processing; individual maps can be accessed
to detect feature activity; focused attention acts through a serial scan of the master map of locations

the master map of locations, looking for an object with the correct combination of features.

This use of focused attention requires a relatively large amount of time and e�ort.

In later work, Triesman has expanded her strict dichotomy of features being detected

either in parallel or in serial [Triesman and Gormican, 1988; Triesman, 1991]. She now

believes that parallel and serial represent two ends of a spectrum. \More" and \less" are also

encoded on this spectrum, not just \present" and \absent". The amount of di�erentiation

between the target and the distractors for a given feature will a�ect search time. For example,

a long vertical line can be detected immediately among a group of short vertical lines. As

the length of the target shrinks, the search time increases, because the target is harder to

distinguish from its distractors. At some point, the target line becomes shorter than the

distractors. If the length of the target continues to decrease, search time decreases, because

the degree of similarity between the target and the distractors is decreasing.

Triesman has also extended feature integration to explain certain cases where conjunc-

Chapter 2. Preattentive Processing 24

tion search is preattentive. In particular, conjunction search tasks involving motion, depth,

colour, and orientation have been shown to be preattentive by Nakayama and Silverman

[1986], Driver et al. [1992], and Wolfe et al. [1989b]. Triesman hypothesises that a sig-

ni�cant target{nontarget feature di�erence would allow individual feature maps to ignore

nontarget information contained in the master map. For example, consider a search for a

green horizontal bar within a set of red horizontal bars and green vertical bars. This should

result in conjunction search, since horizontal and green occur within each of the distractors.

In spite of this, Wolfe et al. [1989b] showed that search times are independent of display

size. If colour constituted a signi�cant feature di�erence, the red colour map could inhibit

information about red horizontal bars. Thus, the search reduces to �nding a green horizontal

bar in a sea of green vertical bars, which can be done preattentively.

2.2 Texton Theory

Texture segregation involves preattentively locating groups of similar objects and the bound-

aries that separate them. Triesman used texture segregation during her experiments with

boundary detection. Figure 2.2a is an example of a horizontal texture boundary with empty

shapes on the top and �lled shapes on the bottom. Figure 2.2b is an example of a vertical

texture boundary with �lled circles and empty squares on the left, and empty circles and

�lled squares on the right.

Jul�esz has also investigated texture perception and its relationship to preattentive pro-

cessing [Jul�esz, 1981; Jul�esz and Bergen, 1983; Jul�esz, 1984]. He has proposed his own

hypothesis on how preattentive processing occurs. Jul�esz believes that the early visual sys-

tem detects a group of features called textons. Textons can be classi�ed into three general

categories:

Chapter 2. Preattentive Processing 25

(a) (b)

Figure 2.4: Example of similar textons: (a) two textons that appear di�erent in isolation; (b) the same two
textons cannot be distinguished in a randomly oriented texture environment

1. Elongated blobs (e.g., line segments, rectangles, ellipses) with speci�c properties such

as hue, orientation, and width

2. Terminators (ends of line segments)

3. Crossings of line segments

Jul�esz believes that only a di�erence in textons or in their density can be detected preat-

tentively. No positional information about neighbouring textons is available without focused

attention. Like Triesman, Jul�esz believes preattentive processing occurs in parallel and fo-

cused attention occurs in serial.

Figure 2.4 shows an example of an image that supports the texton hypothesis. Although

the two objects look very di�erent in isolation, they are actually the same texton. Both are

blobs with the same height and width. Both are made up of the same set of line segments and

each has two terminators. When oriented randomly in an image, one cannot preattentively

Chapter 2. Preattentive Processing 26

detect the texture boundary between the two groups of these objects.

2.3 Similarity Theory

Some researchers do not support the dichotomy of serial and parallel search modes. Initial

work in this area was done by Quinlan and Humphreys [1987] . They investigated conjunction

searches by focusing on two factors. First, search time may depend on the number of items

of information required to identify the target. Second, search time may depend on how

easily a target can be distinguished from its distractors, regardless of the presence of unique

preattentive features. Triesman addressed this second factor in her later work [Triesman and

Gormican, 1988]. Quinlan and Humphreys found that Triesman's feature integration theory

was unable to explain the results they obtained from their experiments.

Duncan and Humphreys proceeded to develop their own explanation of preattentive pro-

cessing. Their model assumes that search ability varies continuously, depending on both the

type of task and the display conditions [Duncan, 1989; M�uller et al., 1990]. Search time is

based on two criteria: T-N similarity and N-N similarity. T-N similarity is the amount of

similarity between the targets and nontargets. N-N similarity is the amount of similarity

within the nontargets themselves. These two factors a�ect search time as follows:

� as T-N similarity increases, search e�ciency decreases and search time increases

� as N-N similarity decreases, search e�ciency decreases and search time increases

� T-N similarity and N-N similarity are related (Figure 2.5); decreasing N-N similarity

has little e�ect if T-N similarity is low; increasing T-N similarity has little e�ect if N-N

similarity is high

Chapter 2. Preattentive Processing 27

(a) (b)

Figure 2.5: Example of N-N similarity a�ecting search e�ciency: (a) high N-N similarity allows easy detection
of target shaped like the letter L; (b) low N-N similarity increases di�culty of detecting target shaped like
the letter L

Triesman's feature integration theory has di�culty explaining the results of Figure 2.5.

In both cases, the distractors seem to use exactly the same features as the target, namely

oriented, connected lines of a �xed length. Yet experimental results show displays similar

to Figure 2.5a produce an average search time increase of 4.5 milliseconds per additional

distractor, while displays similar to Figure 2.5b produce an average search time increase of

54.5 milliseconds per additional distractor.

In order to explain the above and other search phenomena, Duncan and Humphreys

proposed a three-step theory of visual selection.

1. The visual �eld is segmented into structural units. Individual structural units share

some common property (e.g., spatial proximity, hue, shape, motion). Each structural

unit may again be segmented into smaller units. This produces a hierarchical represen-

tation of the visual �eld. Within the hierarchy, each structural unit is described by a

set of properties (e.g., spatial location, hue, texture, size). This segmentation process

Chapter 2. Preattentive Processing 28

occurs in parallel.

2. Because access to visual short-term memory is limited, Duncan and Humphreys assume

that there exists a limited resource that is allocated among structural units. Because

vision is being directed to search for particular information, a template of the informa-

tion being sought is available. Each structural unit is compared to this template. The

better the match, the more resources allocated to the given structural unit relative to

other units with a poorer match.

Because units are grouped in a hierarchy, a poor match between the template and a

structural unit allows e�cient rejection of other units that are strongly grouped to the

rejected unit.

3. Structural units with a relatively large number of resources have the highest probability

of access to the visual short-term memory. Thus, structural units that most closely

match the template of information being sought are presented to the visual short-term

memory �rst. Search speed is a function of the speed of resource allocation and the

amount of competition for access to the visual short-term memory.

Given these three steps, we can see how T-N and N-N similarity a�ect search e�ciency.

Increased T-N similarity means more structural units match the template, so competition

for visual short-term memory access increases. Decreased N-N similarity means we cannot

e�ciently reject large numbers of strongly grouped structural units, so resource allocation

time and search time increases.

Chapter 2. Preattentive Processing 29

2.4 Guided Search Theory

Jeremy Wolfe has recently suggested a visual search theory that he calls \guided search"

[Wolfe and Cave, 1989; Wolfe et al., 1989; Wolfe, 1994]. He believes an activation map based

on both bottom-up and top-down information is constructed during visual search. Attention

is drawn to peaks in the activation map that represent areas in the image with the largest

combination of bottom-up and top-down in
uence.

As with Triesman, Wolfe believes early vision divides an image into individual feature

maps (Figure 2.6). In his theory, there is one map for each feature type (e.g., one map

for colour, one map for orientation, and so on). Within each map a feature is �ltered into

multiple categories. For example, in the colour map there might be independent represen-

tations for red, yellow, green, and blue. Wolfe has already found evidence that suggests

that orientation is categorized into steep, shallow, right, and left [Wolfe et al., 1992]. The

relationship between values within a feature map is di�erent than the relationship between

values from di�erent maps (i.e., the relationship between \red" and \blue" is di�erent than

the relationship between \blue" and \shallow").

Bottom-up activation follows feature categorization. It measures how di�erent an element

is from its neighbours. Di�erences for each relevant feature map are computed and combined

(e.g., how di�erent are the elements in terms of colour, how di�erent are they in terms of

orientation?) The \metrics" used to measure di�erences in each feature map are still being

investigated.

Top-down activation is a user-driven attempt to �nd items with a speci�c property or

set of properties. For example, visual search for a blue element would generate a top-

down request that activates \blue" locations. Previous work suggests subjects must specify

requests in terms of the categories provided by each feature map [Wolfe et al., 1992]. Thus,

Chapter 2. Preattentive Processing 30

R G
B Y

rightleft
shallow steep

steep

steep

steep

G

G

G G

G

Bottom-Up

Top-Down

Figure 2.6: Framework for guided search, user wants to �nd a green steep target: image is �ltered into cate-
gories for each feature map, bottom-up and top-down activation \mark" regions of the image; an activation
map is built by combining bottom-up and top-down information, attention is draw to the highest \hills" in
the activation map

subjects could search for \steep" or \shallow" elements, but not for elements rotated by

a speci�c angle. Obviously, subjects should pick the category that best di�erentiates the

target from its distractors. Finding the \best" category is often nonintuitive, however. Wolfe

suggests this might explain cases where subjects' performance for a task improves over time.

The activation map is a combination of bottom-up and top-down activation. The weights

assigned to these two values are task dependent. A conjunction search would place priority

on top-down information, since bottom-up results are, in essence, useless. Search for a

target with a unique feature would assign a high weight to bottom-up activation. Hills in

the activation map mark regions that generated a relatively large amount of bottom-up or

top-down in
uence. There is no information in the activation map about the source of a

hill. High activation from a colour map looks exactly the same as high activation from

an orientation map. A subject's attention is drawn from hill to hill in order of decreasing

Chapter 2. Preattentive Processing 31

activation.

Wolfe's theory easily explains traditional \parallel" visual search. Target elements pro-

duce the highest level of activation, regardless of the number of distractor elements. This

causes the target to \pop-out" of the scene in time independent of the number of distractors.

This also explains Duncan and Humphreys' similarity theory results. Low N-N similarity

causes distractors to report higher bottom-up activation, since they now di�er from their

neighbours. High T-N similarity causes a reduction in the target elements' bottom-up ac-

tivation. Moreover, guided search also provides a possible explanation for situations where

conjunction search can be performed preattentively [Nakayama and Silverman, 1986; Wolfe

et al., 1989]. User-driven top-down activation may permit e�cient searching for conjunction

targets.

2.5 Interference Experiments

Results from preattentive processing can help to identify various types of \visual interfer-

ence". These interference e�ects inhibit a user's low-level visual system, and should be

avoided during visualization. One example is conjunction search. Visualization techniques

designed to allow a user to rapidly search for data elements with a unique characteristic

should ensure that the visual features chosen to represent the elements do not form a feature

conjunction.

Tara Callaghan has conducted research to see how similarity within feature groups af-

fects texture segregation [Callaghan, 1990]. She found that varying certain irrelevant features

within a group can interfere with boundary detection. Her initial experiments investigated

identifying a horizontal or vertical texture boundary [Callaghan, 1984]. Subjects were pre-

sented with a six by six array of elements. A texture boundary was formed by either a

Chapter 2. Preattentive Processing 32

(a) (b)

Figure 2.7: Form and hue segregation: (a) vertical hue boundary is preattentively detected (blue on the
left, red on the right), even though form varies in both groups; (b) random hue interferes with detection of
horizontal form boundary (squares on the top, circles on the bottom)

(a) (b)

Figure 2.8: Hue and brightness segregation: (a) random intensity interferes with detection of vertical hue
texture boundary (blue on the left, red on the right); (b) horizontal brightness texture boundary is detected
preattentively (dark elements on the top, bright elements on the bottom), even though hue varies in both
groups

Chapter 2. Preattentive Processing 33

di�erence in hue or a di�erence in brightness. For hue segregation, the brightness in both

groups varied randomly between two values. For brightness segregation, hue varied randomly

between two values (Figure 2.8). Subjects had to determine whether the texture boundary

was vertical or horizontal. Control experiments were run to see how quickly subjects could

detect simple hue and brightness boundaries. The control arrays had a uniform brightness

during hue segregation, and a uniform hue during brightness segregation.

Callaghan found that non-uniform brightness interferes with hue segregation. It took

subjects signi�cantly longer to identify the texture boundary, relative to the control array.

However, a non-uniform hue did not interfere with brightness segregation. A brightness

texture boundary was detected in a constant amount of time, regardless of whether hue

varied or not. This asymmetry was veri�ed through further experimentation [Callaghan,

1990].

Callaghan's more recent work has shown a similar asymmetry between form and hue

[Callaghan, 1989]. As before, subjects were asked to identify a boundary as either horizontal

or vertical in a six by six array. During the experiment, the arrays were segregated by either

hue or form. For hue segregation, form varied randomly within the array (circle or square).

For form segregation, hue varied randomly. Results showed that variation of hue interfered

with form segregation, but that variation of form did not interfere with hue segregation

(Figure 2.7).

These interference asymmetries suggest some preattentive features may be \more im-

portant" than others. The visual system reports information on one type of feature over

and above other features that may also be present in the display. Callaghan's experiments

suggest that brightness overrides hue information and that hue overrides shape information

during boundary detection.

Chapter 2. Preattentive Processing 34

2.6 Three-Dimensional Icons

To date, most of the features identi�ed as preattentive have been relatively simple. Examples

include hue, orientation, line length, and size. Enns and Rensink have identi�ed a class of

three-dimensional elements that can also be detected preattentively [Enns and Rensink,

1990b; Enns and Rensink, 1990a]. They have shown that the element's three-dimensionality

is what makes it \pop-out" of a visual scene. This is important, because it suggests that

more complex high-level concepts may be processed preattentively by the low-level vision

system.

Figure 2.9 shows an example of these three-dimensional icons. The elements in Figure 2.9a

are made up of three planes. The planes are arranged to form an element that looks like a

three-dimensional cube. Subjects can preattentively detect the group of cubes with a three-

dimensional orientation that di�ers from the distractors. The elements in Figure 2.9b are

made up of the same three planes. However, the planes are arranged to produce an element

with no apparent three-dimensionality. Subjects cannot preattentively detect the group of

elements that have been rotated 180 degrees. Apparently, three-dimensional orientation is a

preattentive feature.

Enns and Rensink have also shown how lighting and shadows provide three-dimensional

information that is processed preattentively [Enns, 1990a; Enns, 1990b]. Spheres are drawn

with shadows so they appear to be lit either from above or from below. Subjects can preat-

tentively detect the group of spheres that appear to be lit di�erently than the distractors.

Three-dimensional icons are related to an area of preattentive processing that studies

emergent features. An emergent feature is created by grouping several simpler shapes to-

gether. The emergent feature cannot be predicted by examining the simpler shapes in

isolation (Figure 2.10). A careful choice of simple shapes will form a target element that

Chapter 2. Preattentive Processing 35

(a)

(b)

Figure 2.9: Three-dimensional icons: (a) when the cubes appear \three-dimensional", the 2 � 2 group with
a di�erent orientation is preattentively detected; (b) when three-dimensional cues are removed, the unique
2� 2 group cannot be preattentively detected

Chapter 2. Preattentive Processing 36

+ =

(a)

+ =

(b)

+ =

(c)

Figure 2.10: Combination of simple components to form emergent features: (a) closure, a simple closed
�gure is seen; (b) 3-dimensionality, the �gure appears to have depth; (c) volume, a solid �gure is seen

can be detected as an emergent feature. For example, in Figure 2.11a, the target element

cannot be identi�ed preattentively. However, by simply rotating one of the component ele-

ments, we create a new target with an emergent feature, non-closure, that is easily detected

(Figure 2.11b).

Additional experiments by Brown con�rmed that three-dimensional orientation is preat-

tentive [Brown et al., 1992]. One explanation of visual processing is the recognition-by-

components (RBC) theory proposed by Biederman. RBC suggests that objects can be

decomposed into the combination of a limited number of basic volumetric shapes called ge-

ometric icons or geons. This is analogous to the idea of phonemes in speech recognition.

Chapter 2. Preattentive Processing 37

Shape 1

Shape 2
Distractor

Target

(a)

Shape 1

Shape 2
Distractor

Target

(b)

Figure 2.11: A proper choice of initial components will form a target with an emergent feature that can be
detected preattentively: (a) the target contains no unique emergent feature, so detecting the target group is
di�cult; (b) the target contains a unique emergent feature, non-closure, so the target group is easily detected

Chapter 2. Preattentive Processing 38

Brown tested the hypothesis that geons are preattentive features, like colour or shape. His

results showed that geons were not detected preattentively. It appeared that only two-

dimensional feature di�erences were being detected by the low-level visual system. Brown

did con�rm, however, that target geons with a unique three-dimensional orientation \pop

out" during the search task.

2.7 Motion and Depth

Initial research on motion and depth in preattentive processing was completed by Nakayama

and Silverman [1986] . Their results showed that motion was preattentive. Moreover, stereo-

scopic depth could be used to overcome the e�ects of conjoin. Like the work done by Enns

and Rensink, this suggests that conceptually high-level information is being processed by

the low-level visual system. Initial experiments using a target detection task showed that

both motion and depth are preattentive. For motion, subjects were asked to detect a tar-

get moving in a direction opposite to the distractors. Target and distractors were randomly

coloured either blue or red. For depth, subjects were asked to detect a target with a di�erent

binocular disparity, relative to the distractors. Again, colour for target and distractors was

randomly either red or blue. Both tasks displayed a
at response time under 250msec as

the number of distractors was increased.

A set of traditional conjoin tasks followed the initial experiments. Now, motion and

colour (MC), stereo and colour (SC), or stereo and motion (SM) were combined. In MC

trials distractors were either red and moving up, or blue and moving down. The target was

blue and moving up. In SC trials distractors were blue on the front plane, or red on the

back plane. The target was either red on the front plane or blue on the back plane. In SM

trials distractors were on the front plane moving up, or on the back plane moving down.

Chapter 2. Preattentive Processing 39

The target was either on the front plane moving down, or on the back plane moving up.

Results showed that the MC trials were not preattentive. The response time increased

by about 100msec per ten additional distractors. However, the response times for SC and

SM trials were constant and below 250msec regardless of the number of distractors. All

three sets of trials involved conjoin, because the target had no feature unique from all the

distractors. However, it was found that observers could search each plane in the stereo

conjoin trials preattentively, in turn. Thus, reaction times for these searches were constant

over the number of distractors. The visual system can perform a parallel search in one depth

plane without interference from distractors in another plane.

Other work has focused on oscillating motion and its e�ect on conjunction search. Driver

described an experiment where subjects had to search for an X oscillating vertically among

O's oscillating vertically and X's oscillating horizontally [Driver et al., 1992]. This task was

preattentive if elements in each group oscillated coherently (i.e., vertically oscillating stimuli

moved up and down together, horizontally oscillating stimuli moved left and right together).

When elements oscillated \out of phase" with one another, subjects reverted to a serial

search.

Triesman, Wolfe and others have tried to explain the ability to perform these kinds of

conjunction search tasks within the framework of feature maps. Triesman suggests that an

important feature distinction would allow individual feature maps to ignore nontarget infor-

mation from the master map. For example, if green objects could be ignored, then a search

for a red X among red O's and green X's would switch from conjunction to preattentive.

Green X's would be ignored, and the search would be based only on shape (a red X among

red O's). Wolfe's proposal is similar, but he suggests targets are excited or emphasized over

nontargets.

Driver investigated these possibilities by running additional experiments in which either

Chapter 2. Preattentive Processing 40

(a) (b) (c) (d)

Figure 2.12: Examples of conjunctive motion, all cases are made up of the same four basic motion patterns;
(a) compression; (b) expansion; (c)
at deformation; (d) compress deformation

the horizontal X's or vertical O's moved out of phase. If nontargets are inhibited, a reasonable

horizontal coherence should be required. It would be di�cult to inhibit a set of horizontally

oscillating X's that moved out of phase. Similarly, if targets are excited, then vertically

moving elements would need some kind of motion coherence. In both these cases, Driver

assumed oscillating motion is the \salient feature" that marks targets and nontargets.

Results showed that moving one group out of phase made the task more di�cult than

when both groups moved in phase. However, it was still much easier than when both groups

moved out of phase. When only the target group moved coherently, search was slightly

slower than when only the distractor group moved coherently. This implies that selecting a

group for search by excitation is harder than selecting a group for search by inhibition. Both

operations seem to be contributing some e�ect, and may be working together.

Braddick and Holliday studied whether more complicated types of motion are still de-

tected preattentively [Braddick and Holliday, 1987]. Their experiments involved detection of

a target de�ned by di�erences in divergence or deformation (Figure 2.12). Divergence exper-

iments involved squares that were either expanding or contracting. The squares increased (or

decreased) in size by 15 pixels in one pixel steps, then jumped back to their original state.

Chapter 2. Preattentive Processing 41

This pattern cycled repeatedly. In trials with expanding squares, the target was a single

square that contracted. In trials with contracting squares, the target was a single square

that expanded. Deformation experiments involved rectangles that changed their shape from

long and thin to tall and skinny, again over a 15 step cycle. Targets, when present, deformed

in the opposite direction.

Results showed that targets de�ned by either divergence or deformation required serial

searching. Braddick and Holliday con�rmed their experimentalmethod by running a �nal set

of trials. These were exactly like the divergence experiments, except that only a single side of

each square was displayed. This meant the experiment involved the detection of di�erences in

direction of motion, a task known to be preattentive, within the context of their experiment

design. Results from these trials showed preattentive search times similar to those reported

by Nakayama and others. Braddick and Holliday concluded that deformation and divergence

represent a conjunction task. Motion itself is a preattentive feature, but deformation and

divergence involve targets with a number of di�erent motions, each of which is shared by

the distractors. Thus, serial searching is required to detect the presence or absence of the

target.

2.8 Iconographic Displays

Pickett and Grinstein have been working to develop a method of displaying multidimensional

data in a two-dimensional environment [Pickett and Grinstein, 1988]. The two most common

display mediums, computer screens and printed documents, are both two-dimensional.

Initially, work has focused on spatially or temporally coherent data sets. This type of

data generally contains clusters of data elements with similar values. Previously, data with

up to three dimensions was plotted in colour. Each data dimension controlled the intensity

Chapter 2. Preattentive Processing 42

(a) (b) (c)

(d)

Figure 2.13: Examples of \stick-men" icons: all three icons have four limbs and one body segment (shown
in bold), so they can support �ve-dimensional data elements; (d) an iconographic display of 5-D weather
satellite data from the west end of Lake Ontario

Chapter 2. Preattentive Processing 43

of one of the three primary colours red, green, and blue. Coherent areas within the data set

occurred where colour values were similar. Relationships between data elements were shown

as spatial changes in colour. Pickett decided to use texture as a medium that could show

relationships among higher dimensional data. The texture segregations would preattentively

display areas with similar data elements. Researchers could then decide quickly whether

further analysis was required.

Pickett developed icons that could be used to represent each data element. An icon

consists of a body segment plus a number of limbs (Figure 2.13). Each value in the data

element controls the angle of one of the limbs. The icons in Figure 2.13 can support �ve-

dimensional data elements. The four limbs support the �rst four dimensions. The �nal

dimension controls the orientation of the icon's body in the image.

Once the data-icon mapping is de�ned, an icon can be produced for each data element.

These icons are then displayed on a two-dimensional grid in some logical fashion. The result

is an image that contains various textures that can be detected preattentively. Groups of

data elements with similar values produce similar icons. These icons, when displayed as

a group, form a texture pattern in the image. The boundary of this pattern can be seen,

because icons outside the given group have a di�erent form and produce a di�erent texture

pattern.

The key to this technique is designing icons that, when displayed, produce a good texture

boundary between groups of similar data elements. To this end, Pickett and Grinstein have

been working on an icon toolkit, which allows users to design and test a variety of icons

with their datasets [Grinstein et al., 1989]. They have also added an audio component to

the icons. Running the mouse across an image will produce a set of tones. Like the icons,

the tones are mapped to values in each data element. It is believed these tones will allow

researchers to detect interesting relationships in their data.

Chapter 2. Preattentive Processing 44

(a) (b)

Figure 2.14: Examples of Cherno� faces: the various facial characteristics, such as nose length, eyes, mouth,
jowls, etc., are controlled by various data values in each face

Other researchers have suggested using various types of \icons" to plot individual data

elements. One of the more unique suggestions has been to use faces (Figure 2.14) with

di�erent expressions to represent multidimensional data [Cherno�, 1973; Bruckner, 1978].

Each data value in a multidimensional data element controls an individual facial char-

acteristic. Examples of these characteristics include the nose, eyes, eyebrows, mouth, and

jowls. Cherno� claims he can support data with up to eighteen dimensions. He also claims

groupings in coherent data will be drawn as groups of icons with similar facial expressions.

This technique seems to be more suited to summarizing multidimensional data elements,

rather than segmenting them. Still, it shows that researchers are exploring a wide variety of

di�erent ideas.

Chapter 3

Preattentive Estimation

Researchers in psychology have identi�ed a number of tasks that can be performed preat-

tentively. These include target detection, boundary detection, and region tracking. Some

research has also been done on counting and estimation in preattentive processing. Carol

Varey describes experiments where subjects are asked to estimate the relative frequency of

white or black dots [Varey et al., 1990]. Subjects were asked to judge \percentage" of white

dots, \percentage" of black dots, \ratio" of black dots to white dots, and \di�erence" be-

tween the number of black and white dots. Her survey of past research shows that all four

methods have been separately proposed as the (only) method used by subjects to perform

relative estimation. Varey hypothesised that subjects were in fact capable of using any of

the four methods; her results showed subjects used the operation they were told to use. She

also found subjects consistently overestimated small proportions, and underestimated large

proportions.

We extended work on relative frequency to investigate a subject's ability to preattentively

estimate percentages [Healey et al., 1993; Healey et al., 1996]. This was done by addressing

two speci�c questions about preattentive estimation:

� Question 1: Is it possible for subjects to rapidly and accurately estimate the relative

number of elements in a display within the constraints of preattentive vision? Under

45

Chapter 3. Preattentive Estimation 46

what conditions is this possible for the well-studied features of hue and orientation?

� Question 2: Does encoding an independent data dimension with a task-irrelevant fea-

ture interfere with a subject's estimation ability? If so, which features interfere with

one another and which do not?

Results from the experiments con�rmed that rapid and accurate numerical estimation

can be performed on large multi-element displays using either hue or orientation. The

absence of any signi�cant interference e�ects in both cases (i.e., during both estimation of

hue and estimation of orientation) suggests that it is indeed possible to develop e�ective

multidimensional visualization tools for numerical estimation based on these features.

One limitation of the original investigation was its use of a �xed exposure duration

and feature di�erence. We conducted two additional experiments designed to address the

following questions:

� How are hue and orientation estimation a�ected by varying display duration?

� How are hue and orientation estimation a�ected by varying feature di�erence?

� What is the tradeo� between display duration and feature di�erence for the estimation

task?

Results from these experiments provide important boundary conditions on display duration

and feature di�erence. They also show the e�ect of varying both display duration and feature

di�erence at the same time.

Chapter 3. Preattentive Estimation 47

3.1 Salmon Migration Simulations

The experimental displays we tested were motivated by the need to examine data generated

from salmon migration simulations being run in the Department of Oceanography at the

University of British Columbia [Thomson et al., 1992; Thomson et al., 1994]. Salmon are

a well-known �sh that are found, among other areas, on the western coast of Canada. The

life history of a salmon consists of four stages: birth, freshwater growth stage, ocean growth

stage, and migration and spawning. Salmon are born as fry in freshwater rivers and streams.

After birth, the fry spend time feeding and maturing before swimming downstream to the

open ocean. Upon reaching the ocean, the salmon moves to its \open ocean habitat", where

it spends most of its ocean life feeding and growing. For example, sockeye salmon are thought

to feed in the Subarctic Domain, an area of the Paci�c Ocean north of 40� latitude stretching

from the coast of Alaska to the Bearing Sea. After a period of one to six years, salmon begin

their return migration. This consists of an open ocean stage where they swim back to the

British Columbia coast and a coastal stage where they swim back to a freshwater stream

to spawn. This is almost always the same stream in which they were born. Scientists now

know salmon �nd their stream of birth using smell after they reach the coast.

The ocean phase of salmon migration is not as well understood. It is recognized that it

is rapid, well directed, and well timed. Previous work has examined the climate and ocean

conditions during migration to see how they a�ect the position where Fraser River salmon

arrive at the British Columbia coast (hereafter point of landfall). The entrance to the Fraser

River is located on the southwest coast of B.C., near Vancouver (Figure 3.1). Generally,

if the Gulf of Alaska is warm, salmon will make their point of landfall at the north end

of Vancouver Island and approach the Fraser River primarily via a northern route through

the Johnstone Strait. When the Gulf of Alaska is colder, salmon are distributed further

south, making landfall on the west coast of Vancouver Island and approaching the Fraser

Chapter 3. Preattentive Estimation 48

Johnstone
Strait

Juan De Fuca
Strait

Vancouver
Island

Fraser River

Figure 3.1: The British Columbia coast, showing Vancouver Island, the Juan de Fuca Strait, the Johnstone
Strait, and the Fraser River. Arrows represent the two possible migration paths for returning salmon.

River primarily via a southern route through the Juan De Fuca Strait. Research is being

conducted to determine the factors that drive this interannual variability.

Recent work in plotting ocean currents has provided scientists with a possible explanation

for salmon migration patterns. It has been speculated that the variability of ocean currents

has impact on where the salmon make their point of landfall. A multi-institutional investiga-

tion has been initiated to examine the in
uences of currents on open ocean return migrations

of salmon using the Ocean Surface Circulation Simulation (OSCURS) model [Ingraham and

Miyahara, 1988; Ingraham and Miyahara, 1989]. OSCURS can simulate accurately ocean

currents in the North Paci�c for any day during the years 1945 to 1990.

Researchers in oceanography simulate possible return migration paths of the �sh by

placing 174 simulated salmon at �xed locations in an OSCURS ocean model (Figure 3.2a).

Chapter 3. Preattentive Estimation 49

(a)

(b)

Figure 3.2: Examples of output fromOSCURS program: (a) dots represent starting positions of 174 simulated
salmon; (b) a trailer beginning at each salmon's starting position tracks its path to the British Columbia
coast.

Chapter 3. Preattentive Estimation 50

The simulated salmon use a \compass-oriented" rule to �nd their way back to the British

Columbia coast. Salmon take a single \look" before their migration run to determine the di-

rection to the coast. They use a biological compass to swim in this �xed direction, regardless

of external forces (i.e., ocean currents) that may shift their migration path. OSCURS is used

to apply daily ocean currents to the �sh as they move towards the coast. Oceanographers

record the point of landfall for each salmon (Figure 3.2b). These are compared with the

actual distribution of �sh for the given year (provided by the Department of Fisheries and

Oceans) to test the accuracy of the simulation.

Task Selection

We consulted with researchers in Oceanography to identify a suitable task for our original

experiments. We wanted to choose a task that was common during visualization, but that

still addressed a question of potential interest to the oceanographers. Part of this involved

using results from the salmon migration simulations during our experiments. Oceanographers

hypothesize that a strong northerly current
ow will drive most salmon to a point of landfall

north of Vancouver Island. It follows that the majority of the �sh will pass through the

Johnstone Strait to arrive at the Fraser River. This suggests that salmon migration routes

can be predicted in part by studying prevailing ocean current patterns. We decided to ask

subjects to estimate the percentage of simulated salmon whose point of landfall was north

of some �xed latitude, since this was one of the visualization tasks being performed by the

oceanographers. Subjects were not informed that the data represented salmon migration

results. They were simply asked to estimate the number of elements with a given visual

feature.

Relative point of landfall (either north or south of the �xed latitude) was encoded on a

two-dimensional map of the open ocean at the spatial position where the salmon started its

Chapter 3. Preattentive Estimation 51

migration run. A preattentive feature was used to represent relative landfall. For example,

during one experiment salmon that landed north of the �xed latitude were coloured blue,

while salmon that landed south were coloured red. Subjects were then asked to estimate the

percentage of blue elements.

A second question we wanted to investigate was how preattentive features interfered

with one another. Callaghan's experiments showed an interference e�ect during a boundary

detection task. We wanted to see if a similar e�ect existed when subjects were performing

estimation. We decided to use stream function as our \interference" attribute, in part

because the oceanographers are interested in visualizing these values during their analysis.

Given the stream function �(x; y), the x and y components of the ocean current vector can be

calculated as Vx =
@�
@x

and Vy =
@�
@y
. The stream function is a scalar function whose gradient

is the current (i.e., the stream function is the potential function for the vector-valued current

�eld). In our experiments, stream function values were divided into two groups (low and

high) and encoded at each spatial location where a salmon started its migration run. A

second preattentive feature was used to represent stream function.

3.2 Original Estimation Experiments

Our original experiments were designed to investigate numerical estimation using either

hue or orientation. Two unique orientations were used, 0� rotation and 60� rotation. Two

di�erent hues that corresponded roughly to red and blue were chosen from the Munsell

colour space. This allowed us to display two-dimensional data elements as coloured, oriented

rectangles (Figure 3.3). We chose a pair of hues that satis�ed the following two properties:

� Property 1: The perceived intensity of the two hues was equal (i.e., the hues were

isoluminant).

Chapter 3. Preattentive Estimation 52

� Property 2: The perceptual discriminability between the two hues was equal to the

perceptual discriminability of a rectangle rotated 0� and one rotated 60�.

The method described by Healey et al. [1996] was used to choose a red hue and a

blue hue that met these requirements. Our design allowed us to display data elements

with two dimensions encoded using hue and orientation. Both dimensions were two-valued

(encoded using red and blue or 0� and 60�). This is a very simple example of the general

multidimensional visualization problem.

Data displayed during the experiments were taken from oceanography's salmon migration

simulations. We used the following data variable to visual variable mappings:

� the longitude on which a salmon started its migration run controlled the x�position
of the icon representing the salmon

� the latitude on which a salmon started its migration run controlled the y�position of

the icon representing the salmon

� the point of landfall controlled either the hue or the orientation of the icon representing

the salmon (the mapping depended on the mapping condition being tested)

� the stream function value controlled either the orientation or the hue of the icon rep-

resenting the salmon (the mapping depended on the mapping condition being tested)

Our experiment was divided into four mapping conditions run in separate blocks of

trials. The task-relevant dimension (i.e., the dimension on which the percentage estimate

was based) varied from mapping condition to mapping condition, as did the task-relevant

feature (i.e., the feature used to encode the task-relevant dimension). This gave us the

following design:

Chapter 3. Preattentive Estimation 53

(a) (b)

(c) (d)

Figure 3.3: Examples of a single data frame from each of the four experimental conditions (in each frame 58%
of the rectangles are targets): (a) condition B1 (landfall represented by hue), user estimates the percentage of
elements coloured blue; (b) condition B2 (landfall represented by orientation), user estimates the percentage
of elements rotated 60�; (c) condition B3 (stream function represented by hue), user estimates the percentage
of elements coloured blue; (d) condition B4 (stream function represented by orientation), user estimates the
percentage of elements rotated 60�

Chapter 3. Preattentive Estimation 54

� Mapping condition Landfall-Hue: The task-relevant data dimension was point of land-

fall, represented by hue; the task-irrelevant data dimension was stream function, rep-

resented by orientation (Figure 3.3a).

� Mapping condition Landfall-Orientation: The task-relevant data dimension was point

of landfall, represented by orientation; the task-irrelevant data dimension was stream

function, represented by hue (Figure 3.3b).

� Mapping condition StreamFunction-Hue: The task-relevant data dimension was stream

function, represented by hue; the task-irrelevant data dimension was point of landfall,

represented by orientation (Figure 3.3c).

� Mapping condition Stream Function-Orientation: The task-relevant data dimension

was stream function, represented by orientation; the task-irrelevant data dimension

was point of landfall, represented by hue (Figure 3.3d).

For each trial in the experiment, subjects were shown a display similar to Figure 3.3 for

450msec. The screen was then cleared, and subjects were asked to estimate the number

of elements in the display with a speci�c feature, to the nearest 10%. For example, in

mapping conditions Landfall-Hue and Stream Function-Hue subjects were asked to estimate

the number of rectangles coloured blue, to the nearest 10%. In mapping conditions Landfall-

Orientation and Stream Function-Orientation they were asked to estimate the number of

rectangles rotated 60�.

Within a mapping condition, trials were divided equally between Constant trials, where

the task-irrelevant feature was �xed to a constant value, and Variable trials, where the task-

irrelevant feature varied from element to element. Better performance in Constant versus

Variable trials would suggest that using a task-irrelevant feature to encode an independent

data dimension interferes with estimation based on the task-relevant feature. We tested

Chapter 3. Preattentive Estimation 55

both for orientation interfering with hue estimation and for hue interfering with orientation

estimation.

The main dependent variable examined was estimation error, de�ned as the absolute

di�erence between the subject's interval estimate and the correct interval containing the

percentage of target elements present in the display. Results showed that rapid and accu-

rate estimation can be performed using either hue or orientation. There was no subject

preference for either feature, and no interference occurred in any of the conditions. This

suggests hue and orientation can be used in a visualization tool to encode di�erent data

values independently, if an estimation task is being used.

3.3 Experiment 1: Display Duration

Our conclusions from the original experiments apply to data displayed for 450msec. This

leaves two important questions unanswered. First, at what display duration are subjects

no longer able to perform accurate estimation? Second, do any feature interference e�ects

begin to appear at shorter display durations?

In Experiment 1 display duration was randomly varied among �ve possible values: 15,

45, 105, 195, and 450msec. Fifteen subjects with normal or corrected acuity and normal

colour vision were tested in the following manner:

1. A blank screen was displayed for 195msec.

2. A focus circle with diameter roughly twice the width of the rectangular elements was

displayed for 105msec.

3. The trial was shown for its display duration (one of 15, 45, 105, 195, or 450msec).

Chapter 3. Preattentive Estimation 56

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

15 45 105 195 450

A
v
e
r
a
g
e

E
r
r
o
r

Display Duration (msec)

Constant
Variable

Figure 3.4: Graph of average error (absolute di�erence between a subject's interval estimate and the correct
interval) as a function of display duration for combined results from the hue display duration experiment.

4. A \mask" of randomly oriented grey rectangles was displayed for 105msec.

5. The screen was blanked, and subjects were allowed to enter their estimations.

Five subjects estimated the percentage of elements de�ned by a blue hue (mapping con-

dition Landfall-Hue), and 10 subjects estimated the percentage of elements de�ned by a 60�

rotation (mapping condition Landfall-Orientation). As in the original experiment, an equal

number of trials was used for each interval (10 Constant and 10 Variable). Trials were split

evenly among the �ve possible display durations, and were presented to the subjects in a

random order.

We found that the minimum display duration for robust estimation using either hue or

orientation lay somewhere between 45 and 105msec. Since the original experiment had shown

that estimation was relatively accurate at all percentage levels, we simpli�ed the dependent

Chapter 3. Preattentive Estimation 57

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

15 45 105 195 450

A
v
e
r
a
g
e

E
r
r
o
r

Display Duration (msec)

Constant
Variable

Figure 3.5: Graph of average error (absolute di�erence between a subject's interval estimate and the cor-
rect interval) as a function of display duration for combined results from the orientation display duration
experiment.

measure by averaging error over all nine intervals. The results are shown in Figure 3.4 for hue

estimation and in Figure 3.5 for orientation estimation. Inspection of these �gures shows that

estimation accuracy was reasonably stable at all durations of 105msec and higher. Below that

duration, error values increased rapidly. ANOVAs con�rmed that accuracy varied reliably

with display duration. For estimation using hue, F-values comparing mean error across

display duration were signi�cant (all p-values < 0:05) with F (4; 445) = 19:77, MSe = 1:464

and F (4; 446) = 13:13, MSe = 0:979 for Constant and Variable trials. A similar set of F-

values were obtained for estimation using orientation: F (4; 894) = 3:65, MSe = 1:895, and

F (4; 894) = 7:54, MSe = 1:810 for Constant and Variable trials. Fisher's Protected Least

Signi�cant Di�erence (PLSD) tests were computed to identify display duration pairs with

signi�cant di�erences in average error. As we expected, the statistical signi�cance re
ects

the higher average error from the 15 and 45msec display duration trials for both hue and

Chapter 3. Preattentive Estimation 58

orientation estimation. During hue estimation the duration pairs (15,45), (15,105), (15,195),

(15,450), (45,105), (45,195) and (45,450) were signi�cant in both the Constant and Variable

subsections. During orientation estimation the duration pairs (15,105), (15,195), (15,450)

(45,195) and (45,450) were signi�cant in the Constant subsection, and (15,105), (15,195),

(15,450), (45,105), (45,195) and (45,450) were signi�cant in the Variable subsection.

There was no evidence of feature interference for either estimation based on hue or esti-

mation based on orientation. Results suggested that random variation in orientation did not

interfere with numerical estimation based on hue. The t-values comparing mean estimation

error across Constant and Variable trials had p-values greater than 0.05 at every display du-

ration except 15msec (t(178) = 2:18, p < 0:05, t(178) = 0:76, t(178) = 0:69, t(178) = 0:40,

and t(178) = 1:09 for the display durations 15, 45, 105, 195, and 450msec). Similar results

were found when we checked to see if hue interfered with estimation based on orientation

(all t-values had p > 0:05 with t(358) = 1:64, t(358) = 1:04, t(357) = 0:05, t(357) = 0:69,

and t(358) = 0:83 for the display durations 15, 45, 105, 195, and 450msec).

3.4 Experiment 2: Feature Di�erence

Experiment 2 was designed to address two additional questions related to numerical esti-

mation. First, how much of a feature di�erence is necessary to allow accurate estimation?

Second, how is this di�erence a�ected by display duration? Three mapping conditions were

tested using three di�erent hue-orientation pairs during estimation:

1. Mapping condition Small: Rectangles were drawn using two Munsell hues 5R 7/8 and

5RP7/8, and two orientations 0� and 5�

Chapter 3. Preattentive Estimation 59

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

5RP7/8 10P7/8 5PB7/8

A
v
e
r
a
g
e

E
r
r
o
r

Hue Target

Constant @ 45msec
Variable @ 45msec
Constant @ 195msec
Variable @ 195msec

Figure 3.6: Graph of average error (absolute di�erence between a subject's interval estimate and the correct
interval) across target hue type for combined results from hue feature di�erence experiment.

2. Mapping condition Medium: Rectangles were drawn using two Munsell hues 5R 7/8

and 10P 7/8, and two orientations 0� and 15�

3. Mapping condition Large: Rectangles were drawn using two Munsell hues 5R 7/8 and

5PB7/8, and two orientations 0� and 60�

The perceptual discriminability between the hues and orientations is smallest in mapping

condition Small and largest in mapping condition Large. This latter condition was essentially

a replication of the hue and orientation values tested in the previous experiment. Within each

mapping condition the discriminability of the two hues and two orientations were calibrated

to be roughly equal, following the procedures described by Healey et al. [1993]. Trials within

each mapping condition were randomly displayed at two display durations: 45msec and

195msec. Otherwise, the details of this experimentwere identical to the previous experiment.

Chapter 3. Preattentive Estimation 60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

5 15 60

A
v
e
r
a
g
e

E
r
r
o
r

Orientation Target

Constant @ 45msec
Variable @ 45msec
Constant @ 195msec
Variable @ 195msec

Figure 3.7: Graph of average error (absolute di�erence between a subject's interval estimate and the correct
interval) across target orientation type for combined results from orientation feature di�erence experiment.

Six subjects estimated percentages based on hue. The target hue was one of 5RP7/8,

10P 7/8, or 5PB7/8, depending on which mapping condition a given trial belonged to. An-

other six subjects estimated percentages based on orientation (where target orientation was

one of 5�, 15�, or 60�). Trials from the three mapping conditions were intermixed and

presented to the subjects in a random order.

Subjects were able to perform accurate hue estimation at 195msec using targets 10P 7/8

and 5PB7/8, and at 45msec using 5PB7/8. Similar results were found for orientation es-

timation (accurate for targets oriented at 15� and 60� at 195msec and 60� at 45msec).

Figure 3.6 graphs mean estimation error for hue trials across the three mapping conditions

and both display durations. Figure 3.7 shows a similar graph for estimation based on orien-

tation. Outside of the above cases, estimation error increased rapidly.

Chapter 3. Preattentive Estimation 61

During hue estimation, ANOVAs comparing mean error across hue di�erence were signif-

icant at both exposure durations (all p-values < 0:05). F -values for Constant and Variable

trials were F (2; 645) = 54:16,MSe = 1:579 and F (2; 639) = 61:26,MSe = 1:719 for 45msec

trials; they were F (2; 642) = 26:63, MSe = 1:166 and F (2; 641) = 31:36, MSe = 0:964 for

195msec trials. During orientation estimation a similar set of F-values were found (all p-

values < 0:05). For Constant and Variable trials they were F (2; 645) = 40:74, MSe = 2:232

and F (2; 645) = 79:91, MSe = 2:198 for 45msec trials; they were F (2; 321) = 77:07,

MSe = 1:929 and F (2; 645) = 50:45, MSe = 1:955 for 195msec trials.

Finally, there was no evidence of feature interference during either hue or orientation

estimation. The t-values comparing mean estimation error across Constant and Variable

trials for all six display duration-target hue pairs were not signi�cant (all p-values were

greater than 0.05). Tests for hue interference during orientation estimation were also negative

(for all six display duration-target orientation pairs, p-values > 0:05).

Chapter 4

Colour and Orientation

This chapter begins with brief discussion of the physical properties of colour and light. This

is followed by descriptions of the four colour models used in this thesis: CIE XYZ, monitor

RGB, CIE LUV, and Munsell. Methods for describing di�erent colours in each of the models

is explained. Formulas that map colours between the colour models are also provided. This

allows us to convert a colour described using any of the four models into a value that can be

displayed on an RGB monitor. Finally, we describe research on the use of colour, both from a

scienti�c visualization and a preattentive processing perspective. We conclude with a review

of research on two related visual features, orientation and texture. Much is already known

about how to select multiple orientations for rapid and accurate search and identi�cation in

a visualization environment. We hope to build similar guidelines for the use of hue in data

visualization.

Although colour is a frequently used term, its fundamental meaning is more complicated

than simply stating that something is \red" or \green" or \blue". In order to properly

understand and use colour, we might start by asking: What is the physical phenomenon we

perceive as colour? and: How can we describe di�erent colours in an unambiguous manner?

Answers to these questions will allow us to specify and control precisely the colours we

display on an RGB monitor.

62

Chapter 4. Colour and Orientation 63

(nm)λ

400

Energy

700

Green
Red

Orange
BlueViolet Yellow

Cyan

(a)

(nm)λ

Energy

dominant 700

wavelength

400

Ew

Ed

(b)

Figure 4.1: Diagram showing visible frequency domain: (a) variation in colour as wavelength � ranges from
400 nm to 700 nm; (b) energy distribution curve with dominant wavelength somewhere around yellow, Ed is
energy density at dominant wavelength, Ew is energy density of uniform white light

4.1 Properties of Colour

What we commonly call \colour" is actually our perception of light waves from a thin band

of frequencies within the electromagnetic spectrum. This region of visible light ranges from

about 4:3� 1014 hertz to about 7:5� 1014 hertz.

An individual colour can be described by providing its dominant wavelength, excitation

purity, and luminance. The dominant wavelength is the wavelength we \see" when viewing

light of the given colour. Excitation purity is related to saturation, and describes how strong

(or how far from grey) the colour is. Luminance describes the intensity or brightness of

the colour. We often refer to colours by their dominant wavelength �. Using this notation,

colours range from about 400 nanometres (1 nm = 10�7 cm) for violet to about 700 nm for

red (Figure 4.1a). Consider Figure 4.1b, which shows an example energy distribution curve

with a dominant wavelength somewhere around yellow. Excitation purity depends on the

Chapter 4. Colour and Orientation 64

relationship between the energy distribution of the dominant wavelength Ed and the energy

distribution of uniform white light Ew. If Ed = Ew (0% pure), we see a fully unsaturated

shade of grey. If Ew = 0 (100% pure), we see a fully saturated colour. Luminance is

proportional to the area under the energy distribution curve.

4.2 CIE XYZ Colour Model

Di�erent-coloured lights can be combined to produce a wide range of colours. One of the

most commonly used methods is the combination of red, green, and blue (where R was

chosen to be the colour with a wavelength of 700 nm, G at 546.1 nm, and B at 435.8 nm).

Figure 4.2a shows the amount of R, G, and B needed to produce any colour in the visible

frequency domain. An important point to note is that the red curve r(�) is negative from

438 nm to 546 nm. Colours with a dominant wavelength in this region cannot be produced

through a positive combination of R, G, and B.

In 1931, the Commission Internationale de L'�Eclairage (CIE) addressed the problem of

negative weights in the RGB colour matching method. They de�ned three new primaries,

called X, Y, and Z, to replace R, G, and B during colour matching. Figure 4.2b shows the

amount of X, Y, and Z needed to produce colours in the visible frequency domain. None of

the colour matching curves are negative, which means any colour can be produced by some

positive combination of X, Y, and Z.

Suppose the amount of X, Y, and Z needed to match some colour C is de�ned to

be (X;Y;Z); that is, C = XX + YY + ZZ. Chromaticity values (x; y; z) are de�ned by

normalizing over X + Y + Z:

Chapter 4. Colour and Orientation 65

r (λ)
(λ)b

(λ)g

Colour-Matching
RGB Amounts

(nm)λ-0.10

0.00

0.10

0.20

0.30

0.35

780700600500400380

(a)

(nm)λ

y (λ)

z (λ)

x (λ)

780700600500400380

Colour-Matching
CIE Amounts

0.0

0.5

1.0

1.5

1.8

(b)

Figure 4.2: Diagram showing two sets of colour matching curves: (a) curves r(�), g(�), and b(�) show the
amount of R, G, and B required to match the wavelength of any visible colour; (b) curves x(�), y(�), and
z(�) show the amount of X, Y, and Z required to match the wavelength of any visible colour

Chapter 4. Colour and Orientation 66

x =
X

X + Y + Z
; y =

Y

X + Y + Z
; z =

Z

X + Y + Z
(4.1)

The chromaticity values (x; y; z) depend only on the dominant wavelength and excitation

purity of C. Luminance information is lost during normalization. Since x + y + z = 1, we

can recover z from x and y by z = 1�x� y. To obtain the original (X;Y;Z) values, we also

need the luminance Y . Given (x; y; Y), we can recover the corresponding (X;Y;Z) by:

X =
x

y
Y ; Y = Y ; Z =

1� x� y

y
Y (4.2)

A plot of (x; y) values for all visible colours produces the CIE chromaticity diagram shown

in Figure 4.3. Points on the boundary of the horseshoe represent fully saturated colours (i.e.,

excitation purity of 100%). Points in the interior of the horseshoe represent a mixture of a

fully saturated colour with uniform white light (i.e., excitation purity of less than 100%).

Colours with the same chromaticity but di�erence luminances project onto the same point

in the horseshoe.

The chromaticity diagram can be used to de�ne a colour gamut, which shows the range

of values possible from combining two or more individual colours. Two colours R and G

can be combined in various ways to produce all the colours that lie on the line RG. Three

colours R, G, and B can be combined to produce all the colours that lie in the triangle RGB.

Figure 4.3 shows an RGB colour gamut formed from typical phosphor valuesR = (0:61; 0:35),

G = (0:29; 0:59), and B = (0:15; 0:06) for an RGB monitor. A monitor that uses these

phosphors can only display colours inside the RGB triangle, an area that does not include

a large number of visible colours.

Chapter 4. Colour and Orientation 67

380
470

480

490

500

510

520
530

540

550

560

570

580

590
600

620
770

0.2 0.4

x

y

0.2

0.4

0.6

0.8

Red

Yellow

Cyan

Green

Blue

Violet
Purple

0.6 0.8

(a)

380
470

480

490

500

510

520
530

540

550

560

570

580

590
600

620
770

0.2 0.4 0.6

x

y

0.2

0.4

0.6

0.8

G

R

B

0.8

(b)

Figure 4.3: CIE chromaticity diagram, the dot marks the position of standard white: (a) wavelengths (in
nanometres) and positions of saturated colours speci�ed on the boundary of the horseshoe; (b) colour gamut
formed from typical phosphor values for an RGB monitor, colours inside the triangle can be displayed by
the monitor

4.3 Monitor RGB Colour Model

A monitor RGB colour model is used by most colour CRT monitors. Di�erent amounts of

the monitor's R, G, and B are added together to produce di�erent colours. The gamut of an

RGB monitor is often drawn as a unit cube, as in Figure 4.4. The monitor's full intensity

red, yellow, green, cyan, blue, and magenta, along with black and white, are situated at the

corners of the cube. The diagonal line from black to white represents shades of grey.

It is often useful to be able to convert colours speci�ed in CIE XYZ to a particular

monitor's RGB colour gamut. The conversion from XYZ to monitor RGB is a linear trans-

formation. We begin by obtaining the chromaticity values (xr; yr), (xg; yg), and (xb; yb) of

the monitor's red, green, and blue phosphors, and the luminance of the monitor's maximum-

brightness red, green, and blue (Yr; Yg; Yb). From these we can compute the following:

Chapter 4. Colour and Orientation 68

Red = (1,0,0) Yellow = (1,1,0)

Cyan = (0,1,1)Blue = (0,0,1)

Magenta = (1,0,1)

White = (1,1,1)

Black = (0,0,0)

Green = (0,1,0)

Figure 4.4: RGB colour gamut represented as a unit cube, with fully saturated colours displayed at each
corner; the diagonal from the black corner to the white corner represents shades of grey of increasing intensity

zr = 1� xr � yr

zg = 1 � xg � yg

zb = 1� xb � yb

(4.3)

Cr =
Yr
yr

Cg =
Yg
yg

Cb =
Yb
yb

(4.4)

Given a colour speci�ed as (x; y; Y), X and Z can be computed using Equation 4.2. The

(X;Y;Z) values are then inserted into Equation 4.5 to obtain the monitor (R;G;B) values

for the given colour.

Chapter 4. Colour and Orientation 69

2
666664

R

G

B

3
777775 =

2
666664

xrCr xgCg xbCb

yrCr ygCg ybCb

zrCr zgCg zbCb

3
777775

�1 2
666664

X

Y

Z

3
777775

(4.5)

Recall that a unit cube is used to represent the monitor's gamut. Any colour with an

(R;G;B) value outside the range (0 : : : 1; 0 : : : 1; 0 : : : 1) cannot be displayed on the given

monitor. Colours with an R, G, or B value greater than 1 fall outside the luminance range of

the monitor. Colours with an R, G, or B value less than 0 fall outside the chromaticity range

of the monitor. Colours inside the monitor's gamut can be scaled as necessary, as long as

the monitor performs proper gamma correction. For example, Silicon Graphics workstations

specify RGB primaries as numbers between 0 and 255. (R;G;B) values obtained from

Equation 4.5 can be multiplied by 255 and rounded to produce the primaries necessary to

display a given colour on the monitor.

4.4 CIE LUV Colour Model

One problem with both the CIE XYZ and RGB models is their lack of perceptual balance.

Suppose we start from some colour in CIE XYZ, say C1, and move in any direction a distance

of �C to colour C1+�C. Starting from some other colour C2, we can move to a new colour

C2 +�C. The distance between the initial and �nal colours in both cases is �C. However,

a human observer would not necessarily perceive the di�erence between the two pairs of

colours to be equal. In CIE XYZ space (and in RGB space), colours that are the same

distance from one another are not necessarily perceptually equidistant.

In 1976, the CIE proposed the CIE LUV space to address this problem. CIE LUV is

a perceptually uniform colour space. Colours that are the same distance from one another

Chapter 4. Colour and Orientation 70

in CIE LUV have a perceived di�erence that is roughly equal. This means that distance

and di�erence can be interchanged as required. If colours A and B are twice as far apart as

colours C and D, then the perceived di�erence in colour between A and B is about twice the

perceived di�erence between C and D.

The equations for computing LUV assume we have the (X;Y;Z) for the colour to convert,

and (Xw; Yw; Zw) of a standard white. Given these values, the corresponding LUV colour is:

L� =

8>><
>>:
116(Y=Yw)1=3 � 16; Y=Yw > 0:01

903:3(Y=Yw); Y=Yw � 0:008856

u� = 13L�(u0 � u0w)

v� = 13L�(v0 � v0w)

u0 = 4X
X + 15Y + 3Z ; v0 = 9Y

X + 15Y + 3Z

u0w = 4Xw
Xw + 15Yw + 3Zw

; v0w = 9Yw
Xw + 15Yw + 3Zw

(4.6)

L� encodes the luminance or intensity of a given colour, while u0 and v0 control its

chromaticity. In CIELUV, Euclidean distance and perceived colour di�erence (speci�ed in

�E� units) can be interchanged, since the colour di�erence between two colour stimuli x

and y is roughly:

�E�

xy =
q
(�L�

xy)
2 + (�u�xy)

2 + (�v�xy)
2 (4.7)

Colours in CIE LUV are normally speci�ed as (L�; u0; v0). Conversion from (L�; u0; v0) to

(X;Y;Z) and then to a monitor (R;G;B) value requires solving Equation 4.6 for X, Y , and

Z.

Chapter 4. Colour and Orientation 71

Y =
�
L� + 16
116

�3
Yw

X = 9u0

v0
Y

Z = 3
v0
Y � 5Y � 3u0

4v0
Y

(4.8)

By �xing L� and varying u0 and v0 (or u� and v�), it is possible to obtain a set of

colours that are both isoluminant and equidistant from one another. This technique was

used during our research to control both the intensity and the perceived di�erence of various

colour elements.

4.5 Munsell Colour Model

The Munsell colour model was originally proposed by Albert H. Munsell in 1898. It was later

revised by the Optical Society of America in 1943 to more closely approximate Munsell's

desire for a functional and perceptually balanced colour system. A colour from the Munsell

colour model is speci�ed using the three \dimensions" hue, chroma, and value.

In Munsell space, hue refers to some uniquely identi�able colour, or as Munsell suggested,

\the quality by which we distinguish one colour from another, as a red from a yellow, a green,

a blue, or a purple"1. Hue is represented by a circular band divided into ten sections. Munsell

named these sections red, yellow-red, yellow, green-yellow, green, blue-green, blue, purple-

blue, purple, and red-purple (or R, YR, Y, GY, G, BG, B, PB, P, and RP for short). Each

section can be further divided into ten subsections if �ner divisions of hue are needed. A

number preceding the hue name is used to de�ne the subsection (e.g., 5R or 7BG).

Value refers to a colour's lightness or darkness. Munsell de�ned value as \the quality by

1Munsell: A Grammar of Colour. New York, New York: Van Nostrand Rienhold Company, 1969, pg. 18

Chapter 4. Colour and Orientation 72

10

9

8

7

6

White

Black

2

1

0

Chroma

2468

5YR

5Y

5GT

5G5B

5PB

5P

5RP
10R

Figure 4.5: Munsell colour space, showing it's three dimensions hue, value, and chroma

which we distinguish a light colour from a dark one"2. Value is divided into eleven sections

numbered 0 through 10. Dark colours have a low value, while lighter colours have a higher

value. Value 0 represents black, and value 10 represents white.

Chroma de�nes a colour's strength or weakness. Chroma is measured in numbered steps

starting at 1. Weak colours have low chroma values. Strong colours have high chroma values.

Greys are colours with a chroma of zero. The maximum possible chroma depends on the

hue and value being used.

A visual representation of the Munsell colour space is shown in Figure 4.5. The circular

band represents hue. The pole running through the center of the colour space represents

value. Colours with increasing chroma radiate outward from the value pole. A Munsell colour

is speci�ed by writing \hue value/chroma". For example, 5R 6/6 would be a relatively strong

red. 5BG9/2 would be a weak cyan.

2Ibid, pg. 20

Chapter 4. Colour and Orientation 73

The Munsell space provides a number of interesting and desirable properties. Munsell

originally designed his colour space to be used by artists. One feature he tried to incorporate

into his system was perceptual \balance". Hues directly opposite one another will be bal-

anced, provided their value and chroma are equal. Thus, 5BG5/5 is perceptually balanced

with 5R5/5, and 5Y2/3 is balanced with 5PB2/3. Opposite hues with di�erent values and

chromas can also be balanced by varying the amount of each colour used within a given

area. Given two Munsell colours H1V1/C1 and H2V2/C2, we need V2C2 parts of hue H1

and V1C1 parts of hue H2. For example, colours 5R 5/10 and 5BG5/5 can be balanced by

using 5BG5/5 in two-thirds of the area, and 5R5/10 in one-third of the area. As we would

expect, the stronger chroma and higher value take up less of the total area than the weaker

chroma and lower value.

A second and perhaps more important property is that Munsell colours with the same

value are isoluminant. Thus, colours 5R 5/5, 5G5/6, 5B 5/3, and any other colours with

value 5 are all perceived as having equal luminance. This property was provided when the

Munsell colour table was revised in 1943.

Wyszecki and Stiles provide (X;Y;Z) values for many Munsell colours [Wyszecki and

Stiles, 1982]. They divide individual hues into four subsections: 2.5, 5, 7.5, and 10. This

provides a total of 40 di�erent hues, plus nine values for each hue and chromas for every

hue/value pair. Equation 4.5 can then be used to convert the (X;Y;Z) triples into monitor

(R;G;B) values.

4.6 Colour in Scienti�c Visualization

Colour is one of the most commonly-used visual features in scienti�c and data visualization.

Because of this, a large body of past work has studied the use of colour for a variety of

Chapter 4. Colour and Orientation 74

Figure 4.6: An example of Ware and Beatty's coherency visualization technique, the four \clouds" of simi-
larly-coloured squares represent four coherent groups of data elements

visualization tasks. In many instances, colour is divided into its component parts luminance

and hue, to gain greater control during its use for representing multidimensional data.

An early paper by Ware and Beatty describes using colour to detect coherence in �ve-

dimensional data elements [Ware and Beatty, 1988]. Each of the �ve data attributes is

mapped to one of the visual features x-position, y-position, red, green, and blue. The

result is a two-dimensional display of coloured squares (one for each data element in the

dataset). Groups of elements with all �ve attributes in common will appear as a spatial

cloud of similarly-coloured squares (Figure 4.6). Ware and Beatty's tool shows coherence in

a dataset as spatially coherent colour regions.

Chapter 4. Colour and Orientation 75

Much of the work-to-date has studied the problem of building e�ective \univariate

colourmaps" or \colour scales" to apply to a monotonic data attribute. Such a colourmap

needs to convey visually an increase (or decrease) in the attribute's value through a corre-

sponding increase (or decrease) in perceived colour. Ideally, the relative di�erence between

pairs of values should be displayed with an equal relative perceived di�erence in colour; in

other words, steps of a constant size through the attribute's range of values should result in

perceptually equal colour steps through the colourmap used to visualize the attribute.

A separate paper by Ware discusses the use of luminance and hue for the display of

metric and form data on a continuous two-dimensional surface [Ware, 1988]. During a

metric visualization task, users attempt to accurately determine an attribute's value at a

speci�c location on the surface. Colourmaps used for this type of task must address the

problem of simultaneous contrast. The perceived colour of a target patch will be a�ected

by the colour of its neighbouring patches. Ware suggests that the amount and direction of

simultaneous contrast error can be predicted by examining variations in a colourmap with

respect to the visual opponent-colour channels: luminance, red-green, and blue-yellow.

In an initial experiment,Ware built a spectral colourmap that held simultaneous contrast

to a minimumacross its entire range. The spectral colourmap ranged through a set of colours

starting at red + blue, to blue, blue + green, green, green + red, and �nally to red. Ware

compared his colourmap against four other common systems: linear grey-scale (linear steps

in intensity), perceptual grey-scale (perceptually equal steps in intensity), saturation (a

colourmap that ranges from grey to red), and red-green (a colourmap that ranges from red

to green). A parabolic surface was displayed using the entire range of the colourmap being

tested. A small target patch was placed at the center of the surface. A colour scale with

sixteen values was provided, and subjects were asked to report the value of the target patch

(which was randomly chosen from one of the twelve interior positions on the colour scale). As

anticipated, Ware's spectral colourmap gave signi�cantly lower average error when compared

Chapter 4. Colour and Orientation 76

to the other four colourmaps.

Ware's second visualization task, form, occurs when users try to detect di�erent kinds of

spatial patterns in their data. Ware identi�ed �ve common forms: gradient, ridges, convexity

and concavity, saddle, and cusp. Because of the e�ectiveness of the luminance channel for

processing shape, motion, and depth, Ware expected the grey-scale colourmaps to perform

best during the identi�cation of form. Subjects were shown one of the common forms using

all �ve colourmaps. Then were then asked to rate the e�ectiveness of each colour map

from 0 (poor) to 4 (good). Results showed that the grey-scale colourmaps were judged to

be signi�cantly better at showing gradient and ridge forms. For the other three forms the

saturation colourmap was judged to be signi�cantly worse than any of the other encoding

techniques.

Using the results from both experiments, Ware attempted to build a single colourmap

that would provide good results for both metric and form visualization. Colours in the

colourmap spiralled up through the colour space. This provided a monotonic increase in

the luminance channel, and ensured no monotonic variation (and hence no large or constant

simultaneous contrast) in either the red-green or blue-yellow channels. Ware tested his

\optimal" colourmap by rerunning the metric experiment. This was done to ensure that

variations in luminance did not interfere with a subject's ability to accurately report metric

information. Ware's optimal colourmap performed as well as the spectral colourmap. This

suggests that subjects were able to selectively ignore luminance information during the metric

visualization task.

Levkowitz and Herman have also studied the problem of creating colourmaps for data

visualization [Levkowitz and Herman, 1992]. Their speci�c problem environment is the

visualization of medical images such as PET, CT, and MRI slices. They begin by noting

that a grey-scale (i.e., luminance-based) colourmap can provide somewhere between 60 and

Chapter 4. Colour and Orientation 77

90 just-noticeable di�erence (JND) steps. They attempted to build a linearized optimal

colour scale (LOCS) in order to provide a much larger perceptual dynamic range during

visualization.

Levkowitz and Herman assume the data attribute to be visualized has a range of possible

values v1 � v2 � : : : � vn. The LOCS c1; c2; : : : ; cn used to represent such an attribute is

designed to satisfy the following three properties:

� order: c1 precedes c2 precedes : : : precedes cn (as described below, \ci precedes ci+1"

implies ri � ri+1, gi � gi+1, and bi � bi+1)

� uniformity: for any case where vi+1 � vi = vj+1 � vj, the perceived di�erence between

(ci; ci+1) should be equal to the perceived di�erence between (cj; cj+1)

� boundaries: the choice of colours should not introduce perceptual artifacts within the

colour scale (i.e., the colour scale should appear continuous)

Construction of the LOCS under the above conditions began by placing a number of re-

strictions on the colours that were used. It was assumed that c1 would be black and cn would

be white. A natural scale was enforced by requiring the RGB values of (ci; ci+1) to satisfy

ri � ri+1, gi � gi+1, and bi � bi+1. Colours in the LOCS were either all achromatic (i.e.,

grey) or all chromatic (i.e., colour). Finally, colours were chosen to guarantee a monotonic

increase in saturation.

Given the requirements and restrictions placed on the LOCS, construction was reduced to

an optimization problem, speci�cally the maximization of Euclidean distance between colour

pairs speci�ed in any colour model where Euclidean distance roughly equals perceived colour

di�erence. Levkowitz and Herman chose to use the CIELUV colour model.

Levkowitz and Herman showed that an LOCS with 32 values has a perceived colour-pair

Chapter 4. Colour and Orientation 78

di�erence six times larger than a linear grey-scale colourmap with 32 values. They then

tested the LOCS against a grey-scale colourmap and a heated-object colourmap (both are

commonly used to display medical image data). The LOCS was judged to be better than

the heated-object colourmap, but was signi�cantly worse than the grey-scale colourmap.

Levkowitz and Herman explained this by suggesting that the task and e�ects of colour

surround (i.e., simultaneous contrast) might have favoured the grey-scale map.

Rather than choosing to use a particular colourmap, a user might want to be able to

choose a colour path through a particular colour model. The path de�nes the range of

colours to map onto the data attribute being visualized. Rheingans and Tebbs describe just

such a tool [Rheingans and Tebbs, 1990]. The data being visualized occupies the center of

the display window. A three-dimensional representation of a colour model (one of either

RGB, HSV, or HLS) made up of discrete patches is overlaid on top of the visualization.

Users can interactively sketch a path through the colour model. This de�nes the data to

colour mapping. Users can also control the way changes in the data attribute map to the

colour path. For example, a linear mapping would provide a constant interval width along

the path for a constant increase in the data attribute's value. An exponential mapping would

assign the majority of the attribute's values to colours at the front of the path. The largest

values would be spread out along the middle and the back of the path. This might allow a

user to see more subtle changes occurring in large attribute values.

Recent work at the IBM Thomas J. Watson Research Center has focused on a rule-

based visualization tool [Rogowitz and Treinish, 1993; Bergman et al., 1995]. Initial research

discussed the need for rules that take into account how a user perceives visual features such

as hue, luminance, height, and so on. The representation of isomorphic data (Rogowitz and

Treinish call continuous surfaces isomorphic data) is used to motivate this requirement. An

n-fold increase in the data attribute's value should result in a corresponding n-fold increase in

perceived di�erence in the visual feature being used to represent the data. An understanding

Chapter 4. Colour and Orientation 79

of how a user perceives di�erence is necessary to guarantee this result. For example, a simple

doubling of intensity does not mean the user will perceive the larger data values as being

\twice as bright". This is because perceived intensity increases in an exponential, as opposed

to linear, manner.

Rogowitz and Treinish described three common visualization tasks: isomorphism, seg-

menting, and highlighting. Interestingly, the last two tasks appear to correspond directly to

preattentive boundary and target detection. A framework system for rule-based visualiza-

tion was then described. Various \rules" are used to guide or restrict a user's choice during

the data-feature mapping. The \rules" take into account various metadata, for example, the

visualization task being performed, the visual features being used, and the spatial frequency

of the data attribute being visualized.

A subsequent paper describes the colourmap selection tool PRAVDAColor used by the

IBM Visualization Data Explorer [Bergman et al., 1995]. The colourmap tool uses a variety

of system-generated and user-provided metadata to limit the choice of colourmaps available

to the user. Selection criteria include information on the attribute being visualized (is it

ratio data or interval data?), the spatial frequency of data values (low frequency or high fre-

quency?), and the visualization task being performed by the user (isomorphic, segmenting,

or highlighting?). As an example of the \rules" used to guide colourmap selection, isomor-

phic tasks require a perceptually monotonic representation. In these cases, PRAVDAColor

provides users with a choice between monotonically increasing luminance or hue colourmaps.

Low frequency data is represented using hue. High frequency data is represented using either

luminance or saturation. Once a colourmap is chosen, the user can control the data-colour

mapping in a fashion similar to Rheingans interactive colourmap tool (e.g., linear mapping,

exponential mapping, and so on).

Chapter 4. Colour and Orientation 80

4.7 Colour in Preattentive Processing

Colour has been studied extensively in the preattentive processing literature. Initial work

discusses the use of colour during visual search; results by various authors show that small

colour di�erences between target and non-target elements produce serial search, while larger

colour di�erences produce parallel search. Some work has been conducted to try to iden-

tify the minimum colour di�erence (or critical colour di�erence, as it is sometimes called)

required for parallel search. Recent work has investigated other factors that make a target

colour \stand out" from the background non-target colours. Results have shown that colour

distance alone is not the only important factor. The named category occupied by the target

colour and the ability to separate the target from its non-targets in colour space can also

have a large e�ect on search e�ciency.

One of the �rst papers discussing the use of colour during visual search was written by

Carter [1982] . Three experiments were described in the paper. In the �rst experiment

subjects were told to search for a speci�c three-digit number located in a circular array of

random three-digit non-targets. Subjects were also told the colour of the target. During

certain trials some of the non-targets used the same colour as the target. Results showed

that the amount of time required to �nd the target increased linearly with the number of

non-targets that shared the target's colour.

In the second experiment, the target's colour was unique and �xed to be light purple.

Background non-targets were all coloured either dark purple or green. When the non-targets

were coloured dark purple (i.e., when the non-targets had a colour similar to the target)

mean search time increased linearly with respect to the number of non-targets in the display

(hereafter display size). When the non-targets were coloured green (i.e., when the non-

targets had a colour dissimilar from the target) mean search time was constant with respect

to display size. Carter concluded that visual search can be either serial or parallel, depending

Chapter 4. Colour and Orientation 81

on the perceived di�erence between the target and the non-target colours.

In the third experiment, Carter tested the e�ects of placing potential target elements in

a group. In a manner similar to the �rst experiment, both the target and the twenty-nine

non-targets used a common colour. Twenty-�ve of the target-coloured elements were placed

in a spatial group. The remaining �ve elements were randomly located in the display. In

half the trials the target element was one of the elements in the spatial group. In the other

half, it was one of the randomly located elements. It took signi�cantly longer to �nd the

target when it was part of the spatial group. Moreover, searching for an element outside

the spatial group was faster than the results from Experiment 1 (i.e., when all the potential

target elements were randomly located in the display). Apparently, subjects scanned the

outlying elements before examining elements within the group. Since there were only �ve

outlying elements, search was faster than when all the elements were randomly placed.

An earlier paper by Carter and Carter [1981] measured search times for di�erent com-

binations of a single colour target and a �xed number of di�erently coloured non-targets.

As before, they found that search times were long for small colour di�erences and short for

large colour di�erences. The colour di�erence required for parallel search was many times

the JND threshold. Distance in CIELUV and CIELab appeared to be related to search

times by an exponential function. Nagy and Sanchez continued this work by de�ning what

they called the \critical colour di�erence" for visual search [Nagy and Sanchez, 1990]. In

their �rst experiment, Nagy and Sanchez replicated the results of Carter and Carter for both

a red and a blue target in a set of o�-white non-targets. A red or a blue target that was

a large distance from the non-targets in colour space produced
at search times; a red or a

blue target that was close to the non-targets produced search times that were linear in the

number of non-targets being displayed.

Nagy and Sanchez continued their investigation by trying to �nd the minimum distance

Chapter 4. Colour and Orientation 82

required for parallel search. They chose �ve target colours along eight lines radiating out from

the non-target in CIE XYZ colour space (Figure 4.7). The time required to �nd any one of the

�ve targets in a display containing a �xed number of non-targets was measured and plotted

for each of the eight lines. Two important results were found. First, the distance required for

parallel search varied for each of the eight lines. In other words, the critical colour di�erence

seems to depend on the colour of both the target and its non-targets. Second, the smallest

critical colour di�erence (found during search for blue and green targets) was approximately

20 JNDs; this result was measured through the use of MacAdam JND ellipses [Wyszecki and

Stiles, 1982].

John Duncan has also discussed various aspects of the use of colour during visual search

[Duncan, 1989]. This work was part of a set of results used to support his similarity theory

of preattentive processing [Duncan and Humphreys, 1989]. An initial experiment asked a

subject to determine presence or absence of a patch with a speci�c target colour. Each

display randomly contained one, two, three, or four uniquely coloured non-target patches.

All of the colours used were chosen to lie along the boundary of the monitor's gamut in

CIE XYZ (Figure 4.8a). Results showed that average response time was independent of the

number of di�erently-coloured non-target patches. However, when non-target colours were

chosen to be immediate neighbours of the target colour (e.g., bg and/or p for a b target, or g

and/or r for a y target), search was more di�cult compared to displays where the non-target

colours were more distant from the target colour. This matches the results of both Carter

and Nagy and Sanchez, speci�cally, search time is a�ected by the colour distance between

the target and its non-targets.

A second set of experiments by Duncan investigated speci�cally the use of colour and its

relationship to his similarity theory of preattentive processing. Duncan chose four colours

(named 1-2-3-4) along a path in CIE XYZ (Figure 4.8b). The target patch was coloured

using either colours 1-4 (end targets) or colours 2-3 (middle targets). In the end target

Chapter 4. Colour and Orientation 83

380

470

480

490

500

510

520

530

540

550

560

570

580

590

600

620

770

x

R

P

B

BG

G

GY

Y

YR

Figure 4.7: CIE diagram showing the monitor's gamut as a triangular region; Nagy and Sanchez chose �ve
colours along eight colour lines radiating out from the distractor colour (the x near the center of the triangle);
the parallelogram approximates the critical colour boundary where search times moved from serial to parallel
for each of the eight colour lines

Chapter 4. Colour and Orientation 84

380
470

480

490

500

510

520
530

540

550

560

570

580

590
600

620
770

0.2 0.4 0.6

x

y

0.2

0.4

0.6

0.8

0.8

y

rbg

p

g

b

(a)

380
470

480

490

500

510

520
530

540

550

560

570

580

590
600

620
770

0.2 0.4 0.6

x

y

0.2

0.4

0.6

0.8

0.8

x
c

x

b
a

d

x

x

3

2

1

4

(b)

Figure 4.8: The sets of colours used during Duncan's colour boundary experiments: (a) the six colours used
during Experiment 1, plotted along the boundary of the monitor gamut in CIEXYZ; (b) the colour sets
1-2-3-4 and a-b-c-d used during Experiment 2

case, non-target (N-N) similarity was high. In the middle target case, N-N similarity was

low. Target{non-target (T-N) similarity was the same in both cases. Duncan replicated

his experiment with a more narrowly spaced set of colours (named a-b-c-d) chosen from a

di�erent region of the monitor's gamut. This was designed to emphasise poor performance

with end non-targets (i.e., when a-d are non-targets and b-c are targets) due to the decrease

in colour similarity between the non-targets. As predicted by Duncan's similarity theory, the

middle target case gave much worse performance than the end target case. Moreover, the

middle target case was worse for the a-b-c-d colour set, when compared to the 1-2-3-4 colour

set. Duncan concluded this was due to the di�erence in N-N similarity: his theory predicts

that a decrease in N-N similarity will result in an increase in search di�culty. Regardless of

the explanation, his results show that the choice of non-target colours can have an a�ect on

search performance.

Work by other authors has some relationship to the use of colour during visual search.

Chapter 4. Colour and Orientation 85

For example, Nagy and Sanchez discuss the di�erences between the use of chromaticity

versus luminance during visual search [Nagy and Sanchez, 1992]. Results showed that a

luminance di�erence of +33% (a ratio of 1 : 4

3
) or �23% (a ratio of approximately 3

4
: 1)

of the monitor's available gamut was required between the target and the non-targets in

order to obtain parallel search. Similar critical di�erences between the target and the non-

targets along the three chromaticity channels were +12% of the monitor's available gamut

for red, +13% for blue, and +5% for yellow. This suggests that a monitor's chromaticity

range can more easily provide distinguishable elements, when compared to the monitor's

luminance range. Jeremy Wolfe describes an experiment where a target colour is found in

parallel in a �eld of ten highly homogeneous background non-targets [Wolfe et al., 1990].

The colour distance between the target colour and the group of background non-targets was

large. However, this suggests that it is possible to search a display containing many di�erent

colours for a highly-distinguishable target colour.

4.8 Linear Separation E�ect

More recent work has examined the e�ects of selecting two or more heterogeneous colours for

use in a single display. The \linear separation" e�ect was originally described by D'Zmura

[1991] . He was investigating how the human visual system �nds a target colour in a sea of

background non-target colours. One hypothesis was that the visual system uses opponent-

colour �lters (i.e., red, green, blue, and yellow �lters) to search for the target. If this

were true, a target colour could be rapidly and accurately detected only when it used an

opponent-colour unique from its non-targets.

D'Zmura tested the opponent-colour hypothesis using four target detection experiments.

In each experiment, observers were asked to determine the presence or absence of an orange

Chapter 4. Colour and Orientation 86

target. Half of the displays were randomly chosen to contain the target; the other half did

not. A variable number of non-target elements (randomly one of 1, 8, 16, or 32 elements)

were also present in each display. During one experiment half of the non-targets in each

display were coloured green and half were coloured red. During the other three experiments

they were coloured yellow and blue, green-yellow and purple, and yellow and red.

Results showed that the time required to determine the target's presence or absence

was constant (at approximately 450 milliseconds) and independent of the total number of

elements being displayed when the non-targets were coloured green and red, yellow and blue,

or green-yellow and purple. This suggests detection occurs in parallel in the low-level visual

system. When the non-targets were coloured yellow and red, however, the time required to

identify the target was linearly proportional to the number of elements being displayed (it

ranged from approximately 450 milliseconds for displays with one element to approximately

1500 milliseconds for displays with 32 elements). Subjects had to search serially through

each display to determine whether the target was present or absent. An increase in the total

number of elements being displayed resulted in a corresponding increase in the time required

to complete the target detection task for this case.

D'Zmura's results were not consistent with the opponent-colour hypothesis. In particular,

the time required to �nd an orange target in a sea of green-yellow and purple non-targets

should not have been independent of the total number of elements being displayed, since no

single opponent-colour �lter can be used to completely separate the orange (i.e., red-yellow)

target from its green-yellow and purple (i.e., red-blue) non-targets. D'Zmura suggested that

the criteria for parallel target detection was the ability to separate a target linearly from its

non-targets in the colour model being used. Figures 4.9a{4.9d show that the orange target

can be linearly separated by a minimum threshold from the non-targets in the �rst three

experiments, but not in the fourth. D'Zmura tested his new hypothesis by increasing the

saturation of the orange target; this moved the target out from the non-targets, providing

Chapter 4. Colour and Orientation 87

G R

B

Y

(a)

G R

B

Y

(b)

G R

B

Y

(c)

G R

B

Y

(d)

G R

B

Y

(e)

Figure 4.9: Opponent-colour discs (axes correspond to the four opponent-colours red, blue, green, and yellow)
with the target (an open circle) and the non-targets (�lled circles) for D'Zmura's �ve experiments; a straight
line in (a){(c) and (e) shows that the target can be linearly separated from the non-targets: (a) Experiment
1, with green and red non-targets; (b) Experiment 2, with yellow and blue non-targets; (c) Experiment 3,
with green-yellow and purple non-targets; (d) Experiment 4, with yellow and red non-targets; (e) Experiment
5, a saturated orange target with yellow and red non-targets

Chapter 4. Colour and Orientation 88

the desired linear separation (Figure 4.9e). Results from using this new target were similar

to those of the �rst three experiments; the more saturated orange target could be detected

in time independent of the number of yellow and red non-targets being displayed.

D'Zmura extended his hypothesis by showing that linear separation continued to apply

when either the saturation or the luminance of the target and non-targets were varied. He

also presented a similar set of results for two additional target colours. This suggests that

the linear separation e�ect is not restricted to a speci�c region in the colour model.

T

B

A

C

Figure 4.10: Example of the target and non-targets used in the experiments run by Bauer; the colours are
shown in a u�; v�-slice from the CIELUV colour model, notice that target T is equidistant from all three
non-targets A, B, and C; in Experiment 1, target colour T was collinear with the non-target colours A and
B; in Experiment 2, target T was linearly separable from its non-targets A and C

Work by Bauer et al. [1996] provides a number of additional results that strengthen

D'Zmura's hypothesis. First, Bauer et al. showed that perceptual colour models cannot be

used to overcome linear separation. Two target detection experiments similar to D'Zmura's

were run using the CIELUV colour model. In both experiments, the target{non-target

distance was �xed to a constant value, in an attempt to control the perceived target{non-

target colour di�erence (Figure 4.10). During the �rst experiment, the target T was collinear

with the two non-targets (elements A and B in Figure 4.10). In the second experiment, the

target T was linearly separated from the two non-targets (elements A and C in Figure 4.10).

Because TA = TB = TC in CIELUV, the perceived colour di�erence between the target

Chapter 4. Colour and Orientation 89

T and any of its three distractors was expected to be roughly equal. In spite this, the

time required to identify the target as present or absent was signi�cantly longer in the �rst

experiment, when compared to the second.

Bauer described three other important results. First, he replicated his initial �ndings in

three additional colour regions: green, blue, and green-yellow. This suggests linear separation

applies to colours from any part of the visible colour domain. Second, he showed through

a number of experiments testing subject performance{linear separation tradeo�s that the

linear separation \line" is indeed a line, and not a curve. Third, he showed that the time

required to identify a target decreased as the target{non-target colour distance increased.

Rapid and accurate target detection was possible without linear separation when the target{

non-target colour distance was relatively large.

4.9 Colour Category E�ect

Results reported by Kawai et al. [1995] provide additional insight into the interactions that

occur between groups of coloured data elements. Kawai et al. believe that the time required

to identify a colour target depends in part on the named colour regions occupied by the target

and its non-targets. Kawai et al. tested their hypothesis by running �ve target detection

experiments for �ve di�erent target colours, which they roughly identi�ed as red, yellow,

green, blue, and purple.

Colours were chosen using the Optical Society of America (OSA) uniform colour system;

the OSA model is perceptually balanced, and speci�es colours using the three dimensions

(L; j; g). L encodes luminance or intensity, j represents the blue-yellow opponent-colour

dimension (negative j values give blue colours, while positive j values give yellow colours),

and g represents the red-green opponent-colour dimension (negative g values give red colours,

Chapter 4. Colour and Orientation 90

while positive g values give green colours). Wyszecki and Stiles [1982] give a complete de-

scription of the OSA model. Experiments for a given colour target were split into subblocks;

each subblock displayed a single type of non-target element. Target{non-target distance was

varied by moving the non-target colour farther and farther from the target in both the g and

j directions. In these experiments, there were only two di�erent colours in each display: the

uniquely coloured target, and a constant number of uniformly coloured non-targets.

-5 -3 -1 310

g-axis

-3

-1

5

3

1

0
j-axis

(a)

-1 310

j-axis

-3

5

3

1

-1

-5

g-axis

0

-3

boundary
green

purple
boundary

blue
boundary

(b)

Figure 4.11: Graph of mean detection times for the blue target and ten di�erent non-targets, colours are
shown in a j; g-slice from the OSA colour model: (a) the square represent the target's colour; each circle
represents the colour of one of the ten non-targets; the size of each circle represents the mean detection time
required to identify the target when it was displayed with the given non-target; (b) the same �gure as in (a),
but with the boundaries of the blue, green, and purple colour regions shown as thick lines

If target identi�cation was dependent only on the colour distance between the target

and the non-targets, the time required to detect presence or absence of the target should

have decreased uniformly as target{non-target distance increased. This was not the case,

however. Figure 4.11 shows results for the blue target. Non-targets that were �2g units

from the target resulted in very low mean detection times. However, moving the non-target

+2g units from the target (i.e., using exactly the same target{non-target distance as for �2g

Chapter 4. Colour and Orientation 91

non-targets) resulted in very large mean detection times. A non-target that was +2j from

the target also showed a large mean detection time; however, moving it one more unit to

+3j resulted in a dramatic decrease in the time required to identify the target.

Apparently, target detection times are not based solely on the target{non-target colour

distance. Kawai et al. suggest that the named colour regions of the target and non-target

a�ect search time. If the target and non-target occupy the same named region, search time

will be relatively large. If the target and non-target are in di�erent named regions, search

time will be smaller. This hypothesis was tested by experimentally dividing the j; g-slice

into named colour regions. Figure 4.11b shows the boundaries of the blue, green, and purple

colour regions. Notice that search time decreases dramatically whenever the non-target is

moved outside the blue colour region.

Kawai et al. found that similar search time asymmetries for green, purple, and red targets

could also be explained by a di�erence in colour regions. They concluded that search time

depends not only on colour distance, but also on the named colour regions occupied by a

target and its non-targets.

4.10 Orientation and Texture

Although colour is a popular and important visual feature, it is certainly not the only method

used to represent multidimensional information. Other features like orientation and size can

also be used to visualize data elements. In fact, it has been suggested that orientation, size,

and contrast can be used together to specify visual textures, in a manner similar to the way

hue, value and saturation are used to specify di�erent colours.

The systematic use of orientation and texture in visualization has not received much focus

to date. Notable exceptions are the EXVIS system [Pickett and Grinstein, 1988; Grinstein

Chapter 4. Colour and Orientation 92

et al., 1989], Liu and Picard's use of Wold features [Liu and Picard, 1994], Li and Robertson's

use of Markov random �elds [Li and Robertson, 1995], and Ware and Knight's discussion

of the fundamental dimensions of a texture element [Ware and Knight, 1992; Ware and

Knight, 1995]. EXVIS is used to show spatial coherence in a multidimensional dataset. An

n-dimensional data element is represented using a \stick-man" with n � 1 arms. The n

values from each data element are used to control the orientation of the stick-man's arms

and body. Spatially neighbouring elements with a similar set of n values will result in a

group of similar looking stick-men. This appears as a spatial region with a unique texture in

the display (Figure 2.13). Pickett and Grinstein make reference to preattentive processing

when they describe the ability of viewers to rapidly and accurately identify both the texture

regions and the boundaries they form.

Colin Ware and WilliamKnight have conducted a number of experiments that investigate

the use of Gabor �lters for building visual textures. Ware and Knight provide evidence to

suggest that orientation, size, and contrast can be used as fundamental dimensions during

visual texture construction. They describe the range of each dimension, and discuss how

to measure the perceived di�erence between values from each dimension. For example,

orientation values are normally scaled linearly over the range 0 : : : �. Size and contrast

values, on the other hand, should be scaled exponentially. The result is a perceptually

balanced texture model, analogous to perceptually balanced colour models like CIELUV,

CIELab, or Munsell. Ware and Knight then show how Gabor �lters can be used to build

visual textures that have a speci�c orientation, size, and contrast. In a similar manner, Liu

and Picard believe the three perceptual dimensions of a texture pattern are periodicity (or

repetitiveness), directionality, and granularity (or randomness). Liu and Picard use Wold

features to control their texture dimensions when they build visual textures. Finally, Li and

Robertson show how properties of Markov random �elds can be controlled by individual

data attributes to produce visual patterns that represent an underlying dataset.

Chapter 4. Colour and Orientation 93

(a) (b) (c) (d)

Figure 4.12: Examples of the tilted and steep orientation categories: (a) a tilted target (20� rotation) is
easy to �nd in a sea of steep distractors; (b) a steep target (0� rotation) is easy to �nd in a sea of tilted
distractors; (c) a tilted target (20� rotation) is hard to �nd in a sea of steep, tilted, and shallow distractors;
(d) a steep target (0� rotation) is hard to �nd in a sea of steep, tilted, and shallow distractors

Jeremy Wolfe has recently studied how orientation is categorized during preattentive

visual search [Wolfe et al., 1992]. His results suggest that the low-level visual system detects

three di�erent categories of orientation: steep, shallow, and tilted. A target element must

fall within a category unique from its distractors to guarantee rapid and e�ortless visual

search.

Wolfe's initial experiments tested detection of a vertical (0� rotation) target in a set of

oblique (20� rotation) distractors (Figure 4.12b), and detection of an oblique target in a set

of vertical distractors (Figure 4.12a). Subjects performed both tasks in times independent of

the number of distractors. During a second experiment, however, search for a vertical element

in a set of distractors rotated 20�, 40�, 60�, 80�, �20�, �40�, �60�, and �80� (Figure 4.12d)
was signi�cantly more di�cult. An increase in the number of non-targets brought about

a corresponding increase in subject response time. This occurred in spite of the fact that

the orientation di�erence between the target and its nearest background non-target was 20�

rotation, exactly as in the �rst experiment. Similar poor results were found when searching

for an oblique target in a display of non-targets rotated 0�, 40�, 60�, 80�, �20�, �40�, �60�,
and �80� (Figure 4.12c).

Chapter 4. Colour and Orientation 94

Wolfe suggested that the orientation categories occupied by the target and non-targets

are what control search e�ciency. He tested his theory by performing a number of visual

search experiments. In all four cases, the minimum orientation di�erence between the target

and non-targets was at least 20�, exactly as in the �rst experiment that allowed easy search.

� Search for a 0� target (steep orientation) among 40� (tilted) and �40� (tilted) distrac-
tors was easy.

� Search for a 0� target (steep) among 20� (steep and tilted) and �20� (steep and tilted)

distractors was hard.

� Search for a 20� target (steep and tilted) among 0� (steep) and 40� (tilted) distractors

was hard.

� Search for a 20� target (steep and tilted) among 60� (tilted) and �20� (steep and tilted)
distractors was hard.

Wolfe conducted similar experiments that showed that shallow and tilted also acted as

orientation categories during visual search. Wolfe's results suggest that only three distin-

guishable orientations are available for rapid and accurate visualization. This limited range

of values will be particularly important when a user decides which data attribute to represent

using orientation.

One other interesting orientation property was described by Wolfe et al. [1990] during

their study of conjunction search. Wolfe's guided search theory suggests that both bottom-

up and top-down information are used during preattentive visual search. This means that,

in certain cases, top-down information from a subject can be used to search preattentively

(i.e., rapidly and independent of the number of non-targets) for a conjunction target. Wolfe

shows results from an experiment where subjects searched for a red-oblique target (colour �

Chapter 4. Colour and Orientation 95

orientation) in a sea of blue-oblique and red-vertical distractors. An increase in the number

of distractors resulted in almost no increase in the amount of time required to detect presence

or absence of the target. This suggests that subjects are capable of �nding a between-feature

conjunction target, in this case, a colour � orientation target. However, Wolfe showed that

subjects are not capable of �nding a within-feature conjunction target. Wolfe tested both

colour � colour targets (a red-blue square in a sea of red-green and green-blue squares) and

orientation � orientation targets (a combination of a vertical and an oblique rectangle in a

sea of vertical-horizontal and horizontal-oblique distractors). In both cases subjects needed

to use a serial search to determine presence or absence of the target. This suggests that

although orientation can be categorized into three separate values, conjunctions of these

values cannot be used to form a salient target.

Nothdurft has provided much insight into the phenomena of texture segregation (i.e.,

boundary detection and region identi�cation). Some of his initial work examined the ef-

fects of element spacing on shape identi�cation [Nothdurft, 1985a; Nothdurft, 1985b]. Shape

identi�cation increased in e�ciency with an increase in orientation di�erence �tg between

target and distractor elements. Shape identi�cation decreased in e�ciency when the spacing

between individual elements �x increased. Nothdurft concluded that identi�cation perfor-

mance was based on the spatial gradient of foreground to background orientation contrast

�tg=�x across the texture boundary.

Later work by Nothdurft investigated the e�ect of a background shift in element orienta-

tion �bg during texture segregation [Nothdurft, 1991]. Two preattentive tasks were tested.

In the �rst, subjects were asked to identify a \bar" of di�erently-oriented elements as either

vertical or horizontal. In the second, subjects were asked to provide the rough location of a

single element with an orientation di�erent from its neighbouring background distractors.

The orientation of background distractors in some trials varied from neighbour to neigh-

Chapter 4. Colour and Orientation 96

bour by a constant amount �bg. For example, trials with a constant distractor orientation

had �bg = 0�. Other trials varied neighbour-to-neighbour distractor orientation anywhere

from 5� to 30�. The amount of orientation di�erence �tg required between background and

target elements for a 75% correct response rate was plotted again �bg.

An increase in �bg required a corresponding increase in �tg in order to obtain a 75%

correct response threshold. For example, during bar identi�cation, a �bg of 0� (i.e., constant

background element orientation) required a �tg of 20�. Increasing �bg to 20� brought about

a corresponding increase in �tg to 50� for a 75% correct response rate. A �bg of greater than

30� in either task (bar or target identi�cation) rendered it impossible to complete with a 75%

accuracy rate. Nothdurft concluded that the required orientation contrast �tg depends on

the average orientation contrast (e.g., \noise") between neighbouring background elements.

Nothdurft compiled a �nal study of orientation, motion, and colour cues during region

segmentation [Nothdurft, 1993]. He con�rmed that for a continuously varying background

feature, targets popped-out only when the target di�erence was much larger than the con-

tinuous background di�erence. This was shown to be true for all three features. Nothdurft

also showed that the large di�erence requirement depends on local neighbours for region

segmentation based on orientation and motion. Speci�cally, if the non-target neighbours

around the target region provided a large di�erence in orientation or motion with the tar-

get, the region can be easily identi�ed. Target regions that were embedded in a group of

non-targets that had a small orientation or motion di�erence with the target were di�cult

to �nd. For colour, this property was not present. Colour pop-out depended on the amount

of colour di�erence between the target and the most similar non-target. Changing the type

of surrounding non-targets to provide a relatively larger or smaller local feature di�erence

had no e�ect on this property.

We can draw the following conclusions from the works of Wolfe and Nothdurft:

Chapter 4. Colour and Orientation 97

� During target detection, the visual system divides orientation into three rough cate-

gories: steep, shallow, and tilted. A target element can be identi�ed rapidly only when

it occupies a category unique from its non-targets.

� For rapid boundary and region identi�cation, an orientation di�erence of 20� is required

to identify the region in a �eld of constant-orientation non-targets.

� For rapid boundary and region identi�cation, any increase in orientation di�erence

between neighbouring non-targets requires a corresponding increase in orientation dif-

ference between targets and non-targets.

One question that has not been answered is how the results of Wolfe and Nothdurft

are related. It appears that Nothdurft used only vertical and horizontal non-targets while

searching for his oblique target region. This explains why he needed only a 20� orientation

di�erence for parallel search; if he had used an oblique target (say 40� rotation) in a sea of

oblique non-targets (say 20� rotation), Wolfe's results suggest his subjects would have moved

towards serial search. This argument might also explain, in part, results from displays

that varied the non-target orientation. Changing the orientation of certain background

elements may have pushed them into the same orientation category as the target region.

Since target elements now share an orientation category with some of their non-targets,

detection (according to Wolfe) should be more di�cult. Further experiments are needed to

build a general model that explains both Nothdurft's and Wolfe's results.

Chapter 5

E�ective Colour Selection

Put simply, visualization is the mapping of data attributes onto visual features such as

shape, size, spatial location, and orientation. A \good" visualization technique will provide

an e�ective mapping that allows a user to rapidly and accurately explore their dataset.

Obviously, the e�ectiveness of the mapping depends on a number of factors, including the

context of the original dataset (e.g., geographic data, medical images, time-varying
ow �eld

slices), the number of data elements, the dimensionality of each data element, and the task

the user wishes to perform.

Colour is an important and frequently-used visual feature. Examples include colour

temperature gradients on maps and charts, colour-coded vector �elds in
ow visualization,

or colour icons displayed by real-time simulation systems. If we use colour to represent our

data, one important question to ask is: How can we choose e�ective colours that provide

good di�erentiation between data elements during the visualization task? We address this

problem by trying to answer three related questions:

� How can we allow rapid and accurate identi�cation of individual data elements through

the use of colour?

� What factors determine whether a \target" element's colour will make it easy to �nd,

98

Chapter 5. E�ective Colour Selection 99

relative to di�erently coloured \non-target" elements?

� How many colours can we display at once, while still allowing for rapid and accurate

target identi�cation?

Target identi�cation is a necessary �rst step towards performing other exploratory data

analysis tasks. If we can rapidly and accurately di�erentiate elements based on their colour,

we can apply our results to other important visualization techniques. These include rapid

and accurate detection of data boundaries, the tracking of data regions in real-time, and

enumeration tasks such as counting and estimation [Varey et al., 1990; Triesman, 1991;

Healey et al., 1993].

We are most interested in guidelines that help us choose e�ective hues for use during

visualization. An intuitive �rst step to gaining more control over colour would be to use a

perceptual colour model such as CIELUV, CIELab, Munsell, or the OSA Uniform Colour

System [Birren, 1969; Wyszecki and Stiles, 1982]. These models use Euclidean distance to

approximate the perceived colour di�erence between pairs of colours. Unfortunately, �xing

the colour distance to a constant value does not guarantee that each colour will be equally

easy to detect. Other factors such as linear separation [D'Zmura, 1991; Bauer et al., 1996]

and colour category [Kawai et al., 1995] can a�ect how groups of coloured elements interact

with one another.

5.1 Colour Selection Technique

During the design of our colour selection technique, we assumed that the user might choose

to search for any one of the available data elements at any given time. This is typical during

exploratory data analysis; users will often change the focus of their investigation based on

Chapter 5. E�ective Colour Selection 100

the data they see as the visualization unfolds. This requirement meant that we could not

prede�ne which elements were targets and which were non-targets. The colour selection

technique had to allow for rapid and accurate identi�cation of any of the elements being

displayed.

Results discussed in the Colour chapter suggest that choosing e�ective colours for data

visualization depends on at least three separate criteria:

� colour distance: the amount of colour distance between di�erent elements as measured

in a perceptually balanced colour model

� linear separation: the ability to linearly separate targets from non-targets in the colour

model being used

� colour category: the named colour regions occupied by both the target and non-target

elements

We needed a simple method for measuring and controlling all three of the above ef-

fects during colour selection. We measured colour distance by choosing our colours using

the CIELUV colour model. We had to ensure that the colours we chose had the same

perceived intensity; previous research by Callaghan has shown that random variation in

intensity can interfere with an observer's ability to perform visualization tasks based on

colour [Callaghan, 1984]. Because of this, colours were chosen from an isoluminant u�; v�-

slice through CIELUV. We guaranteed linear separability by picking colours that lay on the

circumference of a circle embedded in our isoluminant u�; v�-slice.

We wanted to maximize the number of available colours, while still maintaining control

over colour distance and linear separability. To do this, we computed the monitor's gamut

within the u�; v�-slice being used. We then found the largest circle inscribed within the

Chapter 5. E�ective Colour Selection 101

gamut. We chose colours that were equally spaced around the circle's circumference (Fig-

ure 5.1). This method ensured that neighbouring colours had a constant colour distance. It

also ensured that any colour acting as a target had a constant linear separation from every

other (non-target) colour.

d

Purple-Blue
Blue

Yellow

Red

d

l

Green-Yellow

Figure 5.1: An example of �ve colours chosen around an inscribed circle's circumference; each element has
a constant colour distance d with its two neighbours; moreover, when any element (for example, the Red
element) acts as a target, it has a constant linear separation l from the remaining (non-target) elements

In order to control colour category e�ects, we designed a simple method for segmenting

a colour region into individual colour categories. Our algorithm consists of two parts: an

automatic step that divides the colour region into an initial starting state, and an experi-

mental step that provides a user-chosen name, strength, and a measure of perceptual overlap

for each category.

5.2 Estimating Monitor Gamut

Estimating a monitor's gamut in a two-dimensional slice through a colour space (in our

case, in a u�; v�-slice through CIELUV) begins with the chromaticity values of the moni-

tor's phosphors, and the luminance of its maximum-brightness red, green, and blue. These

Chapter 5. E�ective Colour Selection 102

values are needed to convert colours from CIELUV into monitor RGB (for a more complete

description, see the sections on RGB, CIEXYZ, and CIELUV in the Colour chapter).

Next, we built a set of \high" and \low" boundaries for each of the three monitor primaries

red, green, and blue. One side of the boundary represents colours that fall outside the

monitor's gamut; the other side represents colours that may or may not be within the gamut.

For example, the Blue-Lo boundary divides the colour space into two regions: colours with

a monitor blue of less than zero, and colours with a monitor blue of greater than zero. Any

colour with a blue value less than zero cannot be displayed on the given monitor. Colours

with a blue value greater than zero may or may not be displayable. Similarly, Blue-Hi divides

the colour space into colours with a blue value of greater than one (which are undisplayable),

and colours with a blue of less than one (which may or may not be displayable).

Blue-Lo

blue < 0.0

blue > 0.0

(u*,v*) = (0, 0)

blue < 1.0

blue > 1.0

Blue-Hi

Figure 5.2: The boundary lines Blue-Lo and Blue-Hi are computed using a circle centered at (u�; v�) = (0; 0)
in CIELUV; the two points where the circle leaves and then reenters the monitor's gamut are identi�ed;
these are used to build a corresponding boundary line

All of our gamut boundaries were built in the CIELUV colour space. In CIELUV uni-

form chromaticity is a projective transformation of chromaticity, which is itself a projective

transformation of the monitor's primaries [Wyszecki and Stiles, 1982; Robertson, 1988]. This

means our boundary lines are, in fact, straight lines in our u�; v�-slice through CIELUV.

Chapter 5. E�ective Colour Selection 103

The equation of each line was computed by drawing a large circle centered at (u�; v�) = (0; 0)

that intersected the given boundary at two points (Figure 5.2). These points were used to

construct our boundary line.

The monitor's gamut is represented by the largest convex polytope formed by the six

boundary lines. We assume that the CIELUV white-point (u�; v�) = (0; 0) is within the

monitor's gamut at every L� luminance value. This means we can compute the largest

convex polytope as follows:

1. Convert each boundary line into a dual point; given a boundary line in the form

ax+ by = 1, the corresponding dual point is < a; b >.

2. Compute the convex hull of the dual points.

3. Dual points that are on the convex hull represent lines that bound the convex polytope.

We wanted to construct the largest circle inscribed within the resulting convex polytope.

This problem is divided into four cases, based on the number of sides in the given polytope.

Case 1: Three-sided triangle

The largest circle inscribed within a triangle will touch all three sides of the triangle (Fig-

ure 5.4a). The center of the triangle C is de�ned by the intersection of any two angle

bisectors. Given the center C and vertex P1's bisector angle � (Figure 5.4b), the radius r of

the inscribed circle is r = P1C sin�.

Case 2: Four-sided quadrilateral

The largest circle inscribed within a quadrilateral will touch three or four sides of the quadri-

lateral. We begin by computing the bisectors of opposite sides of the quadrilateral. We

identify the two sides that form the longest bisector, then select the longer of the sides X

(Figure 5.4c). The inscribed circle will touch X and the two sides W and Y adjacent to it.

Chapter 5. E�ective Colour Selection 104

-4 -2 2 4

-2

-4

2

4

-x - 1/2y = 1; < -1, -1/2 >
R-Hi

x - 1/4y = 1; < 1, -1/4 >
R-Lo

1/4y = 1; < 0, 1/4 >
G-Hi

B-Hi
1/3y = 1; < 0, 1/3 >

-1/2y = 1; < 0, -1/2 >
B-Lo

u*

G-Lo
1/3x - 1/6y = 1; < 1/3, -1/6 >

v*

(a)

<B-Lo><R-Hi>

1

1/2

-1/2

1/2-1 -1/2

<R-Lo>
<G-Lo>

<B-Hi>

<G-Hi> u*

v*

(b)

Figure 5.3: Finding the largest convex polytope involves computing the convex hull of the duals of each
boundary line: (a) the convex polytope is formed by the intersection of boundary lines B-Lo, R-Lo, B-Hi,
and R-Hi; (b) points <B-Lo>, <R-Lo>, <B-Hi>, and <R-Hi> are vertices of the dual point convex hull,
and therefore identify R-Lo, R-Hi, B-Lo, and B-Hi as the boundaries that form the corresponding convex
polytope

Chapter 5. E�ective Colour Selection 105

P1 P2

P3

α
α β

β

C

(a)

P1 P2

P3

α

C
r

(b)

W Y

X

(c)

W Y

X

C

α β
α β

(d)

W

X

W’
α

(e)

W

X

W’
α β

P

Q

P’

(f)

Figure 5.4: An inscribed circle placed within an arbitrary polytope: (a) within a triangle, the circle C

is de�ned by the intersection of any two angle bisectors; (c) the radius of the circle r is calculated as
r = P1C sin�; (c) within a quadrilateral, the longest edge X of the longest opposite sides bisector is
identi�ed; (c) the center of the circle C is de�ned by the intersection of the two bisectors \WX and \XY ;
(e) within a pentagon, the sides W; X that form the largest interior angle \WX are combined as W 0 to
form a quadrilateral; (b) the sides of the hexagon W; X and P; Q that form the two largest interior angles
\WX and \PQ are combined as W 0 and P 0 to form a quadrilateral

Chapter 5. E�ective Colour Selection 106

The center of the circle C is de�ned by the intersection of the two angle bisectors of \WX

and \XY (Figure 5.4d). The radius r of the circle is computed in a manner similar to the

three-sided triangle case.

Case 3: Five-sided pentagon or six-sided hexagon

Five and six-sided convex polytopes are initially reduced to a four-sided quadrilateral. We

can then use the solution to Case 2 above to �nd a reasonable approximation of the largest

inscribed circle. For example, in a �ve-sided pentagon we �nd the two edges W and X

that form the largest interior angle � = \WX. These edges are replaced with a new edge

W 0 (Figure 5.4e). The largest circle inscribed within the resulting quadrilateral is used to

approximate a solution to the original �ve-sided pentagon. A similar technique is used for

six-sided hexagons; we replace the edges W;X and P;Q that form the two largest interior

angles � = \WX and � = \PQ with two new edgesW 0 and P 0 (Figure 5.4e). As in the �ve-

sided case, we estimate the maximum circle by inscribing within the resulting quadrilateral.

5.3 Segmenting Colour Regions

Although colour models allow us to describe colours in an unambiguous manner, in practice

colours are often identi�ed by name. This technique is not precise, because it relies on a

common colour vocabulary and an agreement on what to call di�erent colours. In spite of

this, it is useful to be able to name individual colours. Identifying colours by name is a

method of communication that everyone understands. Names can also be used to divide a

colour gamut into categories of similar colours. That is, given a set of n names N1; : : : ; Nn,

we can divide a colour region into n categories C1; : : : ; Cn such that all the colours in category

Ci are best described by the name Ni.

The National Bureau of Standards developed the ISCC-NBS colour naming system [NBS,

Chapter 5. E�ective Colour Selection 107

1976] to try to provide a standard method for choosing colour names. English terms along

the three dimensions hue, lightness, and saturation are used to represent di�erent colours.

Words from each dimension are combined in various ways to produce 267 di�erent colour

names (e.g., dark red, strong blue, greenish blue, and so on).

One problem with the ISCC-NBS model is the lack of a systematic syntax; this was

addressed during the design of a new Colour-Naming System (CNS) [Berk et al., 1982;

Kaufman, 1986]. The CNS was based in part on the ISCC-NBS model. It uses the same

three dimensions of hue, lightness, and saturation. However, the rules used to combine words

from these dimensions are de�ned in a formal BNF syntax. Berk compared the RGB, HSV,

and CNS colour models by asking observers to use each system to name a set of colours.

Observers were most accurate when they used the CNS model. Both Berk and Kaufman

describe a method of representing CNS names (as discrete points) within the Munsell colour

model.

An extension of CNS called the Colour-Naming Method (CNM) was proposed by Tomi-

naga [Tominaga, 1985]. The CNM uses a systematic syntax similar to the one described in

the CNS model. In addition, colour names from the CNM can be mapped to colour ranges

in the Munsell colour model. Names in the CNM are speci�ed at one of four accuracy levels

called fundamental, gross, medium, or minute classi�cation. Names from a higher accuracy

level correspond to smaller colour regions in Munsell. A brief description of the algorithm

used to convert from a name to a Munsell colour range is provided in the paper.

In psychology, colour naming experiments are used to divide a colour gamut into named

regions. First, the colour names to be used during the experiment are chosen. The colour

gamut to be named is divided into representative colours. Observers view these colours one

after another and choose from the group of colour names the most appropriate name for each.

Experiments of this type are complicated for a number of reasons. The colour gamut has to

Chapter 5. E�ective Colour Selection 108

be divided into a reasonable number of di�erent colours, to ensure that accurate category

boundaries are reported. Even a 2D slice through a colour model may need to be divided

into hundreds or sometimes thousands of representative colours. A large number of observers

are also required, to ensure that the choice of names is not biased in some unusual manner.

Di�erent observers will disagree on the name for an individual colour, so some method must

be devised to choose a single name in these cases. Finally, some skill is required in picking

the initial group of colour names. A set of names that does not cover completely the colour

gamut will force users to name certain colours in an ad-hoc fashion (e.g., asking observers

to name blues from the RGB colour cube using only the names red, green, and yellow).

The CNS, CNM, and ISCC-NBS models are all designed to provide a set of names that

can be used to accurately identify colours from the visible colour domain. The CNS and

CNM position their names within the Munsell colour model. In particular, the CNM can be

described as a \renaming" of Munsell patches, since each name from the CNM is mapped

to a colour range in Munsell. Unfortunately, it is not obvious how to use these results to

automatically segment colour regions into a small number of colour categories. Perceptually

balanced colour models like Munsell and CIELUV were created using controlled psychologi-

cal experiments. Rather than building a new colour naming language or performing our own

colour naming tests, we decided to use the built-in properties of Munsell and CIELUV to

provide names for individual colours. We wanted an algorithm that was:

� automatic: the algorithm should automatically segment a colour region into a set of

colour categories; individual colours would then be assigned the name of the category

in which they lie;

� accurate: the names for each category must be \descriptive", that is, given the set of

colour names being used, observers should agree the name chosen by the algorithm

represents correctly the colours being named;

Chapter 5. E�ective Colour Selection 109

� stable: the algorithm should build stable, well de�ned boundaries between neighbouring

categories;

� perceptually controlled: the algorithm should consider perceived colour di�erences dur-

ing naming

Method

Our technique assumes the target colour to be named is speci�ed using CIEXYZ. Algorithms

exist to convert colours from most colour models into an (x; y; Y) value. The target colour is

then mapped from CIEXYZ into the Munsell colour space. The Munsell hue dimension uses

colour names to identify di�erent hues; this dimension is used to name the target colour.

There are no simple functions to convert a colour from CIEXYZ to Munsell. Some math-

ematical algorithms have been proposed [Miyahara and Yoshida, 1988]. The CIE suggests

using CIELab values to obtain Munsell hue, value, and chroma [CIE, 1976] as:

H = tan�1(b�=a�)

V = L�=10

C = (a�2 + b�2)
1

2

(5.1)

Unfortunately, these methods are complicated and sometimes inaccurate for certain re-

gions of CIEXYZ or Munsell. We decided to use a much simpler method of mapping, namely

table lookup. The Munsell values listed in Wyszecki and Stiles [1982] are speci�ed as (x; y; Y)

values. The Munsell patch closest to the target colour is used to represent the target. Given

the target colour (xt; yt; Yt) and a Munsell patch (xM ; yM ; YM), the distance between the two

is simply:

d =
q
(xt � xM)2 + (yt � yM)2 + (Yt � YM)2 (5.2)

Chapter 5. E�ective Colour Selection 110

One problem with this technique is the lack of perceptual balance in CIEXYZ. The

Munsell patch that gives the smallest d is closest in Euclidean distance, but it may not be

closest in perceptual di�erence. To overcome this, we computed the distance between target

and patch in CIELUV. The Munsell patch colours were converted and stored as (L�; u�; v�)

values. Target colours were mapped from CIEXYZ to CIELUV in a similar manner. Given

the target colour (L�

t ; u
�

t ; v
�

t) and a Munsell patch (L�

M ; u
�

M ; v
�

M), the perceived di�erence

between the two is now:

d =
q
(L�

t � L�

M)2 + (u�t � u�M)
2 + (v�t � v�M)

2 (5.3)

This allows us to match the target colour to the Munsell patch that is closest in perceptual

di�erence. The hue name of the given patch is then assigned to the target colour.

Results

When we designed our algorithm, one property we wanted to try to provide was stability,

namely that category boundaries were well de�ned, and that names attached to a smoothly

changing set of colours also changed smoothly. Individual Munsell patches are represented

as points when they are moved into the CIELUV coordinate system. Because this is a

continuous mapping, the topology of the Munsell colour model is preserved; patches that

were adjacent in Munsell are also adjacent (as points) in CIELUV.

Target colours are associated with Munsell patches using a Euclidean distance metric.

Consider the region around a Munsell patchMi such that all points in the region are closer to

Mi than to any other patch Mj. Any target colour that falls within this region is associated

with Mi. A 3D Voronoi diagram in CIELUV of the points representing Munsell patches

builds exactly these regions for everyMi [Okabe et al., 1992]. Polyhedrons in a 3D Voronoi

diagram are guaranteed to be convex. This means a straight line in CIELUV will never pass

Chapter 5. E�ective Colour Selection 111

380
470

480

490

500

510

520
530

540

550

560

570

580

590
600

620
770

0.2 0.4 0.6

x

y

0.2

0.4

0.6

0.8

G

R

B

0.8

(a)

YR

P P P PB PB

YR

GY

GY

GY

GY

GYYY

BG

PB

PB

P

P

Red

Blue

Green

P

GY

GY

GY

B

B

B

B

GY

B B BG

BG

BG

G

G

PB

RP

RP

P

P

R

PB PB

(b)

Figure 5.5: Silicon Graphics monitor gamut and corresponding RGB colour cube: (a) the the monitor's
gamut is de�ned by the chromaticities of its triads to be a triangle in the CIE chromaticity horseshoe; (b)
names for colours along nine of the 12 RGB colour cube edges

through a patch's Voronoi region more than once. Because the Voronoi regions of connected

Munsell patches are themselves connected in CIELUV, the names for colours along a line

will change in a smooth, stable manner.

In order to assess the accuracy of our technique, we named known colour regions from

the RGB, HSV, and CIELUV colour models. We began with the RGB colour cube. Monitor

RGB values from our Silicon Graphics workstations were converted to CIEXYZ, and then

into CIELUV to be named. The results are shown in Figure 5.5b. Colour names change

smoothly along the cube's edges from corner to corner. The names provided appear to be

correct, given that the monitor's RGB colour gamut covers only a subset of all visible colours

(Figure 5.5a).

One apparent problem involves the RGB cube's white corner, which is labelled purple-

Chapter 5. E�ective Colour Selection 112

Monitor RGB Name Munsell Patch

(0.0, 0.0, 0.0) Black Black 0/0

(0.1, 0.1, 0.1) B 5B4/2

(0.2, 0.2, 0.2) PB 5PB5/2

(0.3, 0.3, 0.3) B 5B6/2

(0.4, 0.4, 0.4) B 5B7/2

(0.5, 0.5, 0.5) B 5B7/2

(0.6, 0.6, 0.6) B 5B8/2

(0.7, 0.7, 0.7) PB 5PB8/4

(0.8, 0.8, 0.8) B 5B9/2

(0.9, 0.9, 0.9) PB 5PB9/4

(1.0, 1.0, 1.0) PB 5PB9/4

Table 5.1: Names attached by our algorithm to colours along the black-white line in monitor RGB colour
cube; colour constancy ensures that white, black, and grey values appear correct in the context of other
monitor colours

blue rather than white. The Munsell patch matched to the white corner was 5PB9/4, which

is very close to white (Munsell patch 5PB9/4 is two chroma \steps" from 5PB9/0, since

Munsell values from Wyszecki and Stiles are speci�ed at even chroma values). A similar

problem occurs during the naming of the cube's black corner (matched to Munsell patch

5GY1/2). In the Munsell colour model, \white", \black", and \grey" are special cases, and

are not used as hue names. We could solve this problem in certain situations by adding

the colour names white, black, and grey. These correspond to Munsell colours with chroma

zero and value ten (white), chroma zero and value zero (black), and chroma zero and value

between one and nine (grey). Table 5.1 shows the Munsell patches and colour names we

obtain for greys along the RGB cube's black-white diagonal.

The RGB cube's white corner is still named PB (although the black corner is now named

\black"). This is because the monitor's white corner is not in the same location as the white

point in the Munsell colour model. Colour constancy makes the white value appear correct

Chapter 5. E�ective Colour Selection 113

in the context of the other monitor colours. This last point also explains why corners of the

colour cube are not named exactly as expected (e.g., both the yellow and the green corners

are named GY). Our naming technique is in fact showing where the monitor's gamut falls

within the region of visible colours.

Red

YellowGreen

MagentaBlue

Cyan S
White

H

(a)

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Y

PPB

RP

R

YR

G

GY

BG

B

(b)

Figure 5.6: Example of segmenting an HS-slice through the HSV hexcone at V = 1; (a) an HS-slice through
the HSV hexcone, showing the primary colours at the corners of the hexcone, and the hue and saturation
dimensions; (b) a segmented HS-slice at V = 1, lines represent the boundaries between the ten named
categories

We continued investigating our naming technique by trying to categorize colours from

a 2D slice through the HSV hexcone. The HSV colour model represents colours using the

three \dimensions" hue, saturation, and value. The HSV hexcone is a projection of the RGB

colour cube along the white-black diagonal. This means the colour gamut of a monitor's

HSV hexcone is the same as the gamut of the monitor's RGB cube.

The V = 1 plane of the hexcone contains a monitor's fully saturated red, green, blue,

yellow, cyan, and magenta (Figure 5.6a). Our naming algorithm was used to partition this

plane into the ten named categories shown in Figure 5.6b. These regions correspond closely

to the names that are normally attached to the hexcone's corners. Each category boundary is

Chapter 5. E�ective Colour Selection 114

well de�ned, and none of the boundaries intersect with one another. As with the RGB colour

cube, the white point at the center of the hexcone falls within the purple-blue category. Our

algorithm identi�es what it would call white in the upper-right quadrant (somewhere in the

region where the colour boundary lines converge). Again, this is due to the location of the

monitor's gamut within the visible colour region.

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0

v
*

u*

P

RP

R

YR

G

BG

B
PB

GY

Y

Figure 5.7: Example of segmenting a u�v�-slice through CIELUV at L� = 71:6; lines represent the boundaries
between the ten named categories

We concluded our tests by trying to divide a 2D slice through the CIELUV colour space.

Unlike RGB and HSV, CIELUV is not constrained by a set of monitor triad chromaticities.

The CIELUV colour model is capable of representing any colour from the visible frequency

domain. We expected to see a much closer match between the white point in CIELUV and

the region our algorithm identi�es as containing white, since the CIE explicitly calibrated

CIELUV to correspond closely to Munsell.

Figure 5.7 shows a circular u�v�-slice through the CIELUV model at a �xed luminance of

Chapter 5. E�ective Colour Selection 115

L� = 71:6. The circle was centered at (u�; v�) = (10:49; 22:54) and had a radius of 71:0�E�.

The white point in CIELUV is located at (u�; v�) = (0; 0). As with the HSV example, each

category boundary is clearly de�ned. Boundaries do not cross one another. Moreover, the

colour boundary lines terminate as expected at the region that contains the CIELUV white

point.

5.4 Evaluating Colour Categories

Results from our automatic segmentation algorithm suggest it is accurate and stable for a

wide range of colour models and visible colours. Observers agreed that the names attached

to individual colours were appropriate given the set of names available through the Munsell

hue dimension. This does not mean that observers would have chosen exactly the same

names used by the algorithm to describe each colour, however. For example, most people

do not use the name \purple-blue" to describe a colour. They are more likely to use names

like dark blue, grey blue, or indigo. In order to measure colour category e�ects, we needed a

method for segmenting a colour gamut into user-named categories. We used our algorithm

to automatically divide the colour gamut into an initial starting state. From there, we picked

one or more representative colours from each category and ran a limited set of colour naming

tests. Results from these experiments allow us to specify the perceptual overlap, strength,

and user-chosen name of each category.

Method

We decided to try to assess the categories along the circumference of the u�v�-circle shown

in Figure 5.7. Our segmentation algorithm was used to divide the circle's boundary into

ten initial categories. We needed to pick a representative colour from each category to use

Chapter 5. E�ective Colour Selection 116

during our naming experiment. The colour at the center of the category was chosen for this

purpose (Figure 5.8).

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0

v
*

u*

P

RP

R

YR

G

BG

B
PB

GY

Y

Figure 5.8: A u�v�-slice through CIELUV at L� = 71:6; ticks along the the circle mark the boundaries
between the ten named categories, points are the representative colours for each category

Thirty-eight observers with normal or corrected acuity volunteered to participate in our

experiment. Each observer was tested to ensure they were not colour blind. They were then

asked to name each of the ten representative colours. Observers were told to give a simple

name that accurately described each colour. No restrictions were placed on the names they

were allowed to use.

Our experiment was conducted on a Macintosh computer with a sixteen inch colour

monitor and video hardware with an eight bit colour lookup table. The software used was

designed and written speci�cally to run vision experiments [Enns and Rensink, 1991]. The

chromaticities of the monitor's triads and maximum-intensity red, green, and blue were

measured to build an accurate CIELUV to monitor RGB conversion matrix.

Chapter 5. E�ective Colour Selection 117

During the experiment the representative colours were shown to each observer in a ran-

dom order. Each colour was displayed as a rectangular patch that �lled approximately 90%

of the screen. The border around the outside of the patch was coloured light grey, and had a

luminance L� = 71:6 equal to the luminance of the colour patches. Observers were allowed

to view the patch for as long as they wanted before providing a name. Observers were told

that they would not be shown the same colour more than once. The names provided by each

observer were recorded for later analysis.

Results

Observers provided us with a wide range of di�erent colour names. We compressed these

results by combining names that described the same colour or combination of colours. For

example, the names \purple", \violet", and \mauve" from the P category were combined

under the name \purple". The names \aqua", \turquoise", \blue green", \green blue", and

\sea green" from the BG category were combined under the name \aqua". Figure 5.2 shows

the names chosen for each of the ten representative colours. The frequency of each name is

also provided. A name's frequency is the percentage of observers who chose that name to

describe the given colour patch.

Even a brief review of the results in Table 5.2 leads to a number of interesting conclusions.

For example, both the G and GY categories were almost exclusively named \green" (with

frequencies of 100% and 97.4%, respectively). This suggests that, in terms of user-chosen

names, G and GY should be collapsed into a single \green" category. The B and PB

categories (both named \blue" with frequencies 89.4% and 92.1%, respectively) might also

be collapsed into a single \blue" category. The R category appears to lack saturation;

combining the frequencies for the names \red" and \pink" (unsaturated red) results in near-

total coverage of 97.3%. Similarly, the Y category lacks luminance; a combination of the

Chapter 5. E�ective Colour Selection 118

purple magenta pink red orange brown yellow green aqua blue other

P 86.9% 2.6% 5.2% { { { { { { { 5.2%

RP 15.7% 28.9% 55.3% { { { { { { { {

R { { 26.3% 71.0% { { { { { { 2.6%

YR { { { 5.3% 86.8% 7.9% { { { { {

Y { { { { 2.6% 44.7% 47.4% { { { 5.2%

GY { { { { { { { 97.3% { { 2.6%

G { { { { { { { 100.0% { { {

BG { { { { { { { 26.3% 57.8% 15.8% {

B { { { { { { { { 7.9% 89.4% 2.6%

PB 5.2% { { { { { { { { 92.1% 2.6%

Table 5.2: Frequency of user-chosen names for each of the ten named category, represented by percentage of
observers who chose each name to describe the given colour

names \yellow" and \brown" (dull yellow) results in a total frequency of 92.2%.

Other categories appear to cover a range of user-chosen names. The RP category is

split between \pink" (or unsaturated red, 55.3%), \purple" (15.7%), and \magenta" (or red-

purple, 28.9%). Observers named this category using one or both of its primary components

(either red or purple). The BG category was named either \green" (26.3%), \aqua" (or

blue-green, 57.8%), or \blue" (15.8%). Observers were told after the experiment that the

Munsell name for this colour was \blue-green". Most observers agreed that \blue-green"

was a descriptive and accurate name (in spite of the fact that almost no one chose it for

themselves). This suggests that Munsell names are not necessarily poor, rather they may be

uncommon in most people's vocabulary.

5.5 Perceptual Overlap

Our results show clearly that certain neighbouring categories overlap in the names chosen

to represent the category. Kawai et al. [1995] suggest that a user's ability to detect a colour

Chapter 5. E�ective Colour Selection 119

\target" will decrease dramatically when background elements use colours from the target's

category. We could logically extend this to imply that a similar decrease in performance will

occur if background colours are chosen from neighbouring but overlapping categories. In

order to predict (and avoid) this type of visual interference, we need a method to measure

perceived category overlap. This type of overlap depends on:

� the range of user-chosen names assigned to a given category

� the frequency of a user-chosen name

� how the ranges of neighbouring categories overlap

As an example, consider the R and YR categories, which have user-chosen name ranges:

pink red orange brown

R 26.3% 71.0%

YR 5.3% 86.8% 7.9%

Colours from R and YR overlap only at the \red" name; their overlap is not that strong,

since the frequency of \red" for the YR category is low. We computed the amount of

overlap by multiplying the frequencies for the common name. This gives an R-YR overlap of

71:0%�5:3% = 0:0376. A closer correspondence of user-chosen names for a pair of categories

results in a much larger overlap. For example, given the user-chosen name ranges for GY

and G:

green other

GY 97.4% 2.6%

G 100.0%

the GY-G overlap is 97:3% � 100:0% = 0:973. Colours that overlap over multiple names are

combined using addition, for example, BG and B have ranges:

Chapter 5. E�ective Colour Selection 120

green aqua blue other

BG 26.3% 57.8% 15.8%

B 7.9% 89.4% 2.6%

for a BG-B overlap of (57:8%�7:9%)+(15:8%�89:4%) = 0:187. When we use this algorithm

to compute the overlap between each of the ten named categories, we obtain the overlap

table shown in Table 5.3. Values from this table can be used to predict when certain colours

might be di�cult to distinguish from one another.

R YR Y GY G BG B PB P RP

R | .038 0 0 0 0 0 0 .014 .145

YR .038 | .058 0 0 0 0 0 0 0

Y 0 .058 | 0 0 0 0 0 0 0

GY 0 0 0 | .973 .256 0 0 0 0

G 0 0 0 .973 | .263 0 0 0 0

BG 0 0 0 .256 .263 | .187 .146 0 0

B 0 0 0 0 0 .187 | .823 0 0

PB 0 0 0 0 0 .146 .823 | .045 .008

P .014 0 0 0 0 0 0 .045 | .173

RP .145 0 0 0 0 0 0 .008 .173 |

Table 5.3: Table showing the degree of user-name overlap between representative colours from each of the
ten named categories

A �nal characteristic that we measured was the strength of each named category. We

de�ned a category to be strong when:

� it has one high frequency user-chosen name

� it has relatively low perceptual overlap with neighbouring categories

Using this de�nition and results for categories along our CIELUV colour wheel, we

classi�ed YR (with a total perceptual overlap of 0.096) and P (with an overlap of 0.232)

Chapter 5. E�ective Colour Selection 121

as being strongly named \orange" and \purple". The G-GY categories might be collapsed

into a single strong \green" category (overlapping somewhat with BG). Similarly, B-PB

might be collapsed into a single strong \blue" category (again overlapping somewhat with

BG). Although categories like R and YR have low perceptual overlap, there was no common

agreement on a single name to describe them. Users were evenly split between \red" and

\pink" for the R category, and \yellow" and \brown" for the Y category.

5.6 Experiment 1: Distance and Separation

We began our investigation of colour selection by controlling colour distance and linear sepa-

ration, but not colour category. Although Kawai's results on colour category are intriguing,

researchers in psychology are still divided on the question of whether the way in which

people name colours has an a�ect on the perceptual division of a colour space into colour

regions. We deliberately ignored colour category to see what e�ect this would have on our

colour target search task. Results from our experiment showed inconsistent performance.

When we considered colour categories during colour selection, we were able to predict and

avoid this visual interference e�ect. We were also able to increase the number of colours we

could simultaneously display, which is an important factor to consider. This shows that, at

least during target detection, how users name colours can in
uence the perceived di�erence

between the colours.

As discussed in the introduction to this chapter, we proceeded under the assumption that

a user might choose to search for any one of the di�erent types of data element at any given

time. Our requirement meant that we could not prede�ne which elements were targets and

which were non-targets. The colour selection technique had to allow for rapid and accurate

identi�cation of any of the elements being displayed.

Chapter 5. E�ective Colour Selection 122

We ran four studies to investigate the tradeo� between the number of colours displayed

and the time required to determine the presence or absence of a target element. Table 5.5

lists the names and the monitor RGB values of all the colours used in the studies. Each

study displayed a di�erent number of unique colours:

� three-colour study: each display contained three di�erent colours (i.e., one colour for

the target and two for the non-targets, Figures 5.9a{5.9b)

� �ve-colour study: each display contained �ve di�erent colours (i.e., one for the target

and four for the non-targets, Figures 5.9c{5.9d)

� seven-colour study: each display contained seven di�erent colours (i.e., one for the

target and six for the non-targets, Figures 5.9e{5.9f)

� nine-colour study: each display contained nine di�erent colours (i.e., one for the target

and eight for the non-targets, Figures 5.9g{5.9h)

Every colour in a given study was tested as a target. For example, the three-colour study

was run three times, �rst with an R element acting as a target (and GY and PB elements

acting as non-targets), next with a GY target (and R and PB non-targets), and �nally with

a PB target (and R and GY non-targets). Faster search times for certain targets would have

to be explained in terms of colour distance, linear separation, or colour category. Each of

the four studies were themselves divided in the following manner:

� half of the displays were randomly chosen to contain an element that used the target

colour; the other half did not

� one-third of the displays contained a total of 17 elements (one target and 16 non-targets

if the target was present, or 17 non-targets if the target was absent); one-third of the

Chapter 5. E�ective Colour Selection 123

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.9: Example displays from each of the four studies, in each �gure the target is a red element: (a){(b)
three-colour study, 17 elements, target present in (a), absent in (b); (c){(d) �ve-colour study, 33 elements,
target present in (c), absent in (d); (e){(f) seven-colour study, 49 elements, target present in (e), absent in
(f); (g){(h) nine-colour study, 33 elements, target present in (g), absent in (h)

Chapter 5. E�ective Colour Selection 124

displays contained a total of 33 elements (either one target and 32 non-targets, or 33

non-targets); one-third of the displays contained a total of 49 elements (either one

target and 48 non-targets, or 49 non-targets)

� elements in each display were randomly located in an underlying 9�9 grid that covered
the entire viewing area of the monitor

Colours for each of the four studies were chosen such that the colour distance between

pairs of colours and the linear separation for each colour were �xed to constant values (as

described below). Our results showed that detection was rapid and accurate for all colours

from both the three-colour and �ve-colour studies. Results from the seven-colour and nine-

colour studies were mixed; some colours gave better performance than others. This di�erence

was explained by examining the colour regions occupied by each of the colours.

Method

We began the colour selection process by obtaining the chromaticities of our monitor's triads.

We also measured the luminance of the monitor's maximum intensity red, green, and blue

with a spot photometer.

We chose colours with the same perceived intensity, because previous research has shown

that random variation in intensity can interfere with an observer's ability to perform visu-

alization tasks based on colour [Callaghan, 1984]. All the colours were chosen from a single

u�; v�-slice through the CIELUV colour space at L� = 67:1. We wanted to maximize the

number of available colours, while still maintaining control over colour distance and linear

separability. To do this, we computed the monitor's gamut in the L� = 67:1 slice. We then

found the largest circle inscribed within the gamut (Figure 5.10).

Chapter 5. E�ective Colour Selection 125

∆E*r = 75.0

(L*,u*,v*) =
(67.1, 21.1, 11.2)

Blue-Lo

Blue-Hi

Red-Lo

Red-Hi

Figure 5.10: An diagram of the monitor's gamut at L� = 67:1, along with the maximum inscribed circle
centered at (67:1; 21:1;11:6), radius 75.0�E�

Given this largest inscribed circle, we chose colours that were equally spaced around its

circumference. For example, during the �ve-colour study we chose colours at positions 14�,

86�, 158�, 230�, and 302� counterclockwise rotation from the x-axis (Figure 5.1). This method

ensured that neighbouring colours had a constant colour distance. It also ensured that any

colour acting as a target had a constant linear separation from every other (non-target)

colour. A similar technique was used to select colours for the three-colour, seven-colour, and

nine-colour studies. This gave us the colour distances d and linear separations l shown in

Table 5.4.

Study d l

3-colour 129.9�E� 112.5�E�

5-colour 88.2�E� 51.9�E�

7-colour 65.1�E� 28.4�E�

9-colour 51.3�E� 17.6�E�

Table 5.4: The constant colour distance d and linear separation l for each of the four studies; distances are
measured in �E� units

Chapter 5. E�ective Colour Selection 126

Our experiments were conducted on a Macintosh computer with a fourteen inch colour

monitor and video hardware with an eight-bit lookup table. The software used was designed

and written speci�cally to run vision experiments [Enns and Rensink, 1991]. Thirty-eight

users with normal or corrected acuity participated as observers during our studies. Observers

were tested to ensure they were not colour blind, using the Insight-2 Colour Vision Test. The

Insight-2 software is designed to run on Macintosh computers; its colour vision test is based

on the Farnsworth-Munsell 100-hue and dichotomous colour vision experiments. After the

colour vision test, each observer was asked to complete one or more experiment subblocks. A

subblock consisted of 360 displays testing a single colour target from one of the four studies.

A total of 66 subblocks were run, divided to roughly balance the number of observers who

completed each study (Table 5.5).

The procedure and task of each experiment were introduced to the observers before they

began a testing session. For example, before starting a subblock from the seven-colour

experiment observers were shown a sample display frame. The colour of the target element

was identi�ed within the display. Observers were told that during the experiment they would

have to determine whether an element with the given target colour was present or absent

in each display they were shown. Observers were asked to answer as quickly as possible,

but also to ensure that they answered correctly. They were then shown how to enter their

answer (either \present" or \absent"). This was done by typing a letter on the keyboard.

Observers were allowed to choose one letter that corresponded to \present", and another

that corresponded to \absent".

Observers were given an opportunity to practice each subblock before they began the

actual experiment. A practice session consisted of thirty-six trials presented in a random

order. The target colour used during the practice session was the same as the target colour

used during the experiment subblock. The number of colours present in each display was

also the same as in the experiment subblock (i.e., practice sessions during the seven-colour

Chapter 5. E�ective Colour Selection 127

Study Target Monitor Number Number Average

Colour (R,G,B) of Subjects of Trials Error

3-colour R (243; 51; 55) 4 1440 2.4%

3-colour GY (49; 121; 20) 4 1440 1.6%

3-colour PB (88; 82; 175) 4 1440 3.4%

5-colour R (243; 51; 55) 3 1080 2.6%

5-colour Y (134; 96; 1) 3 1080 3.1%

5-colour GY (18; 127; 45) 3 1080 2.1%

5-colour B (36; 103; 151) 3 1080 1.8%

5-colour P (206; 45; 162) 3 1080 1.9%

7-colour R (243; 51; 55) 3 1080 5.3%

7-colour Y (171; 83; 7) 3 1080 4.9%

7-colour GY (78; 114; 8) 3 1080 3.6%

7-colour G (9; 128; 58) 3 1080 3.1%

7-colour BG (20; 111; 137) 3 1080 3.0%

7-colour P (132; 66; 180) 3 1080 3.3%

7-colour RP (239; 39; 134) 3 1080 3.0%

9-colour R (243; 51; 55) 2 720 3.1%

9-colour YR (191; 75; 13) 2 720 5.2%

9-colour Y (119; 101; 1) 2 720 3.3%

9-colour GY (49; 121; 20) 2 720 13.9%

9-colour G (5; 128; 66) 2 720 14.8%

9-colour BG (13; 115; 128) 2 720 9.8%

9-colour PB (88; 82; 175) 2 720 2.8%

9-colour P (189; 49; 170) 2 720 4.1%

9-colour RP (249; 38; 116) 2 720 16.1%

Table 5.5: Table listing for each target tested within the four colour studies: the colour name and monitor
RGB value of the target, the number of subjects who ran the given subblock, the total number of trials
completed, and the average error rate

Chapter 5. E�ective Colour Selection 128

study used displays with seven di�erent colours: one for the target and six for the non-

targets). The thirty-six displays were divided equally across display size: one-third of the

displays contained 17 elements, one-third contained 33 elements, and one-third contained 49

elements. For each display size, half the trials contained an element that used the target

colour and half did not. The practice session was designed to give observers an idea of the

experiment procedure and the speed of the trials.

After completing a practice session, observers began the actual experiment subblock.

Each subblock consisted of 360 displays. Observers were given an opportunity to rest after

every 60 displays. Responses (either \present" or \absent") and the time to respond for each

display an observer completed were recorded for later analysis.

Results

Observers had very little di�culty identifying targets during the three-colour and �ve-colour

studies. Graphs of mean response time across display size were relatively
at for every

colour (Figure 5.11). During the three-colour study response times ranged from 453msec

to 532msec for target present displays, and from 463msec to 547msec for target absent

displays. Results for the �ve-colour study were similar, with mean response time ranges of

504msec to 592msec for target present displays, and 509msec to 704msec for target absent

displays. Mean response error for the three-colour and �ve-colour studies was 2.5% and

2.3%, respectively.

There was a small increase in mean response times when we moved from the three-colour

to the �ve-colour study. This is thought to correspond to the increase in the number of

unique colours being displayed. Hick [1952] showed that when users expect an increased

number of choices their absolute response times increase logarithmically in the number of

choices available. We believe that the increase in the number of unique colour stimulae in

Chapter 5. E�ective Colour Selection 129

500

750

1000

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

3-Item Absent

500

750

1000

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

3-Item Present

GY
PB

R R

GY
PB

(a)

B
R
GY
Y

500

750

1000

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

5-Item Absent

500

750

1000

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

5-Item Present

R

Y

B

GY

P P

(b)

Figure 5.11: Response time graphs for the three-colour and �ve-colour studies, in each �gure the graph on
the left represents displays where the target was absent, while the graph on the right represents displays
where the target was present: (a) response time as a function of display size (i.e., total number of elements
shown in the display) for each target from the three-colour study; (b) response time as a function of display
size for each target from the �ve-colour study

Chapter 5. E�ective Colour Selection 130

our displays produces a similar e�ect; this would explain the small y-intercept increase in

response times observed during the �ve-colour study.

Analysis of variance (ANOVA) results showed a signi�cant di�erence in response time

across target colour during the three-colour experiment, F (2; 4209) = 224:6; p < 0:0001

(main e�ects with a p-value of less than 5% were considered signi�cant). For the �ve-colour

experiment, ANOVAs identi�ed a signi�cant di�erence in response time across both target

colour and display size (F (4; 5256) = 194:0; p < 0:0001 and F (2; 5258) = 49:2; p < 0:0001,

respectively). Signi�cant reaction time di�erences across target colour are probably caused

by performance di�erences in individual subjects, since only a small number of subjects

completed trials for a given colour (four subjects per target colour during the three-colour

study, and three subjects per target colour during the �ve-colour study).

Sche��e values suggest that the signi�cance across display size during the �ve-colour study

is due to lower reaction times during the 17 element displays (p < 0:0001 for the (17, 33)

and (17, 49) display size pairs, p = 0:03 for the (33, 49) display size pair). This can be seen

visually as a
attening of the response time graphs in Figure 5.11b (particularly for target

absent displays) when display sizes increased. As we moved from 33 to 49 element displays,

we observed an average mean reaction time increase of +0:80msec per element, a minimumof

�0:25msec per per element (for GY targets during target absent displays), and a maximum

of +1:98msec per element (for GY targets during target present displays). We expect similar

response time increases for displays larger than 49 elements, although additional experiments

would be required to con�rm this hypothesis. Based on the absolute response times and per

element response time increases, we concluded that users could accurately identify the target

in all cases, and that the time required to do so was su�ciently independent of display size

for our purposes. This suggests that, even when using �ve di�erent colours, the visual system

can search for any one of the colours in parallel.

Chapter 5. E�ective Colour Selection 131

P
Y
R
BG
RP

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

7-Item Absent

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

7-Item Present

GY
G

P
RP
Y
R
BG GY

G

(a)

Y
PB

P

YR
R

RP
BG

GY
G

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

9-Item Absent

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

9-Item Present

P

Y
PB

YR
BG

GY
G

RP

R

(b)

Figure 5.12: Response time graphs for the seven-colour and nine-colour studies, in each �gure the graph on
the left represents displays where the target was absent, while the graph on the right represents displays where
the target was present: (a) response time as a function of display size for each target from the seven-colour
study; (b) response time as a function of display size for each target from the nine-colour study

Chapter 5. E�ective Colour Selection 132

Target identi�cation became much more di�cult for certain colours during the seven-

colour and nine-colour studies. Mean response error during the seven-colour study was still

low, at approximately 3.3%. The P, Y, R, BG, and RP targets each exhibited relatively

at response time graphs. Mean response time for these elements ranged from 562msec

to 829msec for target present displays, and from 621msec to 1003msec for target absent

displays. The G and GY targets, however, gave response times typical of serial search. An

increase in the number of elements being displayed brought on a corresponding increase in

response time. A linear regression �t to results for the G target produced t = 695:1 +

7:7n; r = 0:23 and t = 745:6 + 17:5n; r = 0:54 for target present and target absent displays,

respectively. A similar calculation for the GY target produced t = 764:3 + 6:7n; r = 0:19

and t = 684:0 + 18:8n; r = 0:46. The reaction time increase per additional element for

target-absent displays (approximately 17msec per additional element for G, and 19msec per

element for GY) was roughly twice that for target-present displays (8msec and 7msec per

element for G and GY, respectively). Observers had to search through, on average, half the

elements before they found the target in target-present displays. In target-absent displays,

however, they had to search through all the elements to con�rm that no target existed. This

explains why per item search time increased roughly twice as fast for target-absent displays.

A similar set of results was obtained during the nine-colour study. Overall mean response

error increased to 8.1%; it was lowest for the R, Y, PB, and P targets (3.1%, 3.3%, 2.8%, and

4.1%, respectively) and highest for the GY, G, and RP targets (13.9%, 14.8%, and 16.1%,

respectively). The Y, PB, and P targets displayed relatively
at response time graphs during

target-present displays (although response time did increase with display size during target-

absent displays). The remaining targets showed some form of serial search. The e�ect was

weakest for the R and YR targets, and strongest for the G and GY targets.

Chapter 5. E�ective Colour Selection 133

5.7 Colour Category Integration

Results from our four studies showed that controlling colour distance and linear separation

alone is not enough to guarantee consistently good (or consistently bad) target identi�cation

for every colour. Results from Kawai et al. suggest that colour category can also have a

strong e�ect on the amount of time required to identify a colour target. We decided to see

whether colour category results could explain the asymmetric response times we observed

during the seven-colour and nine-colour studies. We used our colour segmentation technique

to place individual colours within a named colour region.

In the seven-colour study the P, Y, R, BG, and RP targets gave good performance. The

G and GY targets gave poor performance. An examination of the perceptual overlap table

(Table 5.3) suggests the following explanation:

� targets R, Y, P, and RP have a weak overlap with the other colours used during the

study: Y has no overlap to the other colours, R and RP have an overlap of 0.145, and

P and RP have an overlap of 0.173

� target BG has a moderate overlap of 0.256 and 0.263 with GY and G, respectively

� targets G and GY have a moderate overlap with BG, and a very strong overlap of

0.973 with one another

For each target in the seven-colour study, its perceptual overlap with the other colours

corresponded closely to its mean response time. We can measure this correspondence by

computing Spearman's correlation coe�cient on the rank order of our colours in terms of

total overlap and mean response time.

Table 5.6 sums the overlap measures for each of the seven colours we used. The rank

order of total overlap from lowest to highest is Y, R, P, RP, BG, GY, and G. Ranking our

Chapter 5. E�ective Colour Selection 134

R Y GY G BG P RP

R | 0 0 0 0 .014 .145

Y 0 | 0 0 0 0 0

GY 0 0 | .973 .256 0 0

G 0 0 .973 | .263 0 0

BG 0 0 .256 .263 | 0 0

P .014 0 0 0 0 | .173

RP .145 0 0 0 0 .173 |

Total .159 0 1.229 1.236 .519 .187 .318

Table 5.6: Perceptual overlap table, showing individual and total overlap values for each of the colours used
during the seven-colour study

colours based on total mean response time (including both present and absent trials across

all three display sizes) from smallest to largest gave an order of P, R, Y, BG, RP, GY, G.

The Spearman correlation between these rankings is rrank = 0:821, con�rming that higher

mean response times for a given target correspond to a higher colour category overlap.

A category overlap{response time correlation can also be observed during the nine-colour

study:

� targets P, Y, YR, and PB have a weak overlap with the other colours used during the

study (PB and BG have a similarity of 0.146, and P and RP have an overlap of 0.173)

� targets R, RP, and BG have a moderate overlap with the other colours (RP has an

overlap of 0.145 and 0.173 to R and P, respectively, while BG has an overlap of 0.256

and 0.263 to G and GY, respectively)

� as in the seven-colour study, G and GY have a moderate overlap with BG, and a very

strong overlap with one another

The Spearman correlation between the colours' total similarity and mean response time

Chapter 5. E�ective Colour Selection 135

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

Colour-Category Absent

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

Colour-Category Present

G

YR
R

Y

RP

P

B

P
RP

Y

R
YR

B
G

Figure 5.13: Response time graphs for the �rst colour-category study, the graph on the left represents displays
where the target was absent, while the graph on the right represents displays where the target was present

rankings was rrank = 0:762. Results for YR and BG are somewhat anomalous; values

from the overlap table suggest we should have observed better performance for the YR

target compared to the BG target. Results for the other colours correspond closely to their

perceptual overlap measures.

5.8 Experiment 2: Colour Category

Results from investigating colour category integration might imply that e�ective colours can

be selected by controlling colour category alone. This was tested by selecting seven colours

from colour regions that had low overlap with one another. An examination of the similarity

table in Figure 5.2 shows that colours chosen from the R, YR, Y, G, B, P, and RP regions

satisfy our restriction; the largest overlap occurs between RP-R (0.145) and RP-P (0.173).

The colours we chose were exactly those used as representative colours during the colour

naming experiments (Figure 5.8). Because these were the colours used to obtain the user-

chosen names for each region, their overlap with one another corresponds exactly to the

values in the similarity table. A single observer completed 360 displays for each target.

Chapter 5. E�ective Colour Selection 136

CW d CCW d l

(in �E� units) (in �E� units) (in �E� units)

R 42.0 42.0 12.2

YR 42.0 49.8 14.6

Y 49.8 112.6 39.0

G 112.6 67.5 52.9

B 67.5 63.2 29.1

P 63.2 48.6 20.4

RP 48.6 42.0 14.2

Table 5.7: The exact distance in CIELUV between a colour, its clockwise neighbour (CW d), and its
counter-clockwise neighbour (CCW d), as well as the linear separation from the other colours when it acted
as a target

Mean response error was 3.8%, which shows responses were accurate. Although response

times are somewhat better than those from the original seven-colour study, several colours

(in particular R, YR, and RP) still exhibit poor search performance. Linear regression �ts

suggest the R target had a per element response time increase of 5:1msec and 17:2msec

for target present and target absent displays, respectively. Results for the P target were

5:7msec and 15:2msec per element; for the RP target they were 5:1msec and 7:8msec per

element. This can be explained by examining the distance between neighbouring pairs of

colours, and the linear separation for each colour when it acted as a target (Figure 5.7).

Colours that gave the worst search performance had the smallest neighbour distances and

linear separation (R, YR, and RP); in fact, the R, YR, and RP targets had a linear separation

that was smaller than the one used during the nine-colour study. Colours that gave the best

search performance had the largest neighbour distances and linear separation (G, B, and Y).

Chapter 5. E�ective Colour Selection 137

5.9 Experiment 3: Colour Selection

Results from our colour category experiment show that category alone cannot be used to

ensure consistently good identi�cation based on colour. Colour distance and linear separation

need to be considered, because they do have an e�ect on search performance. We used a

more systematic colour selection technique to choose another set of seven colours:

� a single green was chosen from the combined G-GY colour region; observers see the

entire region as green, which means it can be used for only a single colour

� the clockwise neighbour of our green was a yellow, chosen to lie on the border between

the GY and Y colour regions

� the counterclockwise neighbour of our green was a blue-green, chosen to lie in the

center of the BG colour region (we did not use the colour from the border between G

and BG, because it was too di�cult to di�erentiate from our green)

� the remaining four colours (chosen from the YR, R, RP, and PB colour regions) were

at equal steps between our yellow and our blue-green

This gave us a constant neighbour distance d and linear separation l (59:4�E� and

24:6�E�, respectively) between the Y, YR, R, RP, PB, and BG colours (G had a larger d

and l than the other colours). Results from displays using these colours as targets are shown

in Figure 5.14. Mean response error was 5.6%. Response time graphs for all seven colours

are much
atter than in the original seven-colour study, although G and Y still give mixed

results during target-absent displays (response time increases as we moved from 33 to 49

element displays of 3:5msec and 5:5msec per element, respectively). We could have further

di�erentiated these elements by choosing a yellow from the center of the Y colour region

(rather than at the GY-Y border). This might have resulted in poorer performance for other

Chapter 5. E�ective Colour Selection 138

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

Colour-Category Absent

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

17 33 49

R
e
s
p
o
n
s
e

T
i
m
e

(
m
s
e
c
)

Display Size (Elements)

Colour-Category Present

RP
YR
R

BG
Y
G

BG
G
Y

RP

YR
R

PB

PB

Figure 5.14: Response time graphs for the second colour-category study, the graph on the left represents
displays where the target was absent, while the graph on the right represents displays where the target was
present

targets due to the reduction in colour distance d and linear separation l between our Y,

YR, R, RP, PB, and BG colours, however. It appears that seven isoluminant colours is the

maximum we can display at one time, while still allowing rapid and accurate identi�cation

of any one of the colours.

Chapter 6

Real-Time Visualization

The techniques we have discussed thus far are all based on static display frames. A static

frame is shown to a user in isolation, usually for a �xed exposure duration. After that time

the display is cleared, and the user tries to answer questions based on visual features that

were present in the display (e.g., target detection, boundary detection, region identi�cation,

or estimation). Work to date in preattentive processing has focused on �nding features and

tasks that occur in exactly these kinds of static displays.

An obvious drawback to static frames is their maximum resolution, which is limited by

the maximum screen size in pixels. We decided to try to extend our static techniques to a

dynamic visualization environment. A dynamic environment displays a sequence of frames

to the user one after another. Each frame is shown for a �xed period of time, after which

it is replaced by the next frame in the sequence. An obvious question to ask is: If I can

perform tasks in 200msec on a static frame, can I perform the same tasks on a sequence of

frames displayed at �ve frames per second?

We believe dynamic visualization techniques can be used to address the problem of large

datasets. Although we did not explicitly study methods for decomposing a dataset into a

sequence of two-dimensional display frames, many datasets can be easily modi�ed to satisfy

this requirement. For example, time-varying datasets can be subdivided along the time axis.

139

Chapter 6. Real-Time Visualization 140

Three-dimensional volumetric models can be decomposed into a stack of two-dimensional

slices. If a dataset can be reduced in this manner, it can be analysed using our dynamic

visualization techniques. Recall that our de�nition of a large dataset is one containing on

the order of one million elements. Suppose a one million element dataset is reduced to

2,500 individual display frames, each of which contains 400 elements. If each frame could be

displayed and analysed in 200msec, the entire dataset could be viewed in 500 seconds (or

just over eight minutes). Assuming users spend only 20% of the time browsing the dataset

(and 80% performing other visualization and analysis tasks), they could still view the entire

dataset in about 45 minutes.

We approached real-time multivariate visualization by de�ning a set of requirements that

we feel are inherent to this class of problem:

� multidimensional data: the technique should be able to display multidimensional data

in a two-dimensional environment, the computer screen

� shared data: the technique should display independent data values simultaneously;

a single user could choose to examine various relationships, or multiple users could

simultaneously examine independent data values

� real-time data: the technique must function in a real-time environment, where frames

of data are continuously generated and displayed one after another

� speed: the technique should allow users to rapidly obtain useful and nontrivial infor-

mation; here, \rapidly" means in less than 250msec per data frame

� accuracy: information obtained by the users should accurately represent the relation-

ship being investigated

Using an approach that extends our previous work on static visualization, we decided to

Chapter 6. Real-Time Visualization 141

use preattentive processing to assist with real-time (dynamic)multivariate data visualization.

We hypothesized that important aspects of preattentive processing will extend to a real-

time environment. In particular, we believe real-time visualization techniques based on

preattentive processing will satisfy the �ve requirements listed above. A visualization tool

that uses preattentive features will allow viewers to perform rapid and accurate visual tasks

such as grouping of similar data elements (boundary detection), detection of elements with

a unique characteristic (target detection), and estimation of the number of elements with a

given value or range of values, all in real-time on temporally animated data frames. We tested

this hypothesis using behavioral experiments that simulated our preattentive visualization

tools. Analysis of the experimental results supported our hypothesis for boundary and

target detection. Moreover, interference properties previously reported for static preattentive

visualization were found to apply to a dynamic environment.

6.1 Experiment 1: Boundary Detection

Through experimentation we sought to determine whether or not research in preattentive

processing can help design more useful and intuitive scienti�c visualization tools. Speci�cally,

we investigated whether preattentive tasks and interference e�ects extend to a real-time

visualization environment, where frames of data are displayed one after another. Our �rst

experiment addressed two general questions about preattentive features and their use in our

visualization tools.

� Question 1: Is it possible for subjects to detect a data frame with a horizontal boundary

within a sequence of random frames? If so, what features allow this and under what

conditions?

Chapter 6. Real-Time Visualization 142

� Question 2: Do Callaghan's feature preference e�ects apply to our real-time visu-

alization environment? Speci�cally, does random hue interfere with form boundary

detection within a sequence of frames? Does random form interfere with hue boundary

detection within a sequence of frames?

These questions were designed to address the requirements described in the introduction to

this chapter. Detection of boundaries and groups is one example of a common data analysis

task. If preattentive features can be used to help perform the task, we could employ this

technique to rapidly explore large amounts of data. Real-time applications could also use

this technique for e�ective real-time visualization. Evidence that boundary detection and

corresponding interference e�ects occur as expected in a real-time environment would imply

that other preattentive tasks (e.g., target detection, counting, and estimation) might also

extend naturally. The ability to encode multiple unrelated data values in a single display

would allow users to visualize multidimensional datasets, or to \share" the display, but only

in cases where no interference occurs.

We decided to examine two preattentive features, hue and form. This was done by

running experiments that displayed 14�14 arrays of coloured circles and squares (Figures 6.1
and 6.2). These features are commonly used in existing visualization software. Both hue

and form have been shown to be preattentive by Triesman, Jul�esz, and others [Jul�esz and

Bergen, 1983; Triesman, 1985]. Moreover, Callaghan's research has shown that hue exhibits

a strong interference e�ect over form during certain preattentive tasks [Callaghan, 1989]. All

of this suggests that studying how hue and form interact in a preattentive environment is

both an important and an interesting question.

Chapter 6. Real-Time Visualization 143

Method

We had to pick two hues and two forms (or shapes) to use during our experiments. We chose

a circle and a square for our two forms. These shapes have been shown to be preattentive

during numerous target and boundary identi�cation experiments. Our hues were chosen

from the Munsell colour space. Because Munsell is a perceptually balanced colour space, it

can be used to choose hues that are isoluminant. This is necessary, because intensity itself is

a preattentive feature, and therefore must be equal for both hues. The exact hues we used

were a red (Munsell 5R 7/8) and a blue (Munsell 5PB7/8). Previous experiments ensured

that the perceived di�erence between these two hues was large enough to be preattentively

detected. Healey et al. [1993] describes how this was done.

The experiment was split into two subsections B1 and B2 of 200 trials each. The �rst

subsection tested a subject's ability to detect a horizontal boundary de�ned by hue (i.e., red

and blue). The second subsection tested a subject's ability to detect a horizontal boundary

de�ned by form (i.e., circle and square). Each trial was meant to simulate searching for a

horizontal boundary while visualizing real-time data. A trial consisted of 18 separate data

frames displayed to the subject one after another. Each frame contained 196 elements, and

was shown for a �xed amount of time (between 50 and 150 msec) that was chosen before the

trial started. After viewing a trial, users were asked to indicate whether a frame containing

a horizontal boundary had been present or absent. For \boundary present" trials, one of

the 18 data frames was randomly chosen to contain a horizontal boundary. The remaining

frames displayed a random pattern of features (with no horizontal boundary present). In

\boundary absent" trials, all 18 frames displayed a random pattern of features; no frame

contained a horizontal boundary.

Trials in each subsection were divided equally between control trials, where a secondary

feature was �xed to a speci�c constant value, and experimental trials, where a secondary

Chapter 6. Real-Time Visualization 144

feature varied randomly from element to element. This allowed us to test for feature inter-

ference. Better performance in control trials versus experimental trials would suggest that

using a secondary feature to encode an \irrelevant" data value interfered with a subject's

boundary detection ability. We tested for both form interfering with hue boundary detec-

tion and hue interfering with form boundary detection. This experiment design gave us the

following six subsections:

1. hue-circle control, horizontal boundary de�ned by hue, all elements are circles (Fig-

ures 6.1a { 6.1b).

2. hue-square control, horizontal boundary de�ned by hue, all elements are squares (Fig-

ures 6.1c { 6.1d).

3. hue-form experimental, horizontal boundary de�ned by hue, half the elements are ran-

domly chosen to be circles, half to be squares (Figures 6.1e { 6.1f).

4. form-red control, horizontal boundary de�ned by form, all elements are red (Fig-

ures 6.2a { 6.2b).

5. form-blue control, horizontal boundary de�ned by form, all elements are blue (Fig-

ures 6.2c { 6.2d).

6. form-hue experimental, horizontal boundary de�ned by form, half the elements are

randomly chosen to be red, half to be blue (Figures 6.2e { 6.2f).

Six subjects (�ve males and one female, aged 21 to 33) with normal or corrected acu-

ity and normal colour vision volunteered to be tested. The experiments were conducted in

the Computer Science Department's computer graphics laboratory, using a Silicon Graphics

workstation equipped with a 21-inch colour display. The software used to conduct the exper-

iments was written speci�cally to investigate preattentive visualization techniques. It used

Chapter 6. Real-Time Visualization 145

(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Example data frames from subsection B1 of the boundary detection experiment (hue boundary
detection): (a) control trial with all circles, horizontal boundary present; (b) control trial with all circles,
boundary absent; (c) control trial with all squares, horizontal boundary present; (d) control trial with
all squares, boundary absent; (e) experimental trial with random form, horizontal boundary present; (f)
experimental trial with random form, boundary absent

Chapter 6. Real-Time Visualization 146

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Example data frames from subsection B2 of the boundary detection experiment (form boundary
detection): (a) control trial with all red, horizontal boundary present; (b) control trial with all red, boundary
absent; (c) control trial with all blue, horizontal boundary present; (d) control trial with all blue, boundary
absent; (e) experimental trial with random hue, horizontal boundary present; (f) experimental trial with
random hue, boundary absent

Chapter 6. Real-Time Visualization 147

the display's vertical refresh to ensure accurate millisecond timing. Each subject completed

both subsections of the experiment with three di�erent frame exposure durations: 50 msec,

100 msec, and 150 msec.

At the beginning of the experiment, subjects were shown a sample display frame. The

experiment procedure and task were explained. Subjects were also shown how to enter their

answers (either \present" or \absent") using the keyboard. Subjects began both subsections

of the experimentwith a set of practice trials. This consisted of 40 trials, 20 control trials split

evenly between the two types of controls (i.e., ten trials with all circles and ten trials with

all squares for subsection B1, ten trials with all red and ten trials with all blue for subsection

B2) and 20 experimental trials. Ten control trials and ten experimental trials contained a

horizontal boundary; the remaining trials did not. Exposure duration for practice trials was

100 msec per frame. The practice trials were designed to give the subjects an idea of the

speed of the trials and the experiment. Trials were displayed one after another, and subjects

were asked whether a horizontal boundary had been present or absent after each trial. If

a subject responded correctly, a plus sign was shown following the response. If a subject

responded incorrectly, a minus sign was shown. Feedback (plus or minus) was displayed in

the center of the screen for 400 msec, at a size of approximately twice that of a single data

element (1.2 cm or subtending a visual angle of 1.1� at 60 cm).

Next, subjects completed the two experiment subsections B1 and B2. Each subsection

consisted of 100 control trials and 100 experimental trials. Fifty control trials and 50 ex-

perimental trials contained a horizontal boundary; the remaining trials did not. The 200

trials from each subsection were presented to the subjects in a random order. Subjects were

provided with an opportunity to rest after every 50 trials. Feedback (plus or minus) was dis-

played after every subject response. Subjects completed both subsections three times using

three di�erent exposure durations: 50 msec per frame, 100 msec per frame, and 150 msec

per frame. Frames with a given exposure duration were presented to subjects as a separate

Chapter 6. Real-Time Visualization 148

group (e.g., a subject completed all the 100 msec frames, followed by the 50 msec frames,

then �nished with the 150 msec frames). The ordering of the three exposure duration groups

was random for each subject.

Results

The primary dependent variable examined was percentage error. Error was zero for trials

where subjects responded correctly, and one for trials where they responded incorrectly. We

began our analysis by dividing trials across the following experimental conditions, averaging

response errors for each subject, then computing a mixed-factors ANOVA on the results:

� feature type; hue if a di�erence in hue de�ned the horizontal boundary, form if a

di�erence in form de�ned the horizontal boundary

� trial type; control if the secondary feature was �xed to a constant value, experimental

if it varied randomly from element to element

� block; BK1 if a trial came from the �rst 100 trials the subject completed, BK2 if it

came from the last 100 trials

� exposure; 50, 100, or 150 msec, depending on a trial's display duration

� location of boundary frame (for experimental trials that contained a boundary frame);

front if the boundary frame appeared during the �rst nine frames shown the the subject,

back if it appeared during the last nine frames

Main e�ects with a p-value of less than 5% were considered signi�cant. Results from the

ANOVA suggested the following conclusions:

Chapter 6. Real-Time Visualization 149

� rapid and accurate boundary detection can be performed using either hue or form;

errors increased when exposure duration fell below 100 msec for both hue and form

boundary detection

� form did not interfere with a subject's ability to detect a hue boundary at either 150

or 100 msec

� hue interfered with a subject's ability to detect a form boundary at both 150 and 100

msec

� accuracy was greater for hue than form, with this di�erence growing as exposure du-

ration decreased

� there was no preference for the frame location of the target during either hue or form

boundary detection

Figure 6.3 shows combined subject data for subsections B1 (hue boundary detection)

and B2 (form boundary detection). The results indicate that hue boundary detection was

quite accurate at all three exposure durations, with the most errors (about 13%) occurring

in the experimental trials at 50 msec. Although errors for form boundary detection were

uniformly higher than for hue boundary detection, subjects were still quite accurate at 100

msec (approximately 9%). Past that point, error rapidly approaches the chance limit of 50%,

with an error rate of 36% at 50 msec.

Errors were generally higher for the form task than for the hue task, with F (1; 10) =

46:51; p = 0:001. The feature type by exposure duration interaction of F (2; 20) = 45:54; p =

0:001 was also signi�cant. Additional F -values were computed to see how error varied

across feature type (i.e., hue and form) during the three exposure durations. In two of

the three individual comparisons, hue accuracy was signi�cantly greater than form accuracy

(p-values ranged from 0:02 to 0:001). The one exception concerned 150 msec trials, where

Chapter 6. Real-Time Visualization 150

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

50 100 150

M
e
a
n

E
r
r
o
r

Exposure Duration

.10

.02
.00

.13

.02

.01

.32

.05

.02

.36

.09

.04

Form Boundary Experimental
Form Boundary Control

Hue Boundary Experimental
Hue Boundary Control

Figure 6.3: Graph of proportional error as a function of exposure duration for hue and form boundary trials;
numbers represent exact proportional error values for each data point

F (1; 5) = 2:04; p = 0:19. Di�erences in accuracy increased as exposure duration decreased,

suggesting that the perceived di�erence between our two hues was larger than the perceived

di�erence between a circle and a square.

ANOVA results of F (1; 10) = 16:34; p = 0:02 showed a signi�cant di�erence in errors be-

tween control and experimental trials. A feature type by trial type interaction of F (1; 10) =

3:56; p = 0:09 suggested interference was present during both hue and form boundary de-

tection. Moreover, a trial type by exposure duration interaction of F (1; 10) = 1:10; p = 0:35

indicated interference at all three exposure durations. Simple t-tests comparing control and

experimental trials across exposure duration showed weak interference (at a signi�cance level

of 10%) during form boundary detection for 100 and 150 msec trials. Thus, the hue-on-form

interference e�ect must be considered small, albeit consistent. Corresponding results for hue

Chapter 6. Real-Time Visualization 151

boundary detection found weak interference (at a signi�cance level of 10%) for 50 msec trials.

This is similar to Callaghan's [1989, 1990] static boundary detection experiments, although

weak hue interference during form boundary detection was not reported in her results.

There was a signi�cant exposure duration e�ect, F (1; 10) = 197:66; p = 0:001. Individual

F -values for the four conditions shown in Figure 6.3 (form boundary experimental, form

boundary control, hue boundary experimental, and hue boundary control) were all p = 0:001.

Fisher's protected least signi�cant di�erence (PLSD) values identi�ed signi�cant di�erences

between exposure durations (50; 100) and (50; 150) in all four conditions, but not between

(100; 150). We concluded that the high F -values were due to relatively higher errors during

the 50 msec trials.

Finally, the results showed no boundary frame location preference for either hue (F (1; 5) =

2:37; p = 0:18) or form (F (1; 5) = 0:05; p = 0:83) boundary detection. Moreover, there was

no consistent e�ect of trial block. Whereas errors actually increased from BK1 to BK2 in

the hue condition, F (1; 5) = 17:44; p = 0:01, they decreased (non-signi�cantly) over time in

the form condition, F (1; 5) = 5:51; p = 0:07. There were no other signi�cant interactions of

the block factor with other factors of interest. We can draw no conclusions about the e�ects

of practice or fatigue without performing additional experiments.

6.2 Experiment 2: Target Detection

We continued our investigation of real-time preattentive visualization by studying temporal

target detection. Our second experiment addressed two additional questions about preat-

tentive features and their use in our visualization tools.

Chapter 6. Real-Time Visualization 152

� Question 1: Is it possible for subjects to detect a data frame containing a unique target

element in a sequence of random frames? If so, what features allow this and under

what conditions?

� Question 2: Does any interference occur when viewing a dynamic sequence of data

frames? Speci�cally, does random hue interfere with form target detection? Does

random form interfere with hue target detection?

As with temporal boundary detection, these questions are speci�cally designed to address

our visualization requirements. The ability to perform target detection using preattentive

features would provide further justi�cation for their use in exploring large datasets or visual-

ization results from real-time applications. Our experiments also searched for any new types

of interference that might occur as a result of viewing a dynamic sequence of data frames

during visualization.

Method

We chose to test the same two visual features (hue and form) used during the boundary

detection experiments. Target detection experiments consisted of frames containing 125

elements (Figures 6.4 and 6.5). The position of the elements was held constant in every

frame. Hue and form were the same as in the boundary detection experiments, speci�cally

a red (Munsell 5R 7/8) and a blue (Munsell 5PB7/8) hue, a circle and a square form.

As in the �rst experiment, temporal target detection was split into two subsections T1

and T2 of 200 trials each. The �rst subsection tested a subject's ability to detect a target

element de�ned by hue. The second subsection tested a subject's ability to detect a target

element de�ned by form. Each trial was meant to simulate searching for a target element

while visualizing real-time data. A trial consisted of 18 separate data frames, which were

Chapter 6. Real-Time Visualization 153

displayed to the subject one after another. Each frame was shown for a �xed amount of

time (either 50 or 100 msec) that was chosen before the trial started. After viewing a trial,

users were asked to indicate whether a frame containing the target element had been present

or absent. For \target present" trials, one of the 18 data frames was randomly chosen to

contain the target element. The remaining frames did not contain a target element. In

\target absent" trials, none of the 18 frames contained a target element.

As with boundary detection, we tested for feature interference by dividing each subsection

into control and experimental trials. In control trials, the secondary feature was �xed to a

speci�c constant value; in experimental trials, it varied randomly from element to element.

We tested for both form interfering with hue target detection, and hue interfering with form

target detection. This gave us the following six subsections:

1. hue-circle control, target element is a red circle, all distractors are blue circles (Fig-

ures 6.4a { 6.4b).

2. hue-square control, target element is a red square, all distractors are blue squares

(Figures 6.4c { 6.4d).

3. hue-form experimental, target element is a red circle, half the distractors are randomly

chosen to be blue circles, half to be blue squares (Figures 6.4e { 6.4f).

4. form-red control, target element is a red circle, all distractors are red squares (Fig-

ures 6.5a { 6.5b).

5. form-blue control, target element is a blue circle, all distractors are blue squares (Fig-

ures 6.5c { 6.5d).

6. form-hue experimental, target element is a red circle, half the distractors are randomly

chosen to be red squares, half to be blue squares (Figures 6.5e { 6.5f).

Chapter 6. Real-Time Visualization 154

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Example data frames from subsection T1 of the target detection experiment (hue target detec-
tion): (a) control trial with all circles, red target present; (b) control trial with all circles, target absent;
(c) control trial with all squares, red target present; (d) control trial with all squares, target absent; (e)
experimental trial with random form, red target present; (f) experimental trial with random form, target
absent

Chapter 6. Real-Time Visualization 155

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Example data frames from subsection T2 of the target detection experiment (form target de-
tection): (a) control trial with all red, circle target present; (b) control trial with all red, target absent; (c)
control trial with all blue, circle target present; (d) control trial with all blue, target absent; (e) experimental
trial with random hue, circle target present; (f) experimental trial with random hue, target absent

Chapter 6. Real-Time Visualization 156

Six subjects (�ve males and one female, aged 21 to 33) with normal or corrected acuity

and normal colour vision were tested. Five of the six subjects also participated in Experiment

1. At the beginning of the experiment, subjects were shown a sample display frame. The

experiment procedure and task were explained. Subjects were shown how to enter their

answers (either present or absent) using the keyboard. Subjects began both subsections

of the experiment with a set of practice trials similar to those for the boundary detection

experiments. Exposure duration for practice trials was 100 msec per frame. Trials were

displayed one after another. Subjects were asked whether a target element had been present

or absent for each trial. Correct or incorrect responses were signalled by a plus or a minus

sign.

Next, subjects completed the two experiment subsections T1 and T2. Each subsection

consisted of 100 control trials and 100 experimental trials. Fifty control trials and 50 exper-

imental trials contained a target element; the remaining trials did not. The 200 trials from

each subsection were presented to the subjects in a random order. Subjects were provided

with an opportunity to rest after every 50 trials. Feedback (plus or minus) was displayed

after every response. Subjects completed both subsections two times using two di�erent

exposure durations: 100 msec per frame and 50 msec per frame. The ordering of the two

exposure duration groups was random for each subject.

Results

The primary dependent variable was again percentage error. A mixed-factors ANOVA was

computed across the same conditions used for analysing boundary detection. The only

di�erence was the number of possible values for exposure duration: 50 or 100msec, depending

on the trial's display duration. Results from the ANOVA can be summarized as follows:

Chapter 6. Real-Time Visualization 157

� rapid and accurate target detection could be performed using hue at both 50 and 100

msec exposures

� similar rapid and accurate target detection based on form was possible only when hue

was held constant

� form variations did not interfere with the ability to detect a hue-de�ned target

� hue variations did interfere with the ability to detect a form-de�ned target

� there was no preference for the frame location of the target during either hue or form

target detection

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

50 100

M
e
a
n

E
r
r
o
r

Exposure Duration

.01
.00

.01
.00

.03 .03

.27

.24

Form Target Experimental
Form Target Control

Hue Target Experimental
Hue Target Control

Figure 6.6: Graph of mean error as a function of exposure duration for hue and form target trials; numbers
represent exact proportional error values for each data point

Figure 6.6 graphs combined subject data for subsections T1 (hue target detection) and

T2 (form target detection). The results show that hue target detection is very accurate

Chapter 6. Real-Time Visualization 158

at both exposure durations for control and experimental trials (a maximum of 1% error).

In contrast, form target detection was very accurate for control trials (3% error), but not

for experimental trials (24% error at 100 msec and 27% error at 50 msec). There were no

signi�cant e�ects of exposure duration in any of the four conditions.

A feature type by trial type interaction of F (1; 10) = 62:52; p = 0:001 suggests interfer-

ence during one of the two target detection tasks. The di�erence in errors between control

and experimental trials was signi�cant in the form task, F (1; 5) = 103:58; p = 0:001, but not

in the hue task, F (1; 5) = 1:62; p = 0:26. There was no feature type by trial type by expo-

sure duration interaction, F (1; 10) = 0:39; p = 0:55. Thus, as with our boundary detection

task and Callaghan's [1989, 1990] static displays, random hue interferes with form target

detection at both exposure durations, while random form does not interfere with hue target

detection at either exposure duration. This provides further evidence for concluding that

the perceived di�erence that can be obtained by using two hues is larger than the di�erence

obtained from a circle and a square.

Figure 6.6 shows that errors were generally higher for the form task than for the hue

task. ANOVA results supported this, with F (1; 10) = 46:51; p = 0:001. There was no

feature type by exposure duration interaction, F (1; 10) = 0:10; p = 0:76. This means hue

target detection was easier than form target detection at both exposure durations. Combined

with hue interference during form target detection, this suggests that hue should be used as

a primary feature when searching multidimensional data elements for a speci�c target.

As with the boundary detection task, there were no frame location e�ects for either

hue, F (1; 5) = 1:26; p = 0:31, or form, F (1; 5) = 1:04; p = 0:35. The e�ects of trial

block were again mixed. Errors were lower in BK1 (x = 0:06) than in BK2 (x = 0:14),

F (1; 5) = 56:81; p = 0:001 for form targets, but did not di�er signi�cantly for hue targets,

F (1; 5) = 0:79; p = 0:41. There were no signi�cant interactions of trial block with other

Chapter 6. Real-Time Visualization 159

factors of interest.

Chapter 7

Dataset Management

This chapter reviews a number of techniques used to o�er di�erent levels of scienti�c dataset

management. Early systems implemented simple selection, �ltering, and type conversion

operations. Researchers are now combining commercial relational database and visualization

tools to build hybrid visualization systems. The advantage of such a system is direct access

to the functionality provided by the underlying database. Unfortunately, the relational

database model is not well-suited to handling errors, noise, and missing values that often

occur in scienti�c datasets. We review a promising new area of database research, knowledge

discovery, and discuss how this technique might be used to focus and compress a dataset

before it is visualized. The next chapter (Knowledge Discovery in Visualization) describes

how we implemented and extended four known knowledge discovery algorithms. These

algorithms were integrated into our visualization environment and then applied to a number

of practical applications to test their e�ectiveness on real-world data and tasks.

Underlying every visualization tool or technique is the dataset to be visualized. Recent

developments in computing have created several high volume data sources. Examples include

supercomputers, satellites, geophysical monitoring stations, and medical scanners. Much of

this data is stored without ever being fully used, due in part to the amount of time required

to apply traditional analysis techniques. Many scientists now believe e�cient access to and

160

Chapter 7. Dataset Management 161

management of these datasets is an important area of research in scienti�c visualization.

The ability to select, combine, and �lter data before it arrives at the visualization tool could

signi�cantly reduce the amount of information that needs to be displayed. More advanced

techniques would allow users to classify, detect trends and relationships, and build rules that

describe dependencies among attributes. Use of this \discovered" information can improve

accuracy and dramatically reduce the size of the dataset being visualized.

Various panels and workgroups studying visualization have addressed the data man-

agement problem. Lloyd Treinish chaired a panel at ACM SIGGRAPH in 1989, devoted

speci�cally to data management in scienti�c visualization [Treinish et al., 1989]. The need

for e�cient data management tools was exempli�ed by the NASA digital data archive. At

that time, the database was approximately six terabytes in size, and was doubling roughly

every two years. Treinish described a database where every underlying dataset used the same

data format (e.g., Common Data Format or Hierarchical Data Format). Filters that per-

formed tasks such as scaling, projection, discretization, and data conversion sat between the

database and various visualization tools. These techniques were implemented in a multidi-

mensional visualization tool used to display NASA satellite and earth science data [Treinish

and Goettsche, 1991]. Foley and Campbell discussed the design of data models that e�-

ciently connect visualization tools to their underlying datasets. This was followed by the

Intelligent Data Management (IDM) project, designed for NASA's National Space Science

Data Centre [Cambell et al., 1989]. IDM was an attempt to develop a generalized set of data

management tools that could be used by scientists from any of the space or earth science

disciplines supported at NASA. The system uses techniques such as natural language query,

expert systems, and inference reasoning to provide users with a simple interface into large

multidimensional datasets.

Discussions conducted by Wol� with a number of visualization experts yielded a similar

focus on the data management problem [Brown et al., 1988; Wolfe and Franzel, 1988]. Panel

Chapter 7. Dataset Management 162

members noted that visualization arose from the need to analyse an ever-increasing amount

of data. Graphical displays are one method for improving our understanding of the data.

Unfortunately, even the most e�cient visualization tool cannot necessarily display large or

high-dimensional datasets quickly or e�ectively. Some form of management through �ltering

or data compression is needed if users hope to view even a small portion of their databases.

A recent update on the NSF visualization project described current and ongoing research

being performed at a number of academic institutions [Rosenblum, 1994]. Although many

visual presentation techniques have been studied (e.g., volume visualization,
uid
ow, and

perceptual visualization), much less work has focused on improving data management. The

problems cited by the original panel still persist. Datasets continue to grow in size, and with

this our inability to analyse even a small fraction of their contents.

7.1 Database Management Systems

Some researchers have addressed the data management issue in scienti�c visualization. An

obvious approach would be to use a combination of commercial database management sys-

tems (DBMS) and visualization packages. However, initial work focused on data manage-

ment techniques that were independent of the available visualization or database manage-

ment tools. This was due in large part to the limitations inherent in these systems. An

examination of popular visualization tools such as AVS, apE, VIS-5D, and Explorer reveals

that these packages provide relatively few data management tools [Upson, 1989; Hibbard

and Santek, 1990; Vande Wettering, 1990]. Normally, these systems read data directly from

already-existing �les. Manipulation of data within the system is limited to operations such

as applying regular grids, selection, clipping, and type conversion. Moreover, these opera-

tions support only a �xed set of built-in data types. Like visualization tools, DBMSs were

Chapter 7. Dataset Management 163

restricted to a �xed set of data types and basic operations. Moreover, relational DBMSs

are not well suited to handling scienti�c datasets. Problems such as size, complexity, and

the inability to match the conceptual framework of the dataset to a relational model (e.g.,

spatial datasets) are di�cult to overcome.

Treinish has developed a
exible multidimensional visualization system [Treinish and

Goettsche, 1991] designed to help scientists analyse the data they produce. This goal led to

a number of system requirements. In particular, Treinish felt that a discipline-independent

system should handle arbitrary types of data. In order to meet these requirements, Treinish

proposed a construct called the visualization pipeline designed as follows:

� Raw data is stored in a data repository in some abstract, data-independent format

(Treinish suggests using the Common Data Format). Users can select the data they

want to visualize from the repository.

� The selected data can be passed through a number of �lters, in order to convert it

into the desired format. These may include scaling and projecting the data, as well as

conversion to a speci�c format or coordinate system.

� If the data is continuous, it may need to be sampled or gridded to a user-selected

resolution.

� Finally, the data is visualized or rendered using one of a number of visualization tools

provided with the system (e.g., two and three-dimensional plots, contour plots, sur-

faces, or
ow �elds).

Treinish stressed the importance of the data repository and the supporting data manage-

ment facilities (i.e., simple data selection queries, followed by �ltering operations like scal-

ing, rotation, projection onto a 2D plane, and gridding). He felt this was key to allowing

Chapter 7. Dataset Management 164

discipline-independent visualization. Data selection and manipulation is separated from data

visualization. This gives the user the
exibility to work with arbitrary datasets and a vari-

ety of visualization techniques. Treinish continued his discussion of data management issues

by listing a set of requirements and goals for a generalized data management system that

supports scienti�c visualization [Treinish, 1993]. Included in his discussion were examples

of data types, dimensionality, rank, and spatial arrangement, as well as a review of which

requirements are addressed or solved by popular visualization packages.

Commercial visualization tools and DBMSs are much more prominent in recent work on

data management in visualization. In large part, this is because both are now designed to

be extensible. For example, users can write new visualization \functions" using traditional

programming languages and integrate them seamlessly into many of the current visualization

packages. The same is true for DBMSs like Postgres, Oracle, IRIS, and Orion. These

systems support enhanced data models that allow users to de�ne new data types, as well

as operations and functions to support them. Recent work has concentrated on writing

functions to integrate visualization packages with popular database management programs.

This makes the functionality of the DBMS available from within the visualization system.

Kochevar and Ahmed describe a system that allows users to locate and visualize data

using a graphical browser built on top of Postgres database �les [Kochevar et al., 1993].

Postgres was chosen because it supports the following enhanced database features:

� user-de�ned data types and user-de�ned functions that perform operations on them

� \large objects", which represent a collection of bytes whose structure is unknown to

Postgres; user-de�ned functions are required to perform operations on large objects

� an \inverted" �le system within Postgres to manage large objects

Datasets are stored as large objects inside Postgres. The key to this method is including

Chapter 7. Dataset Management 165

a description of each dataset within the dataset itself. This allows a dataset to describe

its structure to other programs, in particular to external visualization tools. An applica-

tion program called the Visualization Executive is used to browse through the collection of

datasets, in a manner similar to using a �le browser. When a user selects a speci�c dataset,

a visualization package is spawned, the dataset's description is sent to the package, and the

contents of the dataset are displayed. Scripts for each dataset specify the particular visu-

alization tool to use, and the commands needed to start its execution. This information is

also stored within the dataset.

The Visualization Executive allows users to view their datasets using any one of a number

of popular visualization tools. Any package that supports scripting should be compatible

with this system. The loose coupling that integrates Postgres and the visualization tools is

possible because of the user-de�nable data types and functions available in Postgres. Any

DBMS that provides similar functionality can be used to support this kind of visualization

methodology.

Tioga is an example of a tool that maintains a much tighter connection between the

visualization system and its underlying database [Stonebraker et al., 1993]. Tioga also uses

Postgres, although any DBMSs that supports user-de�ned data types, user-de�ned functions,

and multidimensional access methods (e.g., R-trees or grid �les) would be su�cient. Tioga

provides an environment that allows users to build visualization programs. This is analogous

to other popular visualization systems such as AVS and Explorer. Because Tioga is built

directly on top of Postgres, however, all of the functionality of a commercial DBMS is

available to Tioga users.

Tioga supports the traditional box and arrow method for building visualization systems.

Users create their programs in this type of environment using one or more boxes connected

together with arrows. Each box represents a data processing operation. Arrows describe how

Chapter 7. Dataset Management 166

the data
ows from box to box within the visualization system. A box must have at least one

input arrow to describe how and when it receives its data. Some boxes use output arrows to

send results forward to the next processing step (e.g., boxes that resample or transform data

elements). A box is not required to output data, however (e.g., boxes that display results

on the screen).

Visualization systems built with Tioga are called recipes, and individual boxes within

a recipe are called ingredients. An important property of Tioga is that any user-de�ned

Postgres function is automatically an ingredient, available for use within a recipe. These

Postgres-based ingredients can be conceptually divided into two groups: data management

functions and browsers. Data management functions perform conventional operations such

as selection, projection, and join on the underlying datasets.

Browsers are designed to display screen images when the visualization program runs. In

order to support browsers, Tioga requires every visualization program to de�ne an \applica-

tion coordinate space". This is usually a simple N�dimensional coordinate system, where

each dimension represents a data attribute that might be displayed on the screen. Database

objects can then provide an associated geometry that falls within the application coordinate

space. The geometry of a single tuple is a point in N�space. A database object with multi-

ple tuples uses an N�dimensional polyhedron as its geometry. Users are required to provide

a display function for every user-de�ned data type. A browser provides an object's location

to the display function, which must then return a displayable version of the object's value.

Browsers can move to any point in the application coordinate space. They also support the

ability to travel through application coordinate space, retrieving and displaying information

repeatedly until some user-de�ned condition is met. This was used to \
y" through satel-

lite images of hurricane Hugo by travelling forwards and backwards along a time attribute

[Stonebraker et al., 1993].

Chapter 7. Dataset Management 167

Both Kochevar and Ahmed [1993] and Stonebraker [1993] describe techniques that act

like \glue" to connect existing DBMSs and visualization packages. The systems' data man-

agement abilities are still limited to the functionality provided by the DBMS. Since most

DBMSs are relational in nature, they have the same problems as their predecessors when

dealing with certain types of data. Spatial and temporal datasets do not �t well within the

traditional relational approach. Data with noise, nondeterministic values, missing values,

or errors are also di�cult to store in a relational DBMS. Perhaps more importantly, even

enhanced DBMSs still have the same set of built-in operations (e.g., select, project, and

join). New techniques to support time, statistical summaries, classi�cation, and knowledge

discovery are not included and are di�cult to provide, even with the ability to design new

data types and operations.

7.2 Knowledge Discovery

Knowledge discovery or data mining, as it is sometimes referred to, is a relatively new area

of database research [Silbershatz et al., 1990; Frawley et al., 1991]. Knowledge discovery is

de�ned as \the nontrivial extraction of implicit, previously unknown, and potentially useful

information from data". This is done by combining a variety of database, statistical, and

machine learning techniques. Although knowledge discovery uses research from all of these

areas, it is not a simple subset of any one of them. For example, traditional statistical

techniques are not well suited to the structured, incomplete, and dynamic datasets used in

knowledge discovery. Moreover, the size of the datasets is often beyond the ability of statistics

to analyze in an e�cient manner. Because of this, a large gap is developing between the

amount of data being generated and the amount being used or understood.

Knowledge discovery methods are expected to read and process raw data stored in a

Chapter 7. Dataset Management 168

database or data repository. The raw data has a number of inherent properties that must

be addressed by any knowledge discovery algorithm. Data stored in a database is dynamic.

It often has attributes that are irrelevant to the relationship being investigated. There is a

measure of uncertainty associated with an attribute (e.g., due to inaccuracies in measurement

or recording of values). Tuples may contain missing entries, noise, or errors. Entire attributes

may be missing from the database (i.e., the given attributes do not di�erentiate the data

uniquely). These properties often preclude the use of already-existing machine learning or

statistical techniques.

Based on this description, knowledge discovery algorithms satisfying the following four

conditions are sought:

1. A high-level language is used to represent discovered knowledge.

2. The discovered knowledge is interesting, nontrivial, and novel.

3. The discovered knowledge is reasonably accurate.

4. The knowledge discovery algorithms are e�cient.

Because knowledge discovery uses techniques similar to those in statistics, machine learning,

expert systems, and database management systems, it is useful to describe some of the

di�erences between these disciplines.

� statistics

is not well suited for structured, incomplete, or dynamic data; data driven, it cannot

incorporate domain knowledge; results are di�cult for non-experts to analyse; there is

no guidance on which statistics to compute, and which results to analyse

Chapter 7. Dataset Management 169

� database management systems

can extract useful, interesting, nontrivial results but are limited to the attributes con-

tained in the database; they cannot determine which calculations to perform to obtain

new information \buried" in the original datasets

� expert systems

often require data of much higher quality and integrity; usually only important cases

are covered

� machine learning

data from a database is usually dynamic (i.e., constantly changing or growing), incom-

plete, noisy, and large compared to machine learning datasets

Discovered knowledge comes in a variety of forms. Inter-�eld patterns show �eld depen-

dencies within a single tuple. Inter-record patterns cluster tuples into groups with common

characteristics. This can be used to summarize data, or to show trends over time. Tech-

niques can also be divided into quantitative methods that relate numeric �eld values, and

qualitative methods that �nd logical relationships in the dataset. Examples of tasks per-

formed by di�erent algorithms include clustering and pattern recognition, determining rules

to identify group membership, summarizing, discrimination, and comparison.

Various forms of knowledge discovery are currently being used in a number of practical

application environments. American Airlines uses knowledge discovery techniques to search

for trends in their frequent
yer database. Banks search their loans database to try to

improve methods for screening potential borrowers. General Motors has a large research

group applying knowledge discovery methods to automobile trouble reports; the results are

used to develop diagnostic expert systems for various car models. Food manufacturers use

supermarket check-out scanner data to measure promotion e�ects and search for shopper

patterns.

Chapter 7. Dataset Management 170

Current research in knowledge discovery is focusing on a number of di�erent problems.

Some techniques attempt to incorporate expert user or domain knowledge into discovery

algorithms. E�cient algorithms are essential if they are to be applied to very large datasets.

Incremental methods that update themselves as the dataset changes over time are also

important. Researchers are studying the ability to integrate results from various techniques,

and to allow user interaction during the discovery process.

7.3 Managing Large Multidimensional Datasets

We hypothesise that knowledge discovery techniques can be used to improve the e�ciency of

visualizing large multidimensional datasets. The use of knowledge discovery in scienti�c data

management has been addressed brie
y by Cambell and others [Cambell et al., 1989]. There

are no descriptions of visualization tools that use knowledge discovery explicitly, although

NASA's IDM project does use expert systems and inference reasoning to answer user queries

about earth science datasets [Treinish and Goettsche, 1991]. We believe the advantages of

knowledge discovery algorithms are twofold. First, they can be used to reduce the amount of

data that needs to be displayed. Second, they can be used to \discover" previously unknown

and potentially useful information. Some examples of how this can be done include:

� datasets can be �ltered by identifying the subset of elements that participate in a

particular relationship being investigated; irrelevant data elements can be ignored and

do not need to be displayed

� attributes that are signi�cant to a given relationship can be identi�ed; only displaying

signi�cant attributes reduces the dimensionality of each data element

Chapter 7. Dataset Management 171

� data elements can be grouped or classi�ed, and elements from speci�c groups can then

be displayed, reducing the amount of data being sent to the visualization tool

� data elements can be grouped or classi�ed, and only the classi�cation value (and pos-

sibly a con�dence measure) can be displayed, compressing the dataset into one or two

dimensions

� signi�cant dependencies or relationships between data elements or attributes can be

identi�ed and displayed

� temporal data can be compressed or �ltered along the time axis, if a temporal data

attribute exists in the dataset

Because our tools will be used for exploratory data analysis, we do not require techniques

that are 100% accurate. User knowledge about the datasets being visualized can help to

determine the accuracy or relevance of results being returned. Each technique is expected to

provide con�dence weights for the classi�cations, dependencies, and relationships it discovers.

These can be used to decide how \sure" the algorithm is about the results it suggests. This

might allow results from di�erent algorithms to be combined in various ways.

Our focus is not on the design of new knowledge discovery algorithms. Instead, we

implemented four existing techniques, then used them in a visualization environment to see

if they o�ered improved e�ciency or usefulness compared to visualization without any form

of data management. We modi�ed and extended the algorithms to provide a set of uni�ed

results required by our visualization tool, in particular, classi�cation con�dence weights, the

ability to compare di�erent possible classi�cations, and the ability to identify attributes that

are signi�cant to a speci�c classi�cation (these extensions are explained in detail in the next

chapter).

Chapter 7. Dataset Management 172

S the number of tuples in the dataset to be classi�ed

N the number of attributes in each tuple to be classi�ed

fA1; : : : ; ANg the N individual attributes in each tuple to be classi�ed

ni the number of unique values for attribute Ai

fai;1; : : : ; ai;ni
g the ni unique values for attribute Ai

P the number of possible classi�cation values

fc1; : : : ; cP g the P individual classi�cation values

Table 7.1: An explanation of the common terms used to describe the four knowledge discovery algorithms

The four knowledge discovery algorithms we used are described below. Two of the tech-

niques, Quinlan's ID3 approach and Agrawal's interval classi�er, use decision trees to rep-

resent classi�cation rules. The other two methods, Chan's statistical tables and Ziarko's

rough set algorithm, build classi�cation rules using mathematical and statistical analysis

of an initial training dataset. These four techniques o�er a good overview of the types of

methods being used for knowledge discovery. Table 7.1 identi�es the common terms used to

describe each knowledge discovery algorithm.

7.4 Decision Trees

One of the �rst knowledge discovery techniques applicable in a database environment was

a method proposed by Quinlan called ID3 [Quinlan, 1986]. ID3 builds a decision tree from

an initial training set where each tuple in the set has been previously classi�ed into one

of P possible values. The decision tree is then used to assign a classi�cation value ck to

unclassi�ed tuples. ID3 was speci�cally designed to handle noisy and erroneous data. This

means it can be used for knowledge discovery in a database environment.

The algorithm begins by selecting signi�cant attributes from the training set. Assume

Chapter 7. Dataset Management 173

that the training set has p1 tuples with classi�cation value c1, p2 tuples with classi�cation

value c2, and so on up to pP tuples with classi�cation value cP . Moreover, any attribute Ai

can be used to subdivide the training set into ni subsets fS1; : : : ; Sni
g. Each subset Si has

pi;1 tuples with classi�cation value c1, pi;2 tuples with classi�cation value c2, and so on. The

expected value pi;j of pi;j is proportional to the number of tuples with classi�cation value cj

in the original training set, namely

pi;j =
�

pj
p1 + p2 + � � � + pP

�
sizei (7.1)

where sizei =
PP

j=1 pi;j represents the number of tuples in subset Si. The expected values

can be used to perform a chi-squared independence test on attribute Ai, by computing

�2ni�1
=

niX
i=1

PX
j=1

(pi;j � pi;j)
2

pi;j
(7.2)

The chi-squared value can be used to determine whether attribute Ai can be rejected

as independent of the values chosen for classi�cation. Usually, only attributes with a high

con�dence level (e.g., 99.9%) are marked as signi�cant. These attributes are then used to

build a decision tree.

The attribute that provides the largest information gain is used to partition the root of

the decision tree. The tree is simply a data structure that returns a classi�cation value ck

for an unknown tuple. This is done by traversing the tree from root to leaf and returning

the classi�cation value stored at the leaf. Attribute values in the unclassi�ed tuple are used

to direct the path at each node in the tree (this is described in a more detailed example

below). The expected information needed to generate this result is:

Chapter 7. Dataset Management 174

I(P) =
PX
i=1

� pi
total

log2
pi

total
(7.3)

where total =
PP

i=1 pi. If Ai is chosen to be used at the root of the decision tree, the training

set is subdivided into ni subsets fS1; : : : ; Sni
g. The expected information required for each

subtree Si is I(Si). The expected information required for the decision tree with Ai as root

is the weighted average

E(Ai) =
niX
i=1

sizei
total

I(Si) (7.4)

Because information gain is de�ned as gain(Ai) = I(P) � E(Ai) and I(P) is constant,

maximizing gain is the same as minimizing expected information. The attribute with the

minimum expected information is used at the root of the decision tree.

Subtrees are processed in a recursivemanner. The expected information for the remaining

attributes in each Si is computed. This is used to choose an attribute for the root of the

subtree. Subdivision continues until one of two stopping conditions is reached:

1. Every tuple in the given subset has the same classi�cation value.

2. The tuples in the given subset are made up of only one attribute value.

Each node in the decision tree contains a subset of the tuples in the original training set, and

each tuple has a classi�cation value attached to it. Within any given node the classi�cation

value with the maximum frequency is marked as the \winning" classi�cation value. This is

used to handle noise and uncertainty in the training set. Suppose that the training set was

reduced to a subset of tuples with only one attribute value (stopping condition 2 above),

Chapter 7. Dataset Management 175

Classification
Value

low
medium
medium

high
medium

high

medium
high

{ cat, 3 }
{ dog, 3 }
{ cat, 4}
{ cat, 5 }
{ dog, 4 }

{ squirrel, 2 }

{ cat, 4 }
{ cat, 4 }

dog squirrelcat

3 4 5

low med hi

med hi

Tuple

Figure 7.1: An example of a training set with eight tuples and the corresponding decision tree; in this
example N = 2, fA1; A2g = f animal, age g, n1 = 3, n2 = 4, fa1;1; a1;2; a1;3g = f cat, dog, squirrel g,
fa2;1; a2;2; a2;3; a2;4g = f 2, 3, 4, 5 g, P = 3, fc1; c2; c3g = f low, medium, high g

but the tuples had more than one classi�cation value. There are only two possible situations

where this could happen: either the original dataset was underde�ned by its attributes (i.e.,

two tuples with the same attribute values were assigned two di�erent classi�cation values), or

the original dataset contained errors. Although other methods exist for choosing a winning

classi�cation value (e.g., assigning a probability to each possible value, generating a random

number between 0 and 1, and using this to choose a classi�cation), Quinlan found that

choosing the value with the maximum frequency minimized expected classi�cation error.

As an example, consider the training set and corresponding decision tree shown in Fig-

ure 7.1. The root of the tree was partitioned using the attribute A1 = animal. This resulted

in three subsets of tuples: those with an animal value of a1;1 = cat, those with an animal

value of a1;2 = dog, and those with an animal value of a1;3 = squirrel. Tuples in the dog

and squirrel subsets had a single classi�cation value, so subdivision stopped at that point.

The subset containing tuples with an animal value of cat was further divided about the A2 =

age attribute. The resulting subsets are made up of a single attribute value, so subdivision

stops. Notice that tuples in the subset with age value a2;3 = 4 had three classi�cation values:

medium, medium, and high (the tuple fcat, 4g appears three times in the training set, twice

classi�ed as medium, and once classi�ed as high). This is an example of noise or uncertainty.

Chapter 7. Dataset Management 176

Following Quinlan, we note that medium has the highest frequency, so it is chosen as the

winning classi�cation value for this node in the tree

Classi�cation of an unknown tuple is performed by matching the tuple's attribute values

against each node in the decision tree. When a leaf node is reached, that node's winning

classi�cation value is assigned to the tuple. For example, an unknown tuple (squirrel, 2)

would pass through the interval containing squirrel in the root node, then be assigned a

classi�cation value of high. An unknown tuple (cat, 4) would pass through the interval

containing cat (in the root node), then through the interval containing 4 (in the child node),

and be assigned a classi�cation value of medium.

7.5 Statistical Tables

Chan and Wong describe a data classi�cation technique based on statistical theory [Chan

and Wong, 1991]. The user provides an initial training set, with each tuple classi�ed using

one of P possible values fc1; : : : ; cPg. Each tuple consists of N attributes A1; : : : ; AN , where

each domain(Ai) = fai;j j j = 1; : : : ; nig has ni possible values. The algorithm associates an

attribute value ai;j to a possible classi�cation ck using a weight. A positive weight implies

that evidence exists in the training set to support classifying a tuple with attribute value

ai;j as ck. A negative weight implies that evidence exists in the training set to support

classifying a tuple with attribute value ai;j as something other than ck. Tables are built

to provide weights for all possible combinations of attribute and classi�cation values. This

allows unclassi�ed tuples to be \tested" against all possible classi�cations. The classi�cation

that provides the highest positive weight is assigned to the tuple.

The explanation that follows assumes every attribute has a discrete domain. Contin-

uous attributes are �rst discretized using a simple maximum entropy approach. An at-

Chapter 7. Dataset Management 177

group original ai;j group range

1 f1; 9; 15g g = 1() 1 � ai;j < 15

2 f20; 28; 32; 33g g = 2() 15 � ai;j < 33

3 f35; 37; 38; 40g g = 3() 33 � ai;j < 40

4 f45; 45; 45; 47g g = 4() 40 � ai;j � 47

Table 7.2: An example of a continuous attribute Ai being ranged into four separate groups

tribute Ai in the training set with ni values is sorted and split into m groups (where m

is a user-chosen constant) by placing ni

m
values in each group. For example, attribute

Ai = f1; 9; 15; 20; 28; 32; 33; 35; 37; 38; 40; 45; 45; 45; 47g would be split into four groups as

shown in Table 7.2.

Ai is now treated as a discrete attribute with four unique values. Chan believes this

technique minimizes information loss by more closely matching the attribute's original prob-

ability distribution function. His method has been extended to iteratively adjust range

boundaries in an attempt to provide an optimal discretization [Wong and Chiu, 1987; Chiu

et al., 1991].

If we compute weights for all ni values in domain(Ai) and all P possible classi�cations,

we obtain an ni � P table that completely describes Ai. For any value ai;j 2 domain(Ai),

we can provide positive or negative evidence for choosing classi�cation ck. Based on value

ai;j, we would pick the classi�cation ck with the highest positive weight.

Chan's classi�cation method builds tables for each of the N attributes A1; : : : ; AN . An

unknown tuple (v1; : : : ; vN) is classi�ed as follows.

� for a given classi�cation ck, for each value vi 2 domain(Ai) of the tuple, obtain the

weight to support ck

� sum the N weights, giving a total weight to support classi�cation ck for the tuple

Chapter 7. Dataset Management 178

� perform the above steps for all P classi�cations; choose the classi�cation that gives the

highest positive weight, and assign it to the tuple

Weights for each value ai;j are computed as follows. For a given attribute Ai let okj be

the number of tuples in the training set with classi�cation ck and attribute value ai;j. If ck is

independent of ai;j, the expected number of values is ekj = ok+o+j=N
0, where ok+ =

Pni

j=1 okj ,

o+j =
PP

k=1 okj , and N 0 =
P

k;j okj . The measure

X2 =
PX
k=1

niX
j=1

(okj � ekj)2

ekj
(7.5)

is sometimes used to determine whether the classi�cation is dependent on the given attribute.

If X2 is greater than the chi-squared value �2ni�1;�
, then with con�dence level 1 � � a

dependency exists. This does not, however, tell us whether a speci�c value ai;j 2 domain(Ai)

contributes information to a particular classi�cation. This would be true if Pr(class is

ck j Ai = ai;j) is signi�cantly di�erent from Pr(class is ck). We know that Pr(class is

ck j Ai = ai;j) = okj=o+j and Pr(class is ck) = ok+=N
0. Simple reduction shows that the

problem is to determine whether okj is signi�cantly di�erent from ekj.

Using a modi�ed chi-squared value zkj = (okj � ekj)=
p
ekj and the maximum likelihood

estimate of variance �kj = (1 � ok+=N
0)(1� o+j=N

0), the measure of di�erence is de�ned as

dkj =
(okj � ekj)=

p
ekjp

�kj
=

zkjp
�kj

(7.6)

If dkj > 1:96, we conclude with con�dence level 95% that a tuple with value ai;j is more

likely to belong to ck than to other classes. If dkj < �1:96, we conclude that a tuple with

Chapter 7. Dataset Management 179

value ai;j is more likely to belong to classes other than ck. For attributes with a signi�cant

dkj value, a weight W is computed using the mutual information measure

I(class = ck : ai;j) = log2
Pr(ck j ai;j)
Pr(ck)

(7.7)

W is de�ned as I(class = ck : ai;j) � I(class 6= ck : ai;j), the di�erence in the gain in

information by assigning a tuple with attribute value ai;j to class ck rather than to some

other class. As mentioned above, a positive weight supports classi�cation ck; a negative

weight supports a classi�cation other than ck.

Results from various experiments showed Chan's algorithm to be a computationally sim-

ple yet e�ective method for classi�cation. Statistical tables were shown to outperform the

ID3 method of classi�cation. Classifying with weights is also useful from a data exploration

perspective. A large positive weight provides strong positive evidence for class ck. Simi-

larly, a large negative weight provides strong negative evidence for class ck. Chan's method

handles noise, errors, and missing values in the training set because these will be \averaged

into" the cumulative weight tables. Moreover, weights can o�er the user a measure of con-

�dence for the classi�cation chosen. They could even be used to provide multiple candidate

classi�cations.

7.6 Interval Classi�cation

Agrawal proposes a method of tree classi�cation based on intervals [Agrawal et al., 1992].

The interval classi�er tries to improve e�ciency by reducing the number of intervals in each

node in the classi�cation tree. This improves the time required both for generating the initial

tree and retrieving results from it.

Chapter 7. Dataset Management 180

A1 A2 class

dog 6 low

cat 6 low

cat 6 low

dog 10 high

cat 10 high

whale 3 low

Table 7.3: An example training set for interval classi�cation; tuples in the training set have two attributes
A1 = animal and A2 = age; each tuple is classi�ed using one of three possible values

As with Chan's statistical tables, the user provides a training set with each tuple classi�ed

using one of P possible values. The algorithm begins by computing frequency histograms

for each attribute Ai. For discrete attributes, this simply requires counting the number

of times each attribute value ai;j 2 Ai occurs in the training set. Histograms are sets

f(ai;1; fi;1); : : : ; (ai;ni
; fi;ni

)g of values with their corresponding frequencies. A classi�cation

list gi;j is also maintained for each ai;j. Consider the training set shown in Table 7.3. The

frequency histogram of A1 = animal would be

(a1;j; f1;j) g1;j

(dog, 2) f (low, 1), (high, 1) g
(cat, 3) f (low, 2), (high, 1) g

(whale, 1) f (low, 1) g

Continuous attributes need to be discretized in some way. A smoothed frequency histogram

is returned from this discretization. Given a continuous attribute Ai, an initial frequency

histogram Horg is built from the available attribute values. This provides a set of values

f(ai;1; fi;1); : : : ; (ai;ni
; fi;ni

)g with their corresponding frequencies. The range [ai;1 : : : ai;ni
] of

the attribute is divided into equidistant intervals of width h. The smoothed frequency f for

Chapter 7. Dataset Management 181

any point v (where ai;1 � v � ai;ni
) can be computed by considering the contribution of each

ai;j 2 Horg. W (u) is de�ned to be

W (u) =

8><
>:

1 + 2cos(�u) if abs(u) < 1=2

0 otherwise
(7.8)

The contribution from an individual point (ai;j; fi;j) 2 Horg is de�ned as

fi;j �W ((v � ai;j)=h)=h (7.9)

that is, any point ai;j that is within
1

2
h of v contributes to the smoothed frequency f of

v. The strength of the contribution falls o� according to the cosine function as ai;j moves

farther from v. This means f is simply the sum of contributions from each ai;j, namely

f =
1

ni

niX
i=1

fi;j �W ((v � ai;j)=h)=h (7.10)

Consider a continuous attribute Ai = f 30, 31, 32, 32, 36, 44, 44, 44, 44, 46, 46, 46 g.
The initial frequency histogram would contain six entries, speci�callyHorg = f (30,1), (31,1),
(32,2), (36,1), (44,4), (46,3) g. If we split Ai into �ve intervals, the range boundaries would

be (30, 33.2, 36.4, 39.6, 43.8, 46) and the width of each interval would be h = 3:2. The

frequency f for range boundary v = 30 can then be computed as shown in Table 7.4.

Smoothed frequencies for the remaining range boundaries can be computed in a similar

manner. Group information also needs to be included at each range boundary. This is

computed in a manner similar to attribute frequency. Recall that each ai;j 2 Horg has a

Chapter 7. Dataset Management 182

ai;j abs(v�ai;j

h
) contribution

30 0 1 � 2cos(0)=3:2
31 1

3:2
1 � 2cos(��=3:2)=3:2

32 2

3:2
0

36 6

3:2
0

44 14

3:2
0

46 16

3:2
0

f = 1

6
� 1:6

Table 7.4: An example of computing the frequency for the range boundaries of a continuous attribute during
interval classi�cation

corresponding classi�cation list gi;j , a set of classi�cation values and frequencies. Assume,

for example, ai;j = (31; 3) with a corresponding classi�cation list gi;j = f(low ,2), (high, 1)g.
If ai;j contributes to some range boundary v with frequency f = 0:25, the corresponding

classi�cation value contribution would be (0:25 � 2) low and (0:25 � 1) high.

Once frequency histograms are available for every attribute, the remainder of the algo-

rithm works recursively as follows.

� A \winning" attribute Awin is chosen that minimizes resubstitution error rate. The

resubstitution error rate for an attribute Ai is 1 �Pni

j=1 winner freq(ai;j)=total freq,

wherewinner freq(ai;j) is the frequency of the winning classi�cation value for attribute

value ai;j 2 Ai, and total freq is the total frequency of all classi�cation values over all

attribute values of Ai

� Each interval in Awin is classi�ed as strong or weak. An interval is strong if the ratio

of the winning classi�cation frequency to the total frequency for the given interval is

greater than a precision threshold 1� (curr depth=max depth)2

Chapter 7. Dataset Management 183

� Attributes that can be ordered (i.e., continuous attributes) merge adjacent intervals

to reduce the width of the corresponding tree node. If two adjacent intervals have the

same winning classi�cation value and strength, they are merged into one

� For each weak interval, all the tuples from the original dataset that correspond to the

interval are gathered and sent recursively to the classi�cation algorithm

The result of the algorithm is an interval tree. Unclassi�ed tuples can use the tree to obtain

classi�cation values. Each node in the tree corresponds to some attribute Ai. If the tuple

has value ai;j for attribute Ai, the interval in the node that contains ai;j is selected. If the

node is internal to the tree, the tuple is compared recursively to the interval's child. If the

node is a leaf, the winning classi�cation value for the selected interval is assigned to the

tuple.

7.7 Rough Sets

Ziarko presents a method of data classi�cation based on mathematical rough sets [Ziarko,

1991]. Rough sets were developed to allow modelling of general, imprecise, or imperfect data

[Paulak, 1991]. Ziarko uses them to reduce information loss due to the use of statistical

classi�cation methods. He feels statistical models are often too speci�c, or require too many

underlying statistical assumptions (e.g., a particular probability distribution function). Since

rough sets were designed for and have been used in a number of information representation

models, Ziarko believes they will be useful for building classi�cation rules in databases.

In database terms, a rough set can be thought of as a representation of objects in a

universe U using one or more attributes A = fA1; : : : ; ANg. The question of interest is how

well A can be used to characterize a subset X of a universe U . For example, suppose U

Chapter 7. Dataset Management 184

X IND(X) BND(X)

Figure 7.2: Example of a diagram of a rough set, each rectangle is an elementary set from IND. The dashed
boundary represents elements of set X; embedded white region represents IND(X); grey region represents
BND(X)

is a collection of cars, A is a single attribute representing a car's manufacturer, and X is

the subset of cars that achieve high gas mileage. Is knowing the manufacturer enough to

determine the type of mileage the car gets?

X can be formally expressed using an equivalence relation IND over U . IND is the

set of attribute values or \elementary sets" that describe each x 2 X. For example, if

X = fAccord, Camry, Tercel, Civic, Escortg, then the corresponding attribute for each

x 2 X is the collection fHonda, Toyota, Toyota, Honda, Fordg. Let IND0 be a collection of

all elementary sets from IND. The uncertainty of the representation is de�ned formally as

IND(X) =
S fY 2 IND0 : Y \X 6= 0g

IND(X) =
S fY 2 IND0 : X � Y g

(7.11)

Chapter 7. Dataset Management 185

IND(X) is the lower approximation of X, the union of elementary sets Y that are com-

pletely contained in X. IND(X) is the upper approximation of X, the union of elementary

sets with at least one element contained in X. If the lower approximation and upper ap-

proximation are di�erent, X cannot be precisely speci�ed using elementary sets, and we say

X is rough. Suppose in our example the elementary sets were Honda = fAccord, Civicg,
Toyota = fTercel, Corolla, Camryg, Ford = fEscort, Taurusg. Then IND(X) = fHondag
and IND(X) = fHonda, Toyota, Fordg. This implies X is rough (Figure 7.2).

The degree of imprecision can be measured in two ways. The boundary of X BND(X) =

IND(X) � IND(X) contains elements from U whose membership status in X cannot be

determined using the current set of attributes (e.g., Taurus is a Ford, and Ford 2 IND(X)

but Ford 62 IND(X), so is Taurus 2 X?). m(X) = card(IND(X))=card(IND(X)) is an

accuracy measure that indicates how well the given attributes classify X. If m(X) < 1, then

X is rough.

For the purpose of data classi�cation, the tuples in the original dataset form the universe

U . Recall that each tuple is assigned some ck from a set of P known classes. Formally, an

information function f : U �A! V is de�ned that, for every Ai 2 A assigns some ai;j 2 Ai

to each u 2 U . That is, f determines attribute values for every tuple in U . For any subset

of attributes S � A, we can de�ne the approximate coverage of S as IND(S), speci�cally

(x; y) 2 IND(S) () f(x; a) = f(y; a) 8 x; y 2 U and a 2 S (7.12)

IND(S) splits U into groups, where elements in a group have exactly the same attribute

values for every Ai 2 S. Let P 0 = IND(P), that is, each value in P 0 is a set of elements

from U who all have the same classi�cation ck. The positive coverage of an attribute subset

S is de�ned as

Chapter 7. Dataset Management 186

POS(S; P) =
[fIND(S; Y) : Y 2 P 0g (7.13)

where IND(S; Y) is the lower approximation of the set Y in terms of elementary groups

of IND(S). In other words, for each group in IND(S), if all the elements of the group

are contained within a single group from P 0, the group is part of POS(S; P). This means

any element in POS(S; P) can be uniquely classi�ed into some ck 2 P based only on the

attributes in S. The degree of positive coverage is de�ned as

k(S; P) = card(POS(S; P))=card(U); 0 � k � 1 (7.14)

where k provides a measure of the dependency between P and S. If k = 1, then P is

completely dependent on S. If k = 0, then P is completely independent of S. Otherwise P

is partially dependent on S, as 0 < k < 1.

k can be used to �nd a minimal subset of attributes that provides the same positive

coverage as A. Suppose korg = k(A;P). Any subset of attributes R � A with k(R;P) = korg

can be used in place of A, since P is as dependent on R as it is on A. This generalizes

classi�cation of tuples by removing redundant attributes. It will also reduce the number of

classi�cation rules produced. Usually, there are many di�erent subsets R such that korg =

k(R;P). Ziarko uses the one with the minimumnumber of attributes, to maximize generality

and minimize the number of classi�cation rules.

Once a minimal subset R is found, each attribute Ai 2 R is assigned a weight. The

weight represents the relative contribution of the attribute to the dependency between R

and P . This signi�cance factor is de�ned as

Chapter 7. Dataset Management 187

SGF (Ai; R; P) = [k(R;P)� k(R � fAig; P)]=k(R;P) (7.15)

The original dataset U is generalized by computing POS(R;P). This eliminates any

u 2 U that have the same attribute values for every Ai 2 R but di�erent classi�cation

values. Tuples from POS(R;P) are further reduced by using only the attributes in R.

Any duplicate tuples that may be formed are discarded. Some additional reduction can be

performed in certain cases. Suppose ni reduced tuples have the same classi�cation and di�er

in only one attribute Ai. If the size of domain(Ai) is ni, these tuples can be replaced by a

single tuple with a \do not care" value for attribute Ai. Any value of Ai matches the \do

not care" indicator. For example, if attribute Manufacturer = f Honda, Toyota, Nissan,
Ford g, the tuples

A1 A2 Ak P

Manufacturer FuelSys � � � Weight Mileage

� � �
Honda EFI � � � medium medium

Ford EFI � � � medium medium

Nissan EFI � � � medium medium

Toyota EFI � � � medium medium

� � �

would reduce to

Chapter 7. Dataset Management 188

A1 A2 Ak P

Manufacturer FuelSys � � � Weight Mileage

� � �
| EFI � � � medium medium

� � �

Unclassi�ed tuples can be matched against any rule in this reduced ruleset in the following

manner.

� For each Ai 2 R, the value ai;j from the unclassi�ed tuple is matched against the

corresponding attribute value in the rule

� If the values match, then SGF (Ai; R; P) is added to a weight for this rule

� The rule that produces the highest weight is declared the \winner". The classi�cation

for the winning rule is applied to the unclassi�ed tuple

Like Chan's statistical tables, Ziarko's rough set technique assigns weights to each tuple

in the reduced ruleset by returning the combined SGF value. It would be easy to extend

the method to return a weight for each possible classi�cation ck. This could be used to

provide a measure of con�dence for the chosen classi�cation. SGF values could also be used

to provide multiple candidate classi�cations. Finally, techniques based on weights could

be combined. One technique could \suggest" the proper choice to another. Results from

multiple techniques could be combined to return a more robust classi�cation. Users could

interactively control how di�erent techniques communicated and interacted with one another.

Chapter 8

Knowledge Discovery in Visualization

Our review of knowledge discovery in database algorithms (KDD algorithms) shows they can,

in their current form, process typical scienti�c datasets. This does not mean the algorithms

can be integrated directly into a visualization environment. KDD algorithms build rules

from a training set, then provide classi�cation values for one or more unclassi�ed tuples.

A classi�cation value alone may not be all that is required by the user, however. In this

chapter we extend the four KDD algorithms by providing attribute signi�cance values when

the classi�cation rules are built, and a con�dence value for each classi�cation performed.

Consider the following examples, which show the type of information the KDD algorithms

need to provide during visualization. A user performs knowledge discovery on a dataset, then

wants to display the attributes that were used to build the classi�cation rules. The KDD

algorithms (in their current form) do not provide this information, because the rules are

hidden from the user. The rules themselves are strongly in
uenced by the training set. Any

tuple that di�ers signi�cantly from tuples in the training set (e.g., a tuple with attribute

values not contained in the training set) is di�cult to classify, because the KDD algorithm

has no previous evidence to use to predict a proper classi�cation value. A KDD algorithm

should detect these kinds of tuples. The user could then be warned that the algorithm is

\not con�dent" about the corresponding classi�cation value it suggests.

189

Chapter 8. Knowledge Discovery in Visualization 190

To work well in a visualization environment, the KDD algorithms need to be extended

so that they can answer the following questions:

� How con�dent is the algorithm about the classi�cation value it suggests (i.e., how

closely does the unclassi�ed tuple \�t" the rules built from the original training set)?

KDD algorithms cannot accurately classify tuples that do not fall into patterns ob-

served in the training set. A classi�cation weight would allow the user to determine

the algorithm's \con�dence" in the classi�cation value it suggests. This weight might

be used to ignore certain classi�cations. It could also be mapped to a visual feature,

allowing the user to see both the classi�cation value and the con�dence weight during

visualization.

� How \good" is the classi�cation value suggested by the KDD algorithm, compared to

other possible classi�cation values?

The KDD algorithms return a single \winning" classi�cation value. It would often

be useful to know how well other classi�cation values �t an unknown tuple. The

classi�cation weights described above could be used for this purpose. The winning

classi�cation value will have the highest classi�cation weight. If a KDD algorithm can

return con�dence weights for an unknown tuple and user-chosen classi�cation values,

users would be able to see how the algorithm ranked di�erent classi�cations. This

would also provide some indication of how much better the winning classi�cation value

was, vis-a-vis other possible values.

� Which attributes are signi�cant to the classi�cation being performed and which are

not?

Knowing this would allow the user to reduce the number of attributes to display, by

focusing only on the dependent (or the independent) attributes. If users have some

Chapter 8. Knowledge Discovery in Visualization 191

advance knowledge about dependencies in the dataset, they can check to ensure that

a KDD algorithm does not misinterpret the training set and ignore attributes that

should be used to build the classi�cation rules.

8.1 Classi�cation Weights

Each of the four KDD algorithms was extended to include a classi�cation weight with each

classi�cation value it suggests. Given an unknown tuple (v1; : : : ; vN), any of the algorithms

can provide a recommended classi�cation value ck. The classi�cation weight strength is a

measure of how \con�dent" the algorithm is about its suggested value.

We used the following guidelines when we extended the algorithms to provide con�dence

weights:

� strength was computed using the same mathematical and statistical algorithms and

values that are used to choose the classi�cation value ck

� The algorithms to compute strength were kept computationally and conceptually as

simple as possible

The result is a normalized con�dence weight 0 � strength � 1 provided for each clas-

si�cation. The larger the value of strength, the more con�dent an algorithm is about the

classi�cation value it returns.

Chapter 8. Knowledge Discovery in Visualization 192

Decision Trees

Classifying an unknown tuple (v1; : : : ; vN) generates a path through a decision tree from

root to leaf. Each node in the tree corresponds to some attribute Ai. The interval in the

node that contains vi is used to direct the path as it passes through Ai. The strength of the

classi�cation is de�ned to be the winning value's frequency in the leaf node interval of the

classi�cation path. In other words, given a leaf node representing attribute Ai:

strength = winner freq(vi)=interval freq (8.1)

where winner freq(vi) is the frequency of the winning classi�cation value and interval freq

is the total frequency of all classi�cation values in the interval containing vi. For example,

consider a leaf node representing the discrete attribute animal:

attribute classi�cation

value value(s)

dog fA, Bg
cat fA, A, Bg

whale fAg
Table 8.1: An example of attribute values and their corresponding group value(s) for a leaf node in a decision
tree; the strength of a classi�cation value is based on the frequency of the winning classi�cation value in the
given leaf node interval

A tuple with vi = cat passes through the interval containing cat during classi�ca-

tion. This interval has a winning classi�cation value A, with winner freq(cat) = 2 and

interval freq = 3, resulting in strength = 2

3
. Classi�cation strength measures how strongly

tuples from the training set agreed on a common classi�cation value when the given interval

was built.

Chapter 8. Knowledge Discovery in Visualization 193

Users can also ask for the strength associated with a speci�c classi�cation value cp. In

this case, winner freq(vi) is replaced with group freq(cp), where group freq(cp) is the

frequency of classi�cation value cp in the given interval. For example, the same tuple shown

above with vi = cat would have a strength of 1

3
for classi�cation value B.

Statistical Tables

Chan and Wong's statistical tables use a built-in weighting scheme to perform classi�cation.

Consider an unknown tuple (v1; : : : ; vN) and the statistical table used to weight attribute

values vi 2 domain(Ai). The table contains ni � P entries for all possible combinations

of attribute values ai;j and classi�cations ck. We can select from the table the minimum

value mini, the maximum value maxi, and the weight range ri = maxi�mini. The winning

classi�cation value ck is the one that provides the largest total positive weight 8 vi across all
N tables. Given an individual table value of Wi for classifying a tuple with attribute vi as

ck, the strength of the classi�cation is de�ned as:

strength =
NX
i=1

(Wi �mini) =
NX
i=1

ri (8.2)

Dividing by the sum of the weight ranges normalizes strength over the range (0 : : : 1). As

with decision trees, the strength for a particular classi�cation value cp can be provided by

�nding table weights wi for classifying vi as cp, then computing
PN

i=1(wi �mini) =
PN

i=1 ri.

Interval Classi�cation

An interval classi�cation tree is, in essence, a decision tree that has been modi�ed for e�-

ciency in the following ways:

Chapter 8. Knowledge Discovery in Visualization 194

� Continuous attributes are divided into ranges; the group frequencies for each range are

computed using a cosine �lter; the number of ranges is meant to be much smaller than

the number of unique values in the original attribute

� Nodes in an interval tree are marked as strong or weak based on the frequency of the

winning classi�cation value in the node; the frequency required to mark a node as

strong decreases depending on the depth of the node in tree

� Adjacent intervals in a node are merged if they have the same winning classi�cation

value and the same strength (i.e., if they are both strong or both weak)

These improvements do not a�ect the basic workings of the classi�cation weighting algo-

rithm used for decision trees. Because of this, interval classi�cation uses exactly the same

formula as decision trees:

strength = winner freq(vi)=interval freq

where winner freq(vi) is the frequency of the winning classi�cation value and interval freq

is the total frequency of all classi�cation values in the leaf node interval containing vi. The

algorithm for computing the strength of a particular classi�cation value cp is also the same,

strength(cp) = group freq(cp) = interval freq.

Rough Sets

The rough set algorithm assigns a degree of coverage SGF to each attributeAi in the minimal

attribute set R (Equation 7.15). An unknown tuple fv1; : : : ; vNg is matched against a rule

rj by comparing each vi against the corresponding attribute value in the rule. If they match,

then SGF (Ai; R; P) is added to the weight of evidenceWj for choosing rj. The winning rule

Chapter 8. Knowledge Discovery in Visualization 195

is the rule that produces the highest total weight Wwin. The maximum possible weight is

Wmax =
PN

i=1 SGF (Ai; R; P); 8 Ai 2 R. The classi�cation weight is therefore de�ned to be:

strength = Wwin =Wmax (8.3)

As in the previous three algorithms, dividing by Wmax guarantees 0 � strength � 1. The

strength for a particular classi�cation value cp can be found by examining the rules that

correspond to cp. Assuming that rule rp produces the highest total weight wwin for an

unknown tuple, then strength(cp) = wwin =Wmax.

8.2 Results

We built an experimental training set with the following structure to test classi�cation

weights for each of the four extended KDD algorithms:

� each tuple consists of three attributes: age (age), a continuous integer attribute on the

range [20; : : : ; 80]; education level (elvl), a discrete attribute with �ve possible values

f0; 1; 2; 3; 4g; and zipcode (zip), a discrete attribute with nine possible values

� one of two possible classi�cation values, A or B, is assigned to each tuple using the

following rules:

Group A: age < 40 & elvl 2 f0; 1g
40 � age < 60 & elvl 2 f0; 1; 2; 3g
60 � age & elvl = 0

Group B: otherwise

Chapter 8. Knowledge Discovery in Visualization 196

The classi�cation was designed speci�cally to be independent of zip. This set of rules is

exactly the same as the one used by Agrawal et al. [1992] to test their interval classi�cation

technique. Our training sets contained 61 di�erent age values by 5 di�erent elvl values for

a total of 305 tuples. One of the nine zipcodes was randomly assigned to each tuple.

Classi�cation errors were included in the training set in certain circumstances to test two

separate properties of each extended KDD algorithm. First, rules built from a training set

are skewed by the errors it contains. This in turn causes mistakes when we try to classify

unknown tuples. Classi�cation weights for these tuples should be lower than for tuples that

are assigned a correct classi�cation value. Training sets that contain errors also allow us to

test an extended KDD algorithm's sensitivity. That is, does a small increase in errors in the

training set result in a small or a large increase in the number of classi�cation errors?

Each extended KDD algorithm was run four times using four di�erent training sets. In

the �rst training set none of the tuples had an incorrect classi�cation value. In the second

training set 15 tuples were randomly selected and assigned an incorrect classi�cation value

(i.e., a 5% error rate). The third training set had a 10% error rate, and the fourth training

set had a 25% error rate. After training, an algorithm was asked to classify 305 unknown

tuples. The classi�cation values provided by the algorithm were compared against the correct

classi�cation values (determined using the classi�cation rules shown above). Classi�cation

weights and error rates could then be examined.

Decision Trees

The ID3 algorithm did an excellent job of classifying unknown tuples, even when the training

set had a 10% error rate (the classi�cation error rate was 0%, 0%, and 3.3% for the 0%,

5%, and 10% error training sets, respectively). Tuples that were incorrectly classi�ed had

correspondingly low classi�cation weights (Figure 8.1).

Chapter 8. Knowledge Discovery in Visualization 197

Decision Tree Classi�cation Error Results

Minimum Misclassi�ed
Training Set Class. Weight Tuples
0% error 0.80 0.0%
5% error 0.60 0.0%
10% error 0.60 3.0%
25% error 0.64 24.6%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pe
rc

en
t E

rr
or

Classification Weight

0% group error
5% group error

10% group error
25% group error

Figure 8.1: The location (in terms of classi�cation weight) and number of classi�cation errors for each of
the four training sets; the table above the graph lists the minimum classi�cation weight and the percentage
of misclassi�ed tuples for each of the four training sets; the location of the bar in the graph represents the
classi�cation weight for the incorrectly classi�ed tuple, while the height of the bar represents the number of
incorrect tuples with the given weight

Chapter 8. Knowledge Discovery in Visualization 198

Classi�cation errors increased dramatically for the 25% error training set. The errors

in the training set caused ID3 to identify age as independent of the classi�cation being

performed. The algorithm then tried to classify unknown tuples based only on elvl, re-

sulting in a large number of incorrect classi�cations. Despite the algorithm's poor per-

formance, however, classi�cation weights were appropriately low for the erroneous tuples

(0:64 � strength � 0:66).

Our results suggest that the ID3 algorithm provides e�ective classi�cation up to the

point where errors in the training set begin to mask attributes that should be included in

the decision tree. The loss of attributes on which the classi�cation depends results in a

signi�cant increase in classi�cation errors.

Statistical Tables

Chan and Wong's statistical table algorithm performed very well for all four training sets

(classi�cation error rates ranged from 0% to 5%). An increase in the number of errors in

the training set did not result in a large increase in the number of incorrectly classi�ed

tuples. Moreover, classi�cation weights for those few tuples that were assigned the wrong

classi�cation value were appropriately low (Figure 8.2).

The main problem with the statistical table algorithmwas the number of tuples that could

not be classi�ed at all. The algorithm uses each attribute value vi 2 V as an index into a

ni � P table, to �nd positive or negative evidence for choosing a particular classi�cation.

If attribute value vi was deemed insigni�cant for every possible classi�cation value ck when

the tables were built, no evidence, either positive or negative, can be derived from vi. When

this is true for every vi 2 V , the algorithm cannot suggest any particular ck for V . This is

exactly what happened when the error rate in the training sets rose. Signi�cant trends in

the dataset were broken, and an increasingly large number of table entries were marked as

Chapter 8. Knowledge Discovery in Visualization 199

insigni�cant. The number of unclassi�ed tuples ranged from 0% for the 0% error training

set to 22.6% for the 25% error training set.

Our results show that the statistical table algorithm can be extremely sensitive to errors

in the training set. This does not result in classi�cation errors; rather, the algorithm is

unable to classify certain tuples due to lack of signi�cant trends in the training set.

Interval Classi�cation

The interval classi�cation algorithm did a good job of classifying unknown tuples using any of

the four training sets (the classi�cation error rate ranged from 0.7% to 3.3%). Classi�cation

weights for the tuples with an incorrect classi�cation value were low relative to the weights

for correct classi�cations.

Unlike the ID3 algorithm, interval classi�cation did not \lose" important attributes as

training set errors rose (see Error Results in Table 8.3). Apparently, this was because interval

classi�cation chose signi�cant attributes at each node in the tree byminimizing resubstitution

error. This is less sensitive to errors in the training set, compared to the modi�ed chi-squared

technique used by ID3.

Rough Sets

Like interval classi�cation, the rough set algorithm did very well classifying unknown tuples,

regardless of the training set that was used. Classi�cation error rates ranged from 1% to

7.9% (Figure 8.4).

Unfortunately, the weights assigned to incorrectly classi�ed tuples were all 1:0. Classi�-

cation weights provided no indication of when classi�cation values might be wrong. This is a

Chapter 8. Knowledge Discovery in Visualization 200

Statistical Table Classi�cation Error Results

Minimum Misclassi�ed Unclassi�ed
Training Set Class. Weight Tuples Tuples
0% error 0.51 3.3% 0.0%
5% error 0.50 0.0% 8.2%
10% error 0.51 5.2% 8.5%
25% error 0.51 3.3% 22.6%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pe
rc

en
t E

rr
or

Classification Weight

0% group error
5% group error

10% group error
25% group error

Figure 8.2: The location (in terms of classi�cation weight) and number of classi�cation errors for each of
the four training sets; the table above the graph lists the minimum classi�cation weight, the percentage of
misclassi�ed tuples, and the percentage of unclassi�ed tuples for each of the four training sets; the location of
the bar in the graph represents the classi�cation weight for the incorrectly classi�ed tuple, while the height
of the bar represents the number of incorrect tuples with the given weight

Chapter 8. Knowledge Discovery in Visualization 201

Interval Classi�cation Error Results

Minimum Misclassi�ed
Training Set Class. Weight Tuples
0% error 0.57 0.7%
5% error 0.57 0.7%
10% error 0.50 2.0%
25% error 0.64 3.3%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pe
rc

en
t E

rr
or

Classification Weight

0% group error
5% group error

10% group error
25% group error

Figure 8.3: The location (in terms of classi�cation weight) and number of classi�cation errors for each of
the four training sets; the table above the graph lists the minimum classi�cation weight and the percentage
of misclassi�ed tuples for each of the four training sets; the location of the bar in the graph represents the
classi�cation weight for the incorrectly classi�ed tuple, while the height of the bar represents the number of
incorrect tuples with the given weight

Chapter 8. Knowledge Discovery in Visualization 202

direct consequence of errors in the training set. The rough set algorithm has di�culty han-

dling these kinds of errors. For example, consider a training set that included the following

tuples:

(35, 1, V6R3C4) A

(35, 1, V6R5X4) B

(35, 1, V2L 3X9) A

(35, 1, N2L 3X1) A

(35, 1, M4W3Z2) A

Tuple (35, 1, V6R5X9) has been incorrectly classi�ed as B. This forces the rough set

algorithm to use all three attributes to build its rules (since no two attributes provide a pos-

itive coverage k(R;P) equal to the original coverage korg). The resulting rules are something

like:

Group = A Group = B

(35, 1, V6R3C4) (35, 1, V6R5X4)

(35, 1, V2L 3X9)

(35, 1, N2L 3X1)

(35, 1, M4W3Z2)

Whenever an unknown tuple V = (35, 1, V6R5X9) is classi�ed, it will be assigned

classi�cation value B, since a rule for that classi�cation matches exactly the attribute values

vi 2 V . Moreover, since every vi matched the winning rule, Wwin =
P3

i=1 SGF (Ai; R; P) =

Wmax, and strength = Wwin =Wmax = 1:0.

The rough set algorithm tries to detect these kinds of errors in the training set by ignoring

any tuples that have a common set of attributes but di�erent classi�cation values. This works

as planned if two or more instances of the tuple appear in the training set (and if not all

of them are incorrectly classi�ed in the same way). Tuples that appear only once in the

Chapter 8. Knowledge Discovery in Visualization 203

Rough Set Classi�cation Error Results

Minimum Misclassi�ed
Training Set Class. Weight Tuples
0% error 0.95 1.0%
5% error 0.88 1.6%
10% error 0.86 3.3%
25% error 0.77 7.9%

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pe
rc

en
t E

rr
or

Classification Weight

0% group error
5% group error

10% group error
25% group error

Figure 8.4: The location (in terms of classi�cation weight) and number of classi�cation errors for each of
the four training sets; the table above the graph lists the minimum classi�cation weight and the percentage
of misclassi�ed tuples for each of the four training sets; the location of the bar in the graph represents the
classi�cation weight for the incorrectly classi�ed tuple, while the height of the bar represents the number of
incorrect tuples with the given weight

Chapter 8. Knowledge Discovery in Visualization 204

training set will pass through this test, and cause the problem described above. It is not

possible to \�x" the classi�cation weights, because the rough set algorithm itself provides

no information that can be used to identify the potential classi�cation error.

In spite of this, the classi�cation weights are not completely useless. The algorithm is

often asked to classify an unknown tuple with attribute values vi that did not appear in the

original training set. Classi�cation weights for these tuples will be less than 1.0, because

attribute values vi will not match any rule and hence SGF (Ai; R; P) will not be added to

Wwin. This means Wwin < Wmax, and therefore Wwin=Wmax < 1:0. A weight of less than

1.0 signals to the user that V did not completely match any rule, and hence there is some

measure of uncertainty about which classi�cation value to assign to V . An attribute that is

important for classi�cation will have a relatively large SGF value, so not matching on that

attribute will result in a relatively low strength value.

8.3 Attribute Signi�cance Weights

Each of the four extended KDD algorithms makes use of \signi�cant attribute" values during

classi�cation. Attributes that are seen as independent of the classi�cation being performed

are usually ignored. The algorithm can then determine the importance of each signi�cant

attribute. For example, the decision tree algorithm picks the signi�cant attribute with the

largest information gain to partition the root of the tree. The rough set algorithm uses the

coverage value SGF to measure attribute signi�cance.

We used the information built-in to each of the four algorithms to provide an attribute

signi�cance weight signi�cance. Independent attributes have very low signi�cance weights.

Signi�cant attributes have signi�cance weights that increase based on their importance to

the classi�cation being performed. As before, we used the formulas and values provided by

Chapter 8. Knowledge Discovery in Visualization 205

the individual KDD algorithms to compute attribute signi�cance weights.

Decision Trees

The signi�cance weighting algorithm for attributes in a decision tree was based on the fol-

lowing observations:

� Attributes that are not part of the decision tree are considered independent of the

classi�cation being performed, and therefore have a signi�cance weight of zero

� Information gain is maximized at each level of the tree to determine which attribute

to use to partition a given node; therefore, an attribute's signi�cance should be based

in part on the level of the node (or nodes) it partitions

� Multiple nodes can appear at every level in the tree except the root; therefore, an

attribute's signi�cance should be based on the number of nodes at a given level it

partitions

These observations were used to build an algorithm for computing an attribute's signi�-

cance. For each level in the decision tree, an attribute Ai that is used to partition nodes has

signi�cance

level sig(Ai) =
coverage(Ai)

level
(8.4)

where level is the height of the given level in the decision tree, and coverage(Ai) is the

number of nodes partitioned by Ai divided by the total number of nodes in the level. The

total signi�cance weight for Ai is the sum of level sig(Ai) at every level in the tree. As an

Chapter 8. Knowledge Discovery in Visualization 206

genderhabitat gendergender

animal

gendergender gender

Figure 8.5: An example of a decision tree with three levels and three di�erent attributes: animal, gender,
and habitat.

example, consider the decision tree shown in Figure 8.5. The signi�cance weights for each

of the three attributes shown in the tree would be:

significance(animal) = 1:0
1
= 1:0

significance(gender) = 0:75
2

+ 1:0
3
= 0:708

significance(habitat) = 0:25
2

= 0:125

Statistical Tables

Statistical tables di�er somewhat from the other algorithms, because independent attributes

are not removed before building the classi�cation rules. In spite of this, the individual table

for an attribute Ai can be used to determine how relevant Ai is to the classi�cation being

performed.

The statistical table for attribute Ai contains ni � P entries for all possible combina-

tions of attribute values ai;j and classi�cations ck. An individual value ai;j 2 Ai is considered

relevant with respect to a speci�c classi�cation value ck when abs(dpk) � 1:96. If the classi-

�cation is strongly dependent on Ai, most of the (attribute value, classi�cation value) pairs

(ai;j; ck) will have a corresponding abs(dpk) � 1:96. Attributes that are independent of

the classi�cation will have a large number of table entries with �1:96 < dpk < 1:96. The

Chapter 8. Knowledge Discovery in Visualization 207

signi�cance of the attribute is therefore de�ned to be:

significance(Ai) = sig entry(Ai; P) = tot entry(Ai; P) (8.5)

where sig entry(Ai; P) is the number of dpk values in Ai's statistical table with a value

greater than or equal to 1.96, and tot entry(Ai; P) is the total size of the table, ni � P .

Interval Classi�cation

As described in the previous section on classi�cation weights, an interval classi�cation tree

is a modi�ed decision tree. The modi�cations improve e�ciency, but they do not change

the correctness of the signi�cance algorithm. Therefore, attribute signi�cance is computed

in exactly the same way as for decision trees, namely:

level sig(Ai) =
coverage(Ai)

level

where level is the height of the given level in the interval tree, and coverage(Ai) is the

number of nodes partitioned by Ai divided by the total number of nodes in the level. The

total signi�cance weight for Ai is the sum of level sig(Ai) at every level in the tree.

Rough Sets

The rough set algorithm provides built-in weights SGF representing the importance of each

attribute Ai in the minimal attribute set R. A simple examination of Equation 7.15 shows

that SGF (Ai; R; P) is guaranteed to lie on the range (0 : : : 1). Therefore, the signi�cance of

attribute Ai 2 R is simply

Chapter 8. Knowledge Discovery in Visualization 208

significance(Ai) = SGF (Ai; R; P) (8.6)

Any attribute Ai 62 R is considered independent of the classi�cation being performed, and

is assigned a signi�cance weight of zero.

8.4 Results

We used the same training sets described in the Classi�cation Weights section to test our

attribute signi�cance weights. The results are shown in Table 8.2.

KDD Algorithm 0% error 5% error 10% error 25% error

ID3 elvl: 1.0 elvl: 1.0 elvl: 1.0 elvl: 1.0

age: 0.5 age: 0.5 age: 0.5 age: 0.0

zip: 0.0 zip: 0.0 zip: 0.0 zip: 0.0

Stat Tables elvl: 1.0 elvl: 0.8 elvl 0.8 elvl: 0.8

age: 0.67 age: 0.67 age: 0.5 age: 0.5

zip: 0.0 zip: 0.0 zip: 0.0 zip: 0.11

IC elvl: 1.0 elvl: 1.0 elvl: 1.0 elvl: 1.0

age: 0.67 age: 0.67 zip: 0.43 age: 0.5

zip: 0.33 zip: 0.33 age: 0.4 zip: 0.34

Rough Sets elvl: 0.65 age: 0.65 age: 0.65 age: 0.75

age: 0.55 elvl: 0.64 elvl: 0.64 elvl: 0.64

zip: 0.05 zip: 0.2 zip: 0.25 zip: 0.48

Table 8.2: Signi�cance weights for each of the four extended KDD algorithms and each of the four training
sets; in each case attributes are listed in decreasing order of signi�cance weight

As expected, signi�cance weights are highest for the \most signi�cant" attributes. For

the 0% classi�cation error training set, all four algorithms agreed that elvl and age (in that

Chapter 8. Knowledge Discovery in Visualization 209

order) were signi�cant. zip was ignored by the ID3 and statistical table algorithms, and it

was given a low signi�cance weight by the interval classi�cation and rough set algorithms.

Errors in the training set caused a corresponding shift in signi�cance weights in each

algorithm. For example, the ID3 algorithm assigned age a signi�cance of zero for the 25%

error training set. As was previously explained, errors in the training set drove the modi�ed

chi-squared value for age below the required minimum. ID3 therefore assumed age was not

related to the classi�cation being performed. This resulted in a signi�cance weight of zero,

and in a large number of classi�cation errors. Signi�cance weights for elvl and age dropped

sharply in the statistical table algorithm for the 10% and 25% error training sets. Errors in

the training set caused an increasing number of table entries to be marked as insigni�cant.

The result was a drop in the attributes' signi�cance weights, and a rise in the number of

unclassi�ed tuples. The rough set algorithm identi�ed age as more important than elvl for

the 5%, 10%, and 25% error training sets. However, elvl was given a signi�cance nearly

equal to age, and the weights for zip continued to remain relatively low. This resulted in

only a small number of classi�cation errors.

Chapter 9

Future Work and Applications

Results from our research have uncovered a number of additional areas that warrant further

study. Two of these are described below. First, we plan to complete a study on the use

of texture in an exploratory visualization environment. Second, we hope to investigate the

use of emergent features for identifying speci�c combinations of attribute values in a high-

dimensional dataset.

After describing these two areas for future work, we then conclude this thesis with a de-

scription of our visualization techniques being applied to three practical applications: track-

ing salmon migration patterns, displaying computerized tomography (CT) medical image

slices, and calculating and visualizing changes in sea-surface temperatures. These examples

demonstrate how each of our techniques (estimation, colour selection, and attribute com-

pression through knowledge discovery) can be used to produce an e�ective visualization of

the underlying dataset.

9.1 Texture

A large part of this thesis describes an investigation of colour and its use in scienti�c visual-

ization. Another commonly-used visual feature is texture. Research on the use of texture in

210

Chapter 9. Future Work and Applications 211

computer vision and computer graphics has tried to identify the fundamental components

of texture patterns. Ware and Knight believe orientation, size, and contrast (or density)

are the orderable dimensions of a visible texture [Ware and Knight, 1992; Ware and Knight,

1995]. Liu and Picard believe the three most important perceptual dimensions of a texture

pattern are periodicity (or repetitiveness), directionality, and granularity (or randomness)

[Liu and Picard, 1994]. Liu and Picard's directionality and granularity correspond closely

to Ware and Knight's use of orientation and contrast.

Ware and Knight used Gabor �lters to create their textures, while Liu and Picard used

Wold features. It is also possible to create a \texture icon" that varies across one or more of

the basic texture dimensions. Figure 9.1 shows an example of texture icons that are made up

of nine bars. A scale factor and an orientation are applied to each texture icon. We chose to

vary size and orientation across three separate values, in part because Wolfe's experiments

showed that orientation is categorized into three separate ranges (steep, tilted, and shallow)

in the low-level visual system [Wolfe et al., 1992]. The texture icons in Figure 9.1 can be

used to represent data elements with two attributes, where each attribute is no more than

three-valued. If density can be uncoupled from size, we could visualize elements with up to

three separate three-valued attributes.

There are a number of important issues that need to be investigated regarding the use

of texture in visualization. First, we want to know how the perceptual dimensions of a

texture pattern interact with one another. Ware and Knight describe size{location and

size{orientation tradeo�s that were discovered during their visualization experiments. Ori-

entation, size, and contrast may also form a visual feature hierarchy, similar to the hue{form

and intensity{hue hierarchies described by Callaghan [1984, 1989]. Understanding and con-

trolling these e�ects is key to building guidelines for the e�ective use of texture in a real-time

visualization environment.

Chapter 9. Future Work and Applications 212

small medium large

0

45

90

Ort.

Size

Figure 9.1: Examples of texture icons created by varying the orientation and size of the bars that make up
each icon; notice that size and density (or contrast) are not independent of one another; decreasing the size
of the bars also decreases the density of the texture icon they produce, and vise-versa

Chapter 9. Future Work and Applications 213

Another area of research is the use of both colour and texture in a single display. The

ability to do this e�ectively would dramatically increase the expressive power of our visu-

alization techniques. A study of the fundamental dimensions of texture patterns could be

combined with results on e�ective colour selection. Again, we would have to investigate

potential interactions between hue and intensity and orientation, size, and contrast. If these

features are combined properly, the end result would be a visualization technique capable of

representing up to �ve independent attributes through the use of texture and colour.

9.2 Emergent Features

One of our original goals was to investigate methods for visualizing high-dimensional data

elements. Two of our results address this problem. First, we showed that hue and orientation

do not interfere with one another during preattentive estimation. This means both hue and

orientation can be used to encode independent attributes; a user is able to perform rapid

and accurate estimation using either feature. Moreover, results from Wolfe et al. [1992]

and from our own colour selection experiments [Healey, 1996] suggest we can display up to

three orientations or seven hues in a single display, while still allowing for rapid and accurate

target identi�cation (it would be useful to determine if these results extend to the estimation

task).

We also showed how knowledge discovery algorithms can be used to reduce the num-

ber of attributes in a multidimensional dataset. Classi�cation combines multiple attributes

into a single classi�cation value. The knowledge discovery algorithms identify signi�cant

attributes during classi�cation. Users can choose to pursue or ignore these attributes when

they visualize the resulting dataset.

Tools that support the visualization of multiple data dimensions must deal with a poten-

Chapter 9. Future Work and Applications 214

tial interaction between some or all of the features being used to represent the dimensions.

Rather than trying to avoid this, we can sometimes control the interaction and use it to our

advantage. For example, Pickett and Grinstein use texture to represent high-dimensional

data; each dimension controls one aspect of the texture element displayed to the user. An-

other promising avenue of investigation involves emergent features. An emergent feature can

be created by grouping several simpler shapes together [Pomerantz and Pristach, 1989]. The

emergent feature cannot be predicted by examining the simpler shapes in isolation. For ex-

ample, in Figure 2.11a, the target element cannot be detected preattentively. In Figure 2.11b

we rotated one of the component elements to create a new target with an emergent feature,

non-closure, that is easily detected.

As an example of the use of emergent features, consider the salmon migration simulations

described in Section 3.1 (Salmon Migration Simulations). A careful choice of simple features

will allow a target element or a region of similar data elements to be detected preattentively,

thereby signalling a correlation of variables in the data. Figure 9.2 shows one possible

example of this technique. In the salmon tracking simulations scientists search for salmon

entering hot ocean regions. This correlation of hot and present combines to form an emergent

feature, closure. Because background elements (hot-absent, cold-present, and cold-absent)

do not have closure, the target salmon can be easily detected.

9.3 Practical Applications

We tested our visualization techniques in a practical application environment. This allowed

us to observe their e�ectiveness at visualizing real-world data and performing common anal-

ysis tasks. We chose three representative visualization examples: estimating salmon migra-

tion results, colouring medical slices from computerized tomography scans, and deriving and

Chapter 9. Future Work and Applications 215

absentpresent

hot

cold

Figure 9.2: Example of output from salmon tracking simulations: salmon in hot ocean regions are displayed
with an emergent feature closure; these can be detected because the three background objects do not use
closure

tracking temporal ocean surface temperatures.

We designed and implemented a simple software tool called PV to perform our visu-

alizations. PV does not to try to match the overall power and
exibility of commercial

visualization systems like Iris Explorer or the Wavefront Data Visualizer. Rather, PV was

built to implement results from our research that are unavailable in these visualization tools.

For example, PV can impose constraints to guide the user during the data-feature mapping.

Rules based on known limitations of visual features like hue, intensity, and orientation are

built-in to PV. PV also provides direct access to the four knowledge discovery algorithms;

Chapter 9. Future Work and Applications 216

this allows users to investigate dependencies, �lter their datasets, and add additional at-

tributes through the use of training and classi�cation. All of these features were used when

we visualized our representative datasets.

Oceanography

The experimental displays we tested during our preattentive estimation experiments were

based on data generated from salmon migration simulations being run in the Department of

Oceanography at the University of British Columbia. The simulations were designed to test

various hypotheses about how salmon migrate from the open ocean back to the B.C. Coast

to spawn. A complete description of the simulations is provided in Section 3.3 (Salmon

Migration Simulations) of this thesis. Results from the simulations were stored in a salmon

migration dataset for later analysis.

The salmon migration dataset consisted of 8,004 elements distributed across 46 individual

frames, representing simulation results for the years 1945 to 1990. Each element contained

data for one simulated salmon. This included two independent attributes (the latitude

and longitude where the simulated salmon started its migration run) and two dependent

attributes (the stream function, a scalar value representing ocean current at the salmon's

starting position, and the point of landfall, representing the location where the salmon arrived

on the B.C. coast). Stream function had two possible values flow, highg. Point of landfall
also had two possible values fnorth, southg. The dataset format and the data-feature

mapping used to visualize the dataset are shown in Tables 9.1 and 9.2. Figure 3.3 shows an

example of four di�erent display frames.

Oceanographers scanned rapidly through the individual frames, looking for frames (each

frame corresponds to migration data for a single year) where more than a �xed percentage of

the of salmon had a landfall value of north. This corresponds to a preattentive estimation

Chapter 9. Future Work and Applications 217

D
is

pl
ay

 W
in

do
w

Fr
am

e
C

on
tr

ol
 P

an
el

Pa
ne

l
A

ttr
ib

ut
e

Si
gn

if
ic

an
ce

Figure 9.3: An example of the PV program being used to display sea surface temperatures for ocean positions
on a map of the world; the �gure shows the main display window, the dialog used to choose and animate
frames, and the dialog used to compute signi�cance weights for individual attributes

Chapter 9. Future Work and Applications 218

Size 8,004 elements, each element represents one simulated
salmon

Frames 46 frames, each frame represents simulation results for
one year from the range 1945 to 1990

Independent Attributes latitude (continuous), [136� E : : : 158� E] 2Z
longitude (continuous), [45�N : : : 60�N] 2Z

Dependent Attributes stream function (discrete), flow, highg
latitude of landfall (discrete), fnorth, southg

Table 9.1: Format of Oceanography's salmon migration dataset, showing the size of the dataset in elements,
the number of logical frames in the dataset, the independent attributes, and the dependent attributes

longitude x-position of icon

latitude y-position of icon

latitude of landfall hue of icon, fnorth = red, south = blueg
stream function orientation, flow = 0�, high = 60�g

Table 9.2: Data attribute to visual feature mapping for Oceanography's salmon migration dataset; longitude
and latitude controlled the (x; y) position of a rectangular icon representing the simulated salmon, latitude
of landfall controlled its colour, stream function controlled its orientation

task based on hue. Although this part of the analysis could be automated, the oceanog-

raphers often vary their cuto� percentage while viewing the displays. Years of interest are

compared for the percentage and spatial location of low and high stream function values.

This often involves estimation on various user-chosen subregions of the display. These sub-

regions could not be pre-chosen for comparison without �rst identifying and examining the

years of interest. Next, the oceanographers go back to the original data and search for dis-

plays with a stream function pattern similar to those found in the years of interest. Displays

with a similar makeup of stream function values but a di�erent percentage of point of land-

fall values must be explained in the context of the migration hypotheses. Finally, point of

landfall values are compared statistically to historical salmon distributions provided by the

Department of Fisheries and Oceans. This provides a computational measure of how well

Chapter 9. Future Work and Applications 219

the simulation (and the hypothesis on which it is based) \�ts" actual salmon migration pat-

terns. It would not be possible to perform this type of exploratory data analysis by simply

pre-programming the computer to search for displays with a user-chosen range of point of

landfall and stream function values.

Computerized Tomography Slices

An important part of our research focused on how to select e�ective colours for data visu-

alization. Our goal was a set of colours that could be rapidly and accurately di�erentiated

from one another. Results showed how we can measure and control colour distance, linear

separation, and colour categories to pick up to seven isoluminant colours that satisfy our

requirements. In order to test our technique, we used colours from our experiments to visu-

alize slice data from a computerized tomography scan. The scan was used to search for the

location of an aneurysm in a patient's brain. This resulted in 129 individual slices, each of

which had a 512 � 512 pixel resolution.

Size 26,501,889 pixels, each pixel represents one CT sample
point

Frames 129 frames, each frame represents one 512�512 CT slice
(in each frame 205,441 of the 262,144 pixels represent
actual data)

Independent Attributes x-position (continuous), [0 : : : 511] 2Z
y-position (continuous), [0 : : : 511] 2Z

Dependent Attribute material density (discrete), fLevel 1, Level 2, Level
3, Level 4, Level 5, Level 6, Level 7g

Table 9.3: Format of CT dataset, showing the size of the dataset in pixels, the number of logical frames in
the dataset, the independent attributes, and the dependent attribute

Each pixel in a CT slice contained two independent attributes (the x and y-position

Chapter 9. Future Work and Applications 220

Level 1 0 � density < 75

Level 2 75 � density < 121

Level 3 121 � density < 134

Level 4 134 � density < 139

Level 5 139 � density < 145

Level 6 145 � density < 161

Level 7 161 � density < 256

Table 9.4: Intensity ranges used to segment the greyscale images into seven distinct regions; each region was
coloured with a unique isoluminant colour

of the CT sample point), and one dependent attribute (material density). Material density

initially ranged from 0 (lowest) to 255 (highest). This scale was chosen speci�cally to display

the slices as 8-bit greyscale images (Figure 9.4a). Greyscale images are a standard method

for viewing medical slice data [Ware, 1988; Bergman et al., 1995], because they allow a

user to easily identify the location and shape of individual regions of similar intensity (i.e.,

similarly density material). Through consultation we identi�ed seven intensity ranges that

corresponded to seven individual regions of interest (Table 9.4). Slices were then shown

using seven di�erent colours (i.e., one for each intensity range). Figure 9.4b shows the slice

in Figure 9.4a displayed using colours from our original seven-colour experiment. Figure 9.4c

shows the slice displayed using colours from our �nal colour category experiment.

There are three important points to note. First, as with the greyscale representation, it

is easy to locate individual regions in both colour slices. The densities (and therefore the

intensity values) of di�erent regions of interest are consistent across slices. Therefore, our

colour displays work well for any individual slice chosen by the user.

Second, as predicted by our experiment results, the colours used in Figure 9.4b do not

always provide good di�erentiation between regions compared to the colours used in Fig-

ure 9.4c. For example, consider the region referenced by the arrow. In Figure 9.4b, it appears

Chapter 9. Future Work and Applications 221

(a)

(b) (c)

Figure 9.4: Examples of a single CT slice: (a) the slice displayed using a greyscale intensity ramp; (b)
colours from the original seven-colour experiment, although the location and borders of each region are
clearly visible, the makeup of certain regions is di�cult to determine, compared to; (c) colours from the
�nal seven-colour experiment, that show clearly that the region referenced by the arrow is made up of two
di�erent groups of elements

Chapter 9. Future Work and Applications 222

x-position x-position of pixel

y-position y-position of pixel

density hue of pixel, fLevel 1 = Red, Level 2 = Yellow, Level
3 = Green-Yellow, Level 4 = Green, Level 5 = Blue-
Green, Level 6 = Purple, Level 7 = Red-Purpleg

(a)

x-position x-position of pixel

y-position y-position of pixel

density hue of pixel, fLevel 1 = Red, Level 2 = Yellow-Red,
Level 3 = Yellow, Level 4 = Green, Level 5 = Blue-
Green, Level 6 = Purple-Blue, Level 7 = Red-Purpleg

(b)

Table 9.5: Data attribute to visual feature mapping for the Computerized Tomography dataset; (x; y)
location controlled the (x; y) position of the pixel representing the CT sample point; (a) density controlled
the pixel's colour, colours were chosen from the original seven-colour study; (b) colours were chosen from
the �nal colour category study (see Table 5.5 for a list of the RGB triples used to display each colour)

to made up of a single type of element. In fact, it is made up of two types of elements; this

is clear when examining the same region in Figure 9.4c. Notice there is no corresponding

tradeo� between Figure 9.4c and Figure 9.4b, that is, there are no pairs of elements that are

di�cult to di�erentiate in Figure 9.4c but easy to di�erentiate in Figure 9.4b. A large G-GY

overlap suggested there would be a low perceived di�erence between the two colours used

to represent the region of interest in Figure 9.4b. This overlap was explicitly removed by

choosing a single colour from the G-GY region during the �nal colour category experiment.

The result is a set of seven colours that clearly mark the locations and boundaries of all

seven regions of interest.

Finally, colour images can provide visual cues that might not be immediately apparent

in a greyscale display. For example, the region referenced by the arrow in Figure 9.4c is

Chapter 9. Future Work and Applications 223

obviously made up of two di�erent types of elements. This is not as clear in the greyscale

image, because the intensity ranges for the two regions are narrow (values [134 : : : 138] and

[139 : : : 145], respectively) and adjacent to one another. Moreover, colour images often high-

light spatial locations where large di�erences in value occur. For example, consider the small

spots of purple at the top of the region in the center of the image. These spots represent

areas of high relative density, and are quickly identi�ed as di�erent from the surrounding

material. The same information is present in the greyscale image, but the visual system is

not immediately drawn to it, because the contrast between the region and its neighbours is

not as pronounced. One method of visualizing slice data is to \
y" through the slice stack,

rapidly displaying individual slices one after another in a movie-like fashion. In this context,

we expect users could more accurately detect areas of large di�erence using colour rather

than greyscale.

Sea Surface Temperatures

NASA has recently made available a dataset that contains environmental conditions for sea

and ocean locations throughout the world (see http://podaac-www.jpl.nasa.gov/mcsst/

for more details). The dataset has been named the Comprehensive Ocean-Atmosphere Data

Set (COADS). Each element in the dataset represents a 2� � 2� sea or ocean region. An

element contains (up to) eight observed and eleven derived attributes. Attribute means and

standard deviations have been collected for each element for each month from January 1980

to December 1993.

We concentrated on �ve of the available attributes when we examined COADS: air tem-

perature, sea level pressure, scalar wind, relative humidity, and sea surface temperature

(Table 9.6). This meant each element contained two independent attributes (the latitude

and longitude of the center of the ocean position represented by the element) and �ve inde-

Chapter 9. Future Work and Applications 224

pendent attributes.

Size 964,064 elements, each element represents a 2� � 2� sea
surface region

Frames 168 frames, each frame represents mean data for one
month from the range January 1980 through December
1993

Independent Attributes longitude (continuous), [1�E : : : 359� E] 2Z
latitude (continuous), [89� S : : : 89�N] 2Z

Dependent Attributes air temperature (discrete) , fAir 1, Air 2, Air 3, Air
4, Air 5g
sea level pressure (discrete) , fSLP 1, SLP 2, SLP 3, SLP
4, SLP 5g
scalar wind (discrete) , fWSp 1, WSp 2, WSp 3, WSp 4,
WSp 5g
relative humidity (discrete) , fHum 1, Hum 2, Hum 3, Hum
4, Hum 5g

Table 9.6: Format of COADS dataset, showing the size of the dataset in elements, the number of logical
frames in the dataset, the independent attributes, and the dependent attributes

Sea surface temperatures (SSTs) were available in a separate �le, but on a much coarser

grid of 10� � 10� (in fact, an SST dataset sampled on a 2� � 2� grid was also available; we

used the coarser resolution to test our knowledge discovery algorithms). Normally, SSTs are

interpolated to provide values at 2� steps. One problem with this technique is that �ne details

that occur between sample points may be \smoothed out" and lost during interpolation. We

decided to use our knowledge discovery algorithms to add �ne-grained SST values to our

original dataset. Continuous SST values were discretized into one of �ve possible values

(Table 9.9). Air temperature, sea level pressure, wind speed, and relative humidity values

from each frame in the original dataset were obtained at 10� intervals. The corresponding

SST value was read and attached directly to the sample points. The result was used as a

training set to build rules for mapping (air, slp, wind, hum) tuples to an SST value.

Chapter 9. Future Work and Applications 225

SST 1 -6�C � sst < 0�C

SST 2 0�C � sst < 10� C

SST 3 10� C � sst < 20� C

SST 4 20� C � sst < 30� C

SST 5 30� C � sst < 36� C

WSp 1 0m/s � wsp < 8m/s SLP 1 954mb � slp < 973mb

WSp 2 8m/s � wsp < 16m/s SLP 2 973mb � slp < 993mb

WSp 3 16m/s � wsp < 23m/s SLP 3 993mb � slp < 1013mb

WSp 4 23m/s � wsp < 31m/s SLP 4 1013mb � slp < 1033mb

WSp 5 31m/s � wsp < 33m/s SLP 5 1033mb � slp < 1049mb

Table 9.9: Sea surface temperature, sea level pressure, and scalar wind value ranges used to discretize the
attributes into �ve individual values

All of the KDD algorithms reported air temperature and humidity, in that order, as the

most signi�cant attributes. Because we had available the exact 2� � 2� SST values, we were

able to compute classi�cation error rates from interval classi�cation, ID3, statistical tables,

and a standard bilinear interpolation.

Table 9.10 shows that interval classi�cation and ID3 gave better results than bilinear

interpolation (both in terms of mean SST error x, and in terms of the percentage of misclas-

si�ed tuples). We wanted to see whether classi�cation weights could be used to identify and

ignore potentially erroneous tuples. To do this, we sorted tuples according to classi�cation

weight and ignored the lowest 5%, assuming they had been given an incorrect classi�cation

value.

Table 9.11 shows that mean SST error x, standard deviation of SST error �2(x), and

Chapter 9. Future Work and Applications 226

Method x �2(x) % error

Interp. 0.122 0.107 12.3%

ID3 0.107 0.310 10.7%

IC 0.095 0.293 9.5%

Stat. 0.236 0.607 17.1%

Table 9.10: Mean SST error x, standard deviation of SST error �2(x), and the percentage of incorrect
classi�cation values for bilinear interpolation, ID3, interval classi�cation, and statistical tables

the percentage of misclassi�ed tuples were all reduced when we �ltered our results based on

classi�cation weights. The �nal two columns in the table show a breakdown of the number

of correctly classi�ed tuples (Good Tuples) and the number of incorrectly classi�ed tuples

(Bad Tuples) which were ignored. A low classi�cation weight does not necessarily mean the

classi�cation value is incorrect. It simply means strong evidence did not exist in the training

set to choose one particular classi�cation value for the given tuple. Obviously, we want to

minimize the number of correctly classi�ed tuples which are mistakenly ignored during the

�ltering operation. This percentage was highest for Interval Classi�cation (at 68% of the

total number of tuples ignored) and lowest for ID3 (at 14% of the total number of tuples

ignored).

Good Tuples Bad Tuples

Method x �2(x) % error Ignored Ignored

ID3 0.082 0.274 8.2% 32 190

IC 0.082 0.274 8.2% 222 105

Stat. 0.226 0.598 16.3% 197 98

Table 9.11: Results when tuples with classi�cation weights from the bottom 5% were ignored: mean SST
error x, standard deviation of SST error �2(x), and the percentage of incorrect classi�cation values were
all lower than when no �ltering was performed; the �nal two columns denote the number of correctly and
incorrectly classi�ed tuples which were ignored

We chose the ID3 algorithm to generate SST values, in part because it gave consistently

Chapter 9. Future Work and Applications 227

good performance when we tested our KDD algorithms, and in part because it ignored the

fewest correctly classi�ed tuples (tuples which are ignored correspond to elements with no

SST value; these elements are incomplete, and are removed from the dataset to be visual-

ized). Because the KDD algorithms reported that air temperature and humidity were closely

matched to sea temperature, we did not consider these attributes when we visualized the

COADS data. Sea level pressure and scalar wind were stored as continuous variables in the

original dataset; we discretized each range to produce a �ve-valued attribute for use during

visualization (Table 9.9). Figure 9.5 shows one frame from the classi�ed dataset, with SSTs

mapped to hue and wind speed mapped to orientation. Figure 9.6 shows a close-up of the

Paci�c and Atlantic Ocean around the coast of North America. SSTs were represented using

�ve colours that we named red, yellow, green-yellow, blue, and purple (exact RGB values

are listed in the 5-colour section of Table 5.5). Wind speeds were split into orientations of

0� (low wind speed), 30�, 45�, and 60� (medium wind speeds), and 90� (high wind speed).

The �ve colours used to represent SSTs were chosen using our colour selection technique.

This guaranteed that each colour could be rapidly and accurately detected, even in the

presence of all the others. Orientations were divided into shallow (low wind speed), tilted

(medium wind speeds), and steep (high wind speed) based on Wolfe's orientation category

results. User could search rapidly for outlier elements, yet at the same time determine

individual values using focused attention.

Our visualization tool PV was used to scan forwards and backwards through stacks of

individual frames, where each frame represented data from COADS for a particular month.

Choosing colours that were easy to di�erentiate allowed a user to track the boundaries

of di�erent sea surface temperature regions. Target elements (i.e., hot or cold sea surface

locations) could also be rapidly identi�ed. Moving through the data month-by-month allowed

users to follow seasonal environmental changes. The data could also be organized to show a

speci�c month for each of the 14 available years. This allowed users to observe year-by-year

Chapter 9. Future Work and Applications 228

Figure 9.5: An example display frame from COADS; sea temperature is mapped to hue and wind speed is
mapped to orientation

Chapter 9. Future Work and Applications 229

Figure 9.6: A close-up of the Paci�c and Atlantic Ocean regions around the coast of North America; sea
temperature is mapped to hue and wind speed is mapped to orientation

Chapter 9. Future Work and Applications 230

di�erences across a much longer time period.

To summarize, our three visualization environments show practical examples of all of

the visualization techniques described in this thesis. The salmon migration simulations used

preattentive estimation (Chapter 3). Visualizing the CT medical image slices used both

colour selection and real-time visualization (Chapters 5 and 6). Finally, the COADS visual-

ization used colour selection, real-time visualization, and knowledge discovery (Chapters 5,

6, and 8). This demonstrates that, even in their current form, our techniques can be applied

to real-world data and tasks.

Bibliography

Agrawal, R., Ghosh, S., Imielinski, T., Iyer, B., and Swami, A. (1992). An interval
classi�er for database mining applications. In Proceedings 18th Very Large Database
(VLDB) Conference, 560{573.

Bauer, B., Jolicoeur, P., and Cowan, W. B. (1996). Visual search for colour targets
that are or are not linearly-separable from distractors. Vision Research (in press).

Beck, J., Prazdny, K., and Rosenfeld, A. (1983). A theory of textural segmentation.
In Human and Machine Vision, Beck, J., Prazdny, K., and Rosenfeld, A., Eds., 1{39.
Academic Press, New York, New York.

Bell, P. C. and O'Keefe, R. M. (1987). Visual interactive simulation|history, recent
developments, and major issues. Simulation 49, 3, 109{116.

Bell, P. C. and O'Keefe, R. M. (1994). Visual interactive simulation: A methodological
perspective. Annals of Operations Research 53, 321{342.

Bergman, L. D., Rogowitz, B. E., and Treinish, L. A. (1995). A rule-based tool
for assisting colormap selection. In Proceedings Visualization '95, 118{125, Atlanta,
Georgia.

Berk, T., Brownston, L., and Kaufman, A. (1982). A new colour-naming system for
graphics languages. IEEE Computer Graphics & Applications 2, 3, 37{44.

Birren, F. (1969). Munsell: A Grammar of Color. Van Nostrand Reinhold Company, New
York, New York.

Braddick, O. J. and Holliday, I. E. (1987). Serial search for targets de�ned by diver-
gence or deformation of optic
ow. Perception 20, 345{354.

Brown, J. M., Weisstein, N., and May, J. G. (1992). Visual search for simple volu-
metric shapes. Perception & Psychophysics 51, 1, 40{48.

231

Brown, M. D., Greenberg, D., Keeler, M., Smith, A. R., and Yaeger, L. (1988).
The visualization roundtable. Computers in Physics 2, 3, 16{26.

Bruckner, L. A. (1978). On Cherno� faces. In Graphical Representation of Multivariate
Data, Wang, P. C. C., Ed., 93{121. Academic Press, New York, New York.

Callaghan, T. C. (1984). Dimensional interaction of hue and brightness in preattentive
�eld segregation. Perception & Psychophysics 36, 1, 25{34.

Callaghan, T. C. (1989). Interference and domination in texture segregation: Hue,
geometric form, and line orientation. Perception & Psychophysics 46, 4, 299{311.

Callaghan, T. C. (1990). Interference and dominance in texture segregation. In Visual
Search, Brogan, D., Ed., 81{87. Taylor & Francis, New York, New York.

Cambell, W. J., Short, Jr., N. M., and Treinish, L. A. (1989). Adding intelligence
to scienti�c data management. Computers in Physics 3, 3, 26{32.

Carter, R. C. (1982). Visual search with color. Journal of Experimental Psychology:
Human Perception & Performance 8, 1, 127{136.

Carter, R. C. and Carter, E. C. (1981). Colour and conspicuousness. Journal of the
Optical Society of Aperica 71, 723{729.

Chan, K. C. C. and Wong, A. K. C. (1991). A statistical technique for extracting clas-
si�catory knowledge from databases. In Knowledge Discovery in Databases, Piatetsky-
Shapiro, G. and Frawley, W. J., Eds., 107{123. AAAI Press/MIT Press, Menlo Park,
California.

Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphi-
cally. Journal of the American Statistical Association 68, 342, 361{367.

Chiu, D. K. Y., Wong, A. K. C., and Cheung, B. (1991). Information discovery
through hierarchical maximum entropy discritization and synthesis. In Knowledge Dis-
covery in Databases, Piatetsky-Shapiro, G. and Frawley, W. J., Eds., 125{140. AAAI
Press/MIT Press, Menlo Park, California.

CIE (1976). CIE Publication No. 15, Supplement Number 2 (E-1.3.1): O�cial Recommen-
dations on Uniform Color Spaces, Color-Di�erence Equations, and Metric Color Terms.
Commission Internationale de L'�Eclairge.

Collins, B. M. (1993). Data visualization|has it all been seen before? In Animation
and Scienti�c Visualization, Earnshaw, R. and Watson, D., Eds., 3{28. Academic Press,
New York, New York.

232

Driver, J., McLeod, P., and Dienes, Z. (1992). Motion coherence and conjunction
search: Implications for guided search theory. Perception & Psychophysics 51, 1, 79{85.

Duncan, J. (1989). Boundary conditions on parallel search in human vision. Perception
18, 457{469.

Duncan, J. and Humphreys, G. W. (1989). Visual search and stimulus similarity.
Psychological Review 96, 3, 433{458.

D'Zmura, M. (1991). Color in visual search. Vision Research 31, 6, 951{966.

Enns, J. T. (1990a). The promise of �nding e�ective geometric codes. In Proceedings
Visualization '90, 389{390, San Francisco, California.

Enns, J. T. (1990b). Three-dimensional features that pop out in visual search. In Visual
Search, Brogan, D., Ed., 37{45. Taylor & Francis, New York, New York.

Enns, J. T. and Rensink, R. A. (1990a). In
uence of scene-based properties on visual
search. Science 247, 721{723.

Enns, J. T. and Rensink, R. A. (1990b). Sensitivity to three-dimensional orientation in
visual search. Psychology Science 1, 5, 323{326.

Enns, J. T. and Rensink, R. A. (1991). VSearch Colour: Full-colour visual search ex-
periments on the Macintosh II. Behavior Research Methods, Instruments, & Computers
23, 2, 265{272.

Frawley, W. J., Piatetsky-Shapiro, G., and Matheus, C. J. (1991). Knowledge
discovery in database: An overview. In Knowledge Discovery in Databases, Piatetsky-
Shapiro, G. and Frawley, W. J., Eds., 1{27. AAAI Press/MIT Press, Menlo Park, Cali-
fornia.

Grinstein, G., Pickett, R., and Williams, M. (1989). EXVIS: An exploratory data
visualization environment. In Proceedings Graphics Interface '89, 254{261, London,
Canada.

Healey, C. G. (1996). Choosing e�ective colours for data visualization. In Visualization
'96, (accepted), San Francisco, California.

Healey, C. G., Booth, K. S., and Enns, J. T. (1993). Harnessing preattentive pro-
cesses for multivariate data visualization. In Proceedings Graphics Interface '93, 107{
117, Toronto, Canada.

233

Healey, C. G., Booth, K. S., and Enns, J. T. (1996). High-speed visual estimation
using preattentive processing. ACM Transactions on Computer-Human Interaction (in
press, scheduled for July 1996 issue).

Hibbard, B. and Santek, D. (1990). The VIS-5D system for easy interactive visualiza-
tion. In Proceedings Visualization '90, 28{35, San Francisco, California.

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental
Psychology 4, 11{26.

Hurrion, R. D. (1980). An interactive visual simulation system for industrial management.
European Journal of Operations Research 5, 86{93.

Ingraham, W. J. and Miyahara, R. K. (1988). Ocean surface current simulations in the
North Paci�c Ocean and Bearing Sea (OSCURS numerical model). Technical Report
NMFS F/NWC-130, National Oceanic and Atmospheric Association.

Ingraham, W. J. and Miyahara, R. K. (1989). OSCURS numerical model to ocean
surface current measurements in the Gulf of Alaska. Technical Report NMFS F/NWC-
168, National Oceanic and Atmospheric Association.

Jul�esz, B. (1971). Foundations of Cyclopean Perception. University of Chicago Press,
Chicago, Illinois.

Jul�esz, B. (1981). Textons, the elements of texture perception, and their interactions.
Nature 290, 91{97.

Jul�esz, B. (1984). A brief outline of the texton theory of human vision. Trends in Neuro-
science 7, 2, 41{45.

Jul�esz, B. and Bergen, J. R. (1983). Textons, the fundamental elements in preattentive
vision and perception of textures. The Bell System Technical Journal 62, 6, 1619{1645.

Kaufman, A. (1986). Computer artist's colour naming system. The Visual Computer 2, 4,
255{260.

Kawai, M., Uchikawa, K., and Ujike, H. (1995). In
uence of color category on visual
search. In Annual Meeting of the Association for Research in Vision and Ophthalmology,
#2991, Fort Lauderdale, Florida.

Kochevar, P., Ahmed, A., Shade, J., and Sharp, C. (1993). Bridging the gap between
visualization and data management: A simple visualization management system. In
Proceedings Visualization '93, 94{101, San Jose, California.

234

Levkowitz, H. and Herman, G. T. (1992). Color scales for image data. IEEE Computer
Graphics & Applications 12, 1, 72{80.

Li, R. and Robertson, P. K. (1995). Towards perceptual control of Markov random �eld
textures. In Perceptual Issues in Visualization, Grinstein, G. and Levkowitz, H., Eds.,
83{94. Springer-Verlag, New York, New York.

Liu, F. and Picard, R. W. (1994). Periodicity, directionality, and randomness: Wold
features for perceptual pattern recognition. In Proceedings 12th International Conference
on Pattern Recognition, 1{5, Jerusalem, Israel.

McCormick, B. H., DeFanti, T. A., and Brown, M. D. (1987). Visualization in
scienti�c computing|a synopsis. IEEE Computer Graphics & Applications 7, 7, 61{70.

Miyahara, M. and Yoshida, Y. (1988). Mathematical transform of (R,G,B) colour data
to Munsell (H,V,C) colour data. In Visual Communications and Image Processing '88,
650{657. SPIE.

M�uller, H. J., Humphreys, G. W., Quinlan, P. T., and Riddoch, M. J. (1990).
Combined-feature coding in the form domain. In Visual Search, Brogan, D., Ed., 47{55.
Taylor & Francis, New York, New York.

Nagy, A. L. and Sanchez, R. R. (1990). Critical color di�erences determined with a
visual search task. Journal of the Optical Society of America A 7, 7, 1209{1217.

Nagy, A. L. and Sanchez, R. R. (1992). Chromaticity and luminance as coding dimen-
sions in visual search. Human Factors 34, 5, 601{614.

Nakayama, K. and Silverman, G. H. (1986). Serial and parallel processing of visual
feature conjunctions. Nature 320, 264{265.

NBS (1976). Color: Universal Language and Dictionary of Names. National Bureau of
Standards, special publication 440.

Nothdurft, H.-C. (1985a). Orientation sensitivity and texture segmentation in patterns
with di�erent line orientations. Vision Research 25, 551{560.

Nothdurft, H.-C. (1985b). Sensitivity for structure gradient in texture discrimination
tasks. Vision Research 25, 1957{1968.

Nothdurft, H.-C. (1991). Texture segmentation and pop-out from orientation contrast.
Vision Research 31, 6, 1073{1078.

235

Nothdurft, H.-C. (1993). The role of features in preattentive vision: Comparison of
orientation, motion, and color cues. Vision Research 33, 14, 1937{1958.

Okabe, A., Boots, B., and Sugihara, K. (1992). Spatial Tesselalations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Inc., New York, New York.

Paulak, Z. (1991). Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Boston, Massachusetts.

Pickett, R. and Grinstein, G. (1988). Iconographic displays for visualizing multidi-
mensional data. In Proceedings of the 1988 IEEE Conference on Systems, Man, and
Cybernetics, 514{519, Beijing and Shenyang, China.

Pomerantz, J. and Pristach, E. A. (1989). Emergent features, attention, and per-
ceptual glue in visual form perception. Journal of Experimental Psychology: Human
Perception & Performance 15, 4, 635{649.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning 1, 1, 81{106.

Quinlan, P. T. and Humphreys, G. W. (1987). Visual search for targets de�ned by
combinations of color, shape, and size: An examination of task constraints on feature
and conjunction searches. Perception & Psychophysics 41, 5, 455{472.

Rheingans, P. and Tebbs, B. (1990). A tool for dynamic explorations of color mappings.
Computer Graphics 24, 2, 145{146.

Robertson, P. K. (1988). Visualizing color gamuts: A user interface for the e�ective use
of perceptual color spaces in data displays. IEEE Computer Graphics & Applications
8, 5, 50{64.

Rogowitz, B. E. and Treinish, L. A. (1993). An architecture for rule-based visualiza-
tion. In Proceedings Visualization '93, 236{243, San Jose, California.

Rosenblum, L. J. (1994). Research issues in scienti�c visualization. IEEE Computer
Graphics & Applications 14, 2, 61{85.

Silbershatz, A., Stonebraker, M., and Ullman, J. D. (1990). The \Lagunita"
report of the NSF invitational workshop on the future of database systems research.
Technical Report TR-90-22, Department of Computer Science, University of Austin at
Texas.

Stonebraker, M., Chen, J., Nathan, N., Paxson, C., Su, A., and Wu, J. (1993).
Tioga: A database-oriented visualization tool. In Proceedings Visualization '93, 86{93,
San Jose, California.

236

Thomson, K. A., Ingraham, W. J., Healey, M. C., LeBlond, P. H., Groot,

C., and Healey, C. G. (1992). The in
uence of ocean currents on the latitude of
landfall and migration speed of sockeye salmon returning to the Fraser River. Fisheries
Oceanography 1, 2, 163{179.

Thomson, K. A., Ingraham, W. J., Healey, M. C., LeBlond, P. H., Groot, C.,

and Healey, C. G. (1994). Computer simulations of the in
uence of ocean currents
on Fraser River sockeye salmon (oncorhynchus nerka) return times. Canadian Journal
of Fisheries and Aquatic Sciences 51, 2, 441{449.

Tominaga, S. (1985). A colour-naming method for computer color vision. In Proceedings of
the 1985 IEEE International Conference on Cybernetics and Society, 573{577, Tucson,
Arizona.

Treinish, L. A. (1993). Unifying principles of data management for scienti�c visualization.
In Animation and Scienti�c Visualization, Earnshaw, R. and Watson, D., Eds., 141{170.
Academic Press, New York, New York.

Treinish, L. A., Foley, J. D., Campbell, W. J., Haber, R. B., and Gurwitz,

R. F. (1989). E�ective software systems for scienti�c data visualization. Computer
Graphics 23, 5, 111{136.

Treinish, L. A. and Goettsche, T. (1991). Correlative visualization techniques for
multidimensional data. IBM Journal of Research and Development 35, 1/2, 184{204.

Trick, L. and Pylyshyn, Z. (1994). Why are small and large numbers enumerated
di�erently? A limited capacity preattentive stage in vision. Psychology Review 101,
80{102.

Triesman, A. (1985). Preattentive processing in vision. Computer Vision, Graphics and
Image Processing 31, 156{177.

Triesman, A. (1991). Search, similarity, and integration of features between and within
dimensions. Journal of Experimental Psychology: Human Perception & Performance
17, 3, 652{676.

Triesman, A. and Gormican, S. (1988). Feature analysis in early vision: Evidence from
search asymmetries. Psychological Review 95, 1, 15{48.

Triesman, A. and Souther, J. (1986). Illusory words: The roles of attention and
top-down constraints in conjoining letters to form words. Journal of Experimental Psy-
chology: Human Perception & Performance 14, 107{141.

237

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Graphics Press,
Cheshire, Connecticut.

Tufte, E. R. (1990). Envisioning Information. Graphics Press, Cheshire, Connecticut.

Upson, C. (1989). The application visualization system: A computational environment for
scienti�c visualization. IEEE Computer Graphics & Applications 9, 4, 30{42.

Vande Wettering, M. (1990). apE 2.0. Pixel 1, 4, 30{35.

Varey, C. A., Mellers, B. A., and Birnbaum, M. H. (1990). Judgments of propor-
tions. Journal of Experimental Psychology: Human Perception & Performance 16, 3,
613{625.

Ware, C. (1988). Color sequences for univariate maps: Theory, experiments, and principles.
IEEE Computer Graphics & Applications 8, 5, 41{49.

Ware, C. and Beatty, J. C. (1988). Using colour dimensions to display data dimensions.
Human Factors 30, 2, 127{142.

Ware, C. and Knight, W. (1992). Orderable dimensions of visual texture for data
display: Orientation, size, and contrast. In Proceedings SIGCHI '92, 203{209, Monterey,
California.

Ware, C. and Knight, W. (1995). Using visual texture for information display. ACM
Transactions on Graphics 14, 1, 3{20.

Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic
Bulletin & Review 1, 2, 202{238.

Wolfe, J. M. and Cave, K. R. (1989). Deploying visual attention: The Guided Search
model. In AI and the Eye, Troscianko, T. and Blake, A., Eds., 79{103. John Wiley &
Sons, Inc., Chichester, United Kingdom.

Wolfe, J. M., Cave, K. R., and Franzel, S. L. (1989). Guided Search: An alternative
to the feature integration model for visual search. Journal of Experimental Psychology:
Human Perception & Performance 15, 3, 419{433.

Wolfe, J. M. and Franzel, S. L. (1988). Binocularity and visual search. Perception &
Psychophysics 44, 81{93.

Wolfe, J. M., Friedman-Hill, S. R., Stewart, M. I., and O'Connell, K. M.

(1992). The role of categorization in visual search for orientation. Journal of Experi-
mental Psychology: Human Perception & Performance 18, 1, 34{49.

238

Wolfe, J. M., Yu, K. P., Stewart, M. I., Shorter, A. D., Friedman-Hill, S. R.,

and Cave, K. R. (1990). Limitations on the parallel guidance of visual search: Color �
color and orientation � orientation conjunctions. Journal of Experimental Psychology:
Human Perception & Performance 16, 4, 879{892.

Wong, A. K. C. and Chiu, D. K. Y. (1987). Synthesizing statistical knowledge from
incomplete mixed-mode data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 9, 6, 796{805.

Wyszecki, G. and Stiles, W. S. (1982). Color Science: Concepts and Methods, Quan-
titative Data and Formulae, 2nd Edition. John Wiley & Sons, Inc., New York, New
York.

Ziarko, W. (1991). The discovery, analysis, and representation of data dependencies in
databases. In Knowledge Discovery in Databases, Piatetsky-Shapiro, G. and Frawley,
W. J., Eds., 195{209. AAAI Press/MIT Press, Menlo Park, California.

239

