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Figure 1: Overall structure of the visualization of a part of speech convolutional neural network model with visualization as input

ABSTRACT

Deep neural networks (DNNs) have made tremendous progress in
many different areas in recent years. How these networks function
internally, however, is often not well understood. Advances in under-
standing DNNs will benefit and accelerate the development of the
field. We present TNNVis, a visualization system that supports un-
derstanding of deep neural networks specifically designed to analyze
text. TNNVis focuses on DNNs composed of fully connected and
convolutional layers. It integrates visual encodings and interaction
techniques chosen specifically for our tasks.. The tool allows users
to: (1) visually explore DNN models with arbitrary input using a
combination of node–link diagrams and matrix representation; (2)
quickly identify activation values, weights, and feature map patterns
within a network; (3) flexibly focus on visual information of interest
with threshold, inspection, insight query, and tooltip operations; (4)
discover network activation and training patterns through animation;
and (5) compare differences between internal activation patterns for
different inputs to the DNN. These functions allow neural network
researchers to examine their DNN models from new perspectives,
producing insights on how these models function. Clustering and
summarization techniques are employed to support large convolu-
tional and fully connected layers. Based on several part of speech
models with different structure and size, we present multiple use
cases where visualization facilitates an understanding of the models.
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1 INTRODUCTION

Recently, deep neural networks (DNNs) have achieved remark-
able results in various areas. In image classification, multi-column
DNNs [31] improved the state of art on several common image clas-
sification benchmarks, such as NORB and CIFAR-10. Krizhevsky
et al. [17] trained a convolutional deep neural network (CNN), im-
proving the record on the ImageNet 2012 classification benchmark.
In speech recognition, feed forward DNNs outperformed traditional
Gaussian mixture models on various speech recognition bench-
marks [11]. In natural language processing, DNNs are being applied
to a series of tasks: sentiment analysis for short texts [4], sentence
modeling [12] and sentence classification [15]; producing improved
results compared to the baselines. LeCun et al. [19] give a review
on the achievements of DNNs in various fields.

However, as noted in [42, 43], our understanding of the internal
behaviors of a DNN are less well developed. Various techniques
to examine the internal logic of traditional learning methods [16]
such as decision trees, naive Bayes and support vector machines
are available. Unfortunately, similar techniques have yet to be fully
developed for DNNs, which often function in a black box manner.
An intuition and recognition of the working mechanisms of the
model are often missing. As the models grow larger, it becomes more
difficult to understand how the network produces its final results.
Many researchers believe that each hidden layer represents features
of the inputs, and that deeper layers identify more detailed features,
but what the features are is unknown in most cases. Without a clear
understanding of the working mechanisms, it becomes difficult to
create and train new models, or to assign confidence to the results
of these models for specific tasks. Better knowledge of how the
DNN operates can identify new ways of training and improvement,
making the models more robust and capable [28].



In the computer vision community, efforts are devoted to improve
the understanding of CNNs for image-based tasks [8]. They provide
insights on the working mechanisms of CNNs [43], and support
the design of new models [26, 42]. In the text domain, several
works [13, 21, 36] have been proposed for recurrent neural networks
(RNNs). Much less attention is paid to CNNs in the text domain,
however. Though RNNs are an effective choice for many text–based
tasks, a large number of CNNs have been proposed to achieve com-
parable performance. For examples, Kim [15] developed several
CNN models to improve the state of the art for sentence classifica-
tion, Santos et al. [4] constructed a new CNN model to achieve high
performance on sentiment analysis of short texts. Nguyen et al. [25]
introduced CNNs that outperform existing models for relation ex-
traction. LeCun et al. [44] proposed several CNN models for text
classification and compared their performance with traditional meth-
ods and long-short term memory RNNs. The results demonstrated
that the CNNs outperformed RNNs on all selected datasets.

Our work focuses on fully connected and convolutional neural
networks in the text domain. We developed TNNVis to visualize
text-based DNN models. Use of the term DNN in this paper refers to
convolutional and fully connected DNNs. By carefully selecting and
integrating multiple encodings and interaction techniques, TNNVis
supports interactive exploration and discovery through a basic set of
functions for visual representation, together with three operational
modes to apply the functions under different conditions. The system
is applicable to DNNs in different text domains, and is specifically
designed to scale to larger networks. The main contributions of this
paper include:

1. Requirements Analysis. We collaborated with several DNN
researchers to design, refine and evaluate the visualization
system. A list of requirements is presented in the paper.

2. DNN Visualization. Our system integrates node–link dia-
grams and matrix representations to provide a set of functions.
These functions are used in multiple modes to explore DNNs
and gain insights.

3. Use Cases. We apply our system to several DNNs with dif-
ferent structure and size to demonstrate how it can be used to
facilitate understanding.

4. Generality and Scalability. We demonstrate how our system
scales in both the convolutional and fully connected layers to
visualize large DNNs.

2 BACKGROUND

In this section, we briefly introduce the structure of fully connected
and convolutional neural networks in the text domain, and the models
we use to present our visualization.

2.1 Fully Connected Neural Network
Fully connected neural networks (FCNs) are also called multilayer
perceptrons. These models consist of multiple layers. The first and
last layers are the input and output layers, respectively. Every layer
between the input and output layers is called a hidden layer. Layers
are composed of a set of nodes or neurons. Every neuron in one
layer is connected to every neuron in its adjacent layers. All neurons
except those in the input layer contain bias, and every edge contains
a weight. Neurons in the hidden layers and the output layer are
assigned an activation function f . In the text domain, the inputs
and outputs associated with neurons in the input layer are vector
representations of characters, words or sentences. Given activations
from a previous layer l−1, the weighted input to neuron j in layer
l is defined as z(l)j = b(l)j +∑k w(l)

j,ka(l−1)
k , where b(l)j is the bias of

the target neuron, w(l)
j,k is the weight of the kth edge connected to

the neuron, and a(l−1)
k is the activation of neuron k in layer l− 1.

Once z(l)j is calculated, activation is defined as a(l)j = f (z(l)j ), where

Figure 2: Part of speech CNN structure

f is an activation function. A common activation function is ReLU,
which prunes negative parts of an input to zero and retains positive
parts. In the output layer, a softmax function is applied to calculate
the probability of each possible output, producing the normalized
value of the exponential of the activations in the output layer:

ReLU(x) = max(0,x); softmax(xi) =
exi

∑ j ex j
(1)

2.2 Convolutional Neural Network
An FCN and a convolutional neural network (CNN) share many
similarities. They are both layered structures with nodes and edges,
and the activations of nodes are calculated in the same way, so the
definition and description of how activations are calculated in an
FCN directly apply to a CNN. The major difference is how adjacent
layers are connected.

While adjacent layers are fully connected in an FCN, they are lo-
cally connected in a CNN. Every node in layer l is locally connected
to a number of n nodes in layer l−1. Moreover, every such local
connection uses the same set of n weights. This local connection
is called a filter of size n, since it can be seen as a filter convolving
through one layer to produce the next. The layer produced by this
convolutional operation is called a feature map, and layers connected
in this way are called the convolutional layer.

In a CNN, the input layer is typically connected to multiple filters
with different sizes in parallel, producing multiple feature maps.
Then, a maxpooling operation is applied to each feature map to
select its maximum value. The maximum values from all the feature
maps are concatenated to form a maxpooling layer. The maxpooling
layer acts as an input layer to several fully connected hidden layers
and an output layer. In this way a CNN normally includes an FCN
component after it completes its feature map construction.

2.3 Part of Speech Neural Networks
The DNNs we use to develop and present our system are part of
speech (PoS) FCNs and CNNs built by our deep learning collabora-
tors, loosely based on the text normalization model in [20]. Although
our system supports both FCNs and CNNs, we use CNNs to present
our system. A CNN includes an FCN component, so visualization of
an FCN can be illustrated in the visualization of a CNN. Although
our PoS model has a specific number of filters in the convolutional
layer, a specific number of fully connected layers and a specific
number of neurons in the fully connected layers, any of these values
can be changed, since our system generalizes to arbitrary DNNs.

The PoS CNN is a classification model, taking a word as input and
estimating its part of speech (Fig. 2). The CNN’s input layer accepts
words of up to 27 characters with 5 embedded weights assigned
to each character, forming a five-node vector representation of the
character. This produces a a total of 135 nodes. If an input word’s



length is less than 27 character, it is padded with blanks. The input
layer is followed by a convolutional layer with 75 filters producing
75 feature maps. Next, a maxpooling layer identifies the 75 largest
feature maps values, concatenates them, and feeds them as input to a
hidden layer with 100 nodes. The output layer following the hidden
layer has 27 nodes, representing 27 candidate parts of speech. The
maxpooling layer, the hidden layer and the output layer form the
fully connected region of the CNN. An ReLU activation function
is applied to the convolutional and hidden layers, while softmax is
applied to the output layer.

3 RELATED WORK

Various systems exist to visualize artificial neural networks (ANNs).
Tzeng et al. [38] displays neurons as nodes and uses color and
size to represent multiple statistics such as activation values. A 3D
interactive prototype was developed to show a CNN’s activations
for a given input in Harley [9]. More recently, a prototype called
TensorFlow Playground [34] was developed by Google’s TensorFlow
team to visualize training parameters and allow users to explore the
internal behavior of a model processing a given instance. Currently,
however, these systems do not appear to scale to large DNNs.

3.1 Heatmap Visualizations

A number of techniques are presented to interpret CNNs in the com-
puter vision community. A taxonomy is proposed to organize these
techniques into three categories [8]. Input modification methods
modify the input and measure the resulting change in the hidden
or output layers [43]. Deconvolutional methods employ different
approaches to trace and determine the contribution of one pixel
of the input image by starting with the target node of interest and
iteratively calculating the contribution of each neuron in the next
lower layer to the target node [33, 43]. Input construction methods
construct an artificial image by maximally activating a target node of
interest [24]. The resulting visualization of these techniques is either
a heatmap imposed on a given image or an artificial image. The
focus of these methods is to compute useful numerical results, with
a simple visual artifact to present the results. As these techniques
are specifically designed for computer vision, their usefulness relies
on recognizable features typically present in images.

In the text domain, Li et al. [21] adapted deconvolutional meth-
ods from the vision community to analyze the contribution of each
word in an input sentence to an output classification node in a text
classification model. The result is visualized as a saliency heatmap.
Karpathy et al. [13] directly imposed a heatmap to an input text se-
quence based on the activation value of a target node. This highlights
the presence of nodes that are potentially responsible for detecting
newlines and parentheses. While this work gives intuition as to how
each part of the input is associated with a target node, the structure
of a DNN and its internal mechanisms remain unstudied.

3.2 Point-Based and Network-Based Visualizations

Point-based visualizations refer to techniques that reveal relation-
ships between DNN components, such as neurons or learned rep-
resentations, by using scatterplots [23]. They typically employ di-
mensional reduction techniques such as PCA [41] and t-SNE [40] to
transform components into 3D or 2D vectors represented as points.
Rauber et al. [27] visualized the learned representations of test
samples of a DNN using t-SNE. This provides evidence for the
hypothesis that the DNN has learned representations useful for clas-
sification. Other point-based systems include Google’s Embedding
Projector [35] and ReVACNN [3], which employ dimension re-
duction to visualize high dimensional representations. Point-based
techniques are useful to present the relationships among a number
of components in a DNN, but they cannot reflect the network’s struc-
tural information, and so provide no comprehensive presentation of
how nodes relate to and interact with one another.

On the other hand, network-based visualizations expose the net-
work structure [23]. CNNVis [22] models a DNN as a directed
acyclic graph and combines several techniques to scale to large
DNNs. Clustering is used to group layers and neurons, while edge
bundling is used to group edges. This identifies important image
features extracted by sets of neurons, and displays the connections
between clustered layer groups. It uses precomputed clusters of
nodes and layers. Once the summarized view is formed, it has lim-
ited flexibility and interactivity. Our system uses a different strategy
to address scalability by adopting interactive summarization and ex-
pansion of each layer, making it flexible to scale an arbitrary part of
a DNN on demand. Furthermore, CNNVis does not allow studying a
DNN’s behavior by feeding single instances, subsets, or comparison
of different inputs, while our system supports all of these types of
analysis. ActiVis [14] is another interactive system that integrates
several coordinated views to allow instance-based and subset-based
exploration of DNNs. It provides views for model architecture, neu-
ron activation and instance selection. ActiVis uses computational
graphs to present the structure of DNNs. Although computational
graphs are effective to show overall structure, they hide information
such as the number of nodes in a layer. A region of the graph must
be selected in ActiVis to show activated nodes. Our system, on
the other hand, presents more detailed information along with the
overall structure. Both ActiVis and our system support subset-based
analysis by showing the average activations for a subset. But our
system also animates the aggregating process, making it possible to
observe if a DNN has a stable response to a subset. Comparison of
different inputs are also supported both in ActiVis and our system.
Since ActiVis only allows the inspection of details on a selected part
of the computational graph, comparison is locally restricted. Our
system allows global comparison to identify differences at different
locations simultaneously.

A final visualization is LSTMVis [36]. It focuses on recurrent neu-
ral networks (RNNs). The hidden states of an RNN are visualized as
parallel coordinates. A user can interactively choose a subsequence
of the input to formulate and validate hypotheses. Although we are
extending our system to include RNNs, the work discussed in this
paper is focused on FCNs and CNNs, and so is not comparable to
LSTMVis.

4 DESIGN PROCESS

Our design process aligns with the methodology proposed by Sedl-
mair et al. [32]. We first identify and confirm collaboration with
three DNN experts in a precondition phase. During the core phase,
we hold biweekly meetings with the experts to learn about their
domain, to characterize problems, and to refine requirements. Based
on the requirements, we design and implement data abstraction, vi-
sual encoding and interaction. Requirements analysis, design and
implementation are essentially iterative. One informs and provides
feedback to another. Our biweekly meetings continued throughout
the collaboration to support the iterative process. This paper is the
result of the analysis phase, which reflects on the design process
and produces conclusions. The following is a list of requirements
produced from our study.
R1. Structural overview. An overview presents the structure of
a DNN, including the number of layers and nodes in a layer. All
DNN experts commented that an overview is a starting point for
understanding. It provides a useful visual and mental representation
to guide analysis.
R2. Behavior. According to the DNN experts, the behavior of a
model is reflected by the activation values of nodes and edges. To
observe how a DNN behaves, it is important to present activation
information. As activation values are calculated, the ability to exam-
ine results at each computation stage is helpful to understand how
the model produces a final activation value.
R3. Region identification. To develop insights into the internal
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Figure 3: Graph representation: (a) node–link diagram; (b) quilt,
each pair of levels in the graph produces a matrix whose cells encode
edges between nodes

mechanism of a DNN, it is necessary to examine a network in detail.
Based on the overview, DNN experts require the ability to focus
on specific regions such as a subset of layers or certain nodes in a
layer. This includes a requirement to identify. Before focusing on a
specific region, effective mechanisms are needed to identify regions
of interest.
R4. Instance-based analysis. Instance-based analysis tracks how
an instance moves through a model. This approach is widely-applied
in a number of neural network visualizations [9]. Users normally
hold assumptions about the instance they choose, then validate the
assumptions by observing how a model behaves. The DNN experts
noted that during instance-based analysis they often switch back and
forth between two instances to observe any differences. It is thus
desirable to present comparisons in a single view.
R5. Subset-based and pattern analysis. Instance-based analysis is
inefficient for finding patterns. A DNN expert’s effort to try different
inputs in the hope of discovering regularity in a model’s behavior can
be futile, since there is no guarantee such regularity exists. Subset-
based analysis is similar to instance-based analysis, except that the
focus is to study how a model behaves for a subset of instances,
often grouped by common features [14]. By carefully designing the
techniques to perform subset-based analysis, it is possible to “force”
a model to respond in a way that exposes patterns.

5 VISUALIZATION PROTOTYPE

Our visualization system, TNNVis, is motivated by the list of re-
quirements. TNNVis uses two visualization techniques: node–link
diagrams and adjacency matrices, to visualize the structure of a
DNN (R1). It offers a set of basic functions. Coloring encodes the
activation values and visually guides users to specific regions (R2,
R3), thresholding and inspection reduce visual clutter and allow
focus on certain areas (R3), and insight and tooltips give more de-
tailed information nodes’ behaviors (R2, R3). These functions can
be applied in three operational modes: input, animate and compare,
to provide instance-based and subset-based analysis as well as tech-
niques to expose patterns (R4, R5). The following sections discuss
these aspects in more detail.

5.1 Prototype Layout
A neural network is naturally represented as a graph. Different visu-
alizations are proposed for graphs [10, 18]. Node–link diagrams and
adjacency matrices are considered the most effective approaches [10].
Node–link diagrams are widely used, representing the structure of
a network in a natural and intuitive way. Nodes are represented as
circles and edges as line segments connecting pairs of nodes.

Adjacency matrices [2] are an alternative visualization technique
to visualize edges as matrices where each cell in a matrix represents
an edge. Based on adjacency matrices, quilts [1] were proposed to vi-
sualize layered networks. A quilt is formed by arranging nodes into
layers and concatenating the visualization of layers in a zigzag man-
ner. Fig. 3 visualizes a simple network structure with a node–link
diagram (Fig. 3a) and a quilt (Fig. 3b). While node–link diagrams
are intuitive, they suffer from edge overlap and occlusion as net-
works grow larger. Adjacency matrices and quilts have no such issue

Figure 4: Structure of the CNN PoS visualization prior to input

since each edge is represented in a separate cell. To effectively visu-
alize the structure of a DNN while supporting pattern discovery, we
chose to combine both techniques: matrices and quilts to highlight
patterns in the edge structure and node–link diagrams to provide a
more holistic visual representation of the network [7]. For any DNN,
a node–link diagram displays the overall structure. For small DNNs,
a quilt is displayed as an alternative visualization by default. For
large DNNs, users can request the matrix representation of edges
between any pair of adjacent layers.

To layout a DNN, multiple techniques were considered. Widely
used graph layout algorithms include force directed [5] and lay-
ered [37]. Force directed layouts position nodes by running a physi-
cal simulation with repulsive force assigned to all nodes and attrac-
tive force assigned to connected nodes. Layered layouts manually
assign nodes to layers and position the nodes based on their layers.
DNNs have an inherent layered structure. Force directed layouts can
break this structure, while manual layout is not needed since layers
are present by definition. A DNN’s inherent layered structure leads
to a straightforward layout by positioning layers along one axis and
nodes in a layer along the other on a 2D plane (R1).

Fig. 4 shows annotations of the layout of the PoS CNN presented
in Section 2.3 prior to input. The input layer is on the left, and the
convolutional layers are on the right. Each column in the convolu-
tional layer corresponds to a feature map. The maxpooling layer
is below the convolutional layer, with nodes aligned with their cor-
responding feature maps. Under the maxpooling layer is a hidden
layer, then the output layer.

Fig. 1 shows the system when an input is fed into the DNN. The
input characters are displayed to the left of the input layer, aligned
with their five embedded weights (embeddings). In the convolutional
layer, feature maps are independent of one another. No links exist
between them. Hovering over a node in the convolutional layer
displays the filter applied to produce the node’s activation value
visualized as two matrices to the right: a filter weight matrix (upper
matrix), and a convolution matrix produced by multiplying the filter
weights with the embedded weights for the current node (bottom
matrix). The three layers below the convolutional layer form a fully
connected network, visualized as a node–link diagram. For the
edges of any two adjacent layers, a user can choose to see the matrix
representation by clicking on the matrix button.

5.2 Basic Functions
The system provides five basic functions: coloring to represent node
and edge activation values, thresholding to restrict information being
visualized, inspection to investigate a single node’s incoming and
outgoing edges, insight query to determine which input components
most strongly activate a node, and tooltips to expose detailed infor-
mation about a node’s or edge’s weight, pre and post-activation, and
bias values. Coloring and tooltips are available in the convolutional
and fully connected regions of the system; thresholding, inspection
and insight query are exclusive to the fully connected region.

Coloring. The behavior of a DNN is reflected by activation values.
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Figure 5: Visualizing visualization: (a) color scheme; (b) node–link
thresholding to control which nodes and edges are visualized; (c)
inspection of a node’s incoming and outgoing edges; (d) query of
input characters and embedding(s) that most strongly activate a node

We use a color scheme to allow observation of model behaviors
and guide users’ attention (R1, R3). To present activation values,
different visual channels that encode quantitative information were
considered. Position is unavailable since it is used in the layout.
Size becomes less effective for large networks since size can only
vary within a small extent while displaying the entire network. We
thus chose to use a red–blue color scale to encode activation values.
Fig. 5a shows the word visualization visualized in the PoS model. A
node or edge is colored blue if its activation value is negative, or red
if it is positive. More saturated colors represent larger activations.
We chose this method to highlight nodes and edges with high impact
in the model, while reducing the visual influence of those with acti-
vations near zero. In the output layer, greyscale is used to represent
class probabilities, darker for higher probabilities.

Consider Fig. 5a as an example. All nodes and edges are colored
based on their activation values. The value for nodes in the CNN’s
input layer are the embedding values obtained from the trained PoS
model. The value of a node in the convolutional layer is the result
of an ReLU operation applied to the sum of its convolution matrix
entries plus a bias associated with the node. Nodes in the maxpooling
layer, which act as input to the fully connected portion of the CNN,
store the maximum activation values from their associated feature
map columns. In the fully connected region, an edge’s activation
value is the product of its source node’s activation and the edge’s
weight. A node’s activation value in a hidden layer is the sum of
all incoming edge activations, passed through an ReLU function.
Finally, the activation value of nodes in the output layer are the
sum of all incoming edge activations, normalized to represent the
probability of the given output.

Thresholding. In the fully connected region of the DNN, visual
clutter accumulates when many nodes and edges are visualized. This
makes it difficult to locate potentially useful information, thus im-

peding effective exploration of a DNN’s behavior or draw attention
to specific regions. To reduce visual clutter and allow users to fo-
cus on relevant details, we provide thresholding on both nodes and
edges (R1, R2). The node threshold controls how many nodes are
colored. TNNVis ranks all nodes by absolute activation, then colors
nodes up to the threshold number. The remaining nodes are drawn
in light gray. Only edges between colored nodes are visualized. Two
edge thresholds are also available for each set of edges: a maximum
threshold and a minimum threshold. Edges with activation values
above the maximum or below the minimum will be displayed. Each
layer of nodes and edges has separate threshold controls. The thresh-
olds act on the matrix representation and the node–link diagram
simultaneously. Fig. 5b shows the same example as Fig. 5a with
thresholding activated, reducing the number of colored nodes and
edges, and the corresponding visual clutter.

Node Inspection. While thresholds are effective to filter informa-
tion, our DNN collaborators expressed the need to focus on indi-
vidual nodes. This usually happens when their attention is led to a
few nodes by the coloring scheme and thresholding that they want
to study in isolation. We thus provide node inspection to support
this need (R3). During inspection a user selects a node of interest.
The visualization retains only the incoming and outgoing edges for
the selected node. Node inspection acts on the matrix representa-
tion and the node–link diagram simultaneously. Thresholds cannot
be changed during inspection. Once inspection is completed, the
visualization returns to its original state. Fig. 5c shows the same
example in Fig. 5b with thresholding and inspection. At this level of
detail, differences between a node’s incoming and outgoing edges
can more easily be compared. This assists users in determining the
contribution of each incoming edge to the final output of a node, as
well as the influence of a node on its outgoing edges.

Insight Query. In addition to activation values, the association of
activation and input also reflects the behavior of DNNs. Similar
ideas are explored in the vision community by tracing from a node
to an input [8]. We provide insight query to relate node activations to
the textual input information (R2, R3). An insight query is similar
to the image patches presented after computing learned features of
a neuron in CNNVis [22]. For our implementation, patches corre-
spond to text. Insight query determines which input characters and
corresponding embedded weights most strongly activate a target
node. We first identify an input character for each node in the max-
pooling layer by backtracking the mostly highly activated node amax
in its corresponding feature map, then selecting the input character
centered over amax’s filter. Once each node in the maxpooling layer
is assigned a character, selecting a node in the hidden or output layer
of the model presents a dialog identifying which input characters
(i.e., which maxpooling characters) most strongly activate the node.
This is done by following highly activated edges back to the max-
pooling layer. The dialog displays characters that activate the node
using saturation to represent activation strength. This allows users
to gain insight into which part(s) of the input a node responds to,
providing intuition into the purpose of the node. Fig. 5d shows the
same example in Fig. 5b with a high activation node selected from
the output layer. The resulting dialog shows the node responds most
strongly to v, a, t and n.

Tooltips. Activation values are calculated in several steps. It is
important to provide the intermediate calculation results when re-
quested, especially when inspecting nodes with unexpected acti-
vations. We provide this detailed information using tooltips (R3).
Nodes in the input layer show each node’s position and embedded
weights. Nodes in the convolutional layer show the size of the
applied filter, a node’s position in the feature map, its weight and
activation. Nodes in the maxpooling layer show the node’s position
and its activation. Nodes in the fully connected layer show the sum
of incoming edge activations, bias, and output as an ReLU operation



applied to the edge activation sum plus bias. Edges in the node–link
diagram or the matrix representation show the source node’s activa-
tion, the edge weight, and the edge activation. Finally, nodes in the
output layer show the sum of all incoming edges’ activations, bias
and normalized output as a classification probability value.
5.3 Operational Modes
The tabs on the left top of Fig. 4 show the system’s three operational
modes: input, animate and compare. The basic coloring, thresh-
olding, inspection, insight query, and tooltip functions are available
under each operational mode. One can see different operational
modes as different ways to supply data to the visualization. Once the
data is received, the basic functions are used to explore the network.

Input. Input mode supports instance-based analysis (R4). In this
mode, a user provides an arbitrary input to a network model, and
the activations of the model are calculated and visualized. A user
can then explore and study the behavior and patterns of the network
using the basic functions.

Animate. In animate mode, we provide three different types of
animation. The first animates over a set of inputs, which can be
specified by the user. For example, the set of inputs can be chosen
to have the same classification. At each time step, an input from
the set is fed to the system. The animation visualizes the average
activations aggregated over all inputs to date. Our DNN experts
expect certain nodes and edges to become highly activated during
the animation. This allows users to determine whether the model
converges to a stable pattern of activation for a set of inputs with
common features or user assumptions.

The second animation takes an input and feeds it to a model at
different training steps during the training process, animating how
the model activates during training for the input. Our DNN experts
expect the activations of the model to vary significantly in early
steps, then settle into a more stable state in later steps. This allows
users to observe how the model responds at different points in the
training process. The third animation is similar to the second. The
difference is that, instead of activations, it animates the gradients
of the model’s parameters, showing the evolution of the gradients
during the training process.

The purpose of the first animation is two-fold. On the one hand,
it allows subset-based analysis by exploring the visualization when
the animation completes. On the other hand, users can determine
whether a model behaves consistently to the input set by observing
the animation. If the visualization stabilizes, it represents a stable
behavior of the model to this type of input, exposing a useful pat-
tern (R5). Cognitive load is a common concern for animation [6].
Because of this, we built our animations to ensure there are no struc-
tural changes to the network. Alternative approaches to visualize
dynamic changes in a graph are available [18]. We considered time
series in nodes [30], but it becomes infeasible due to space con-
straints. Small multiples [39] is another technique to visualize the
model’s progression with a set of inputs. Due to the large size of
our models, it is only viable to display a few small multiples, which
would exclude much of the information contained in the animation.
To provide a level of analogous support for these alternatives, a user
can save the visualization at any time step and later compare time
steps in the compare mode.

Compare. Compare mode allows comparison between instances
and subsets to further support instance- and subset-based analysis
(R4, R5). A user can save any activation pattern to a data file that
can be later retrieved and visualized. In compare mode, two files are
selected for comparison. The user can visualize each file or their
comparison, which is the activation difference between every node
and edge in the DNN. This highlights nodes and edges that respond
most differently. Comparison information is potentially useful in
many cases, such as comparing two inputs from the same category,
or comparing an average pattern to a single input pattern.

(a)

(b)

Figure 6: Clustering and compression: (a) the convolutional layer
clustered into three clusters with two of them expanded; (b) the
convolutional layer compressed into three groups with one of them
expanded

6 SCALABILITY

To address large DNNs, the system provides summarization tech-
niques to scale and provide “details on demand” to allow viewers to
focus their exploration. The main concern of designing and choos-
ing scalability techniques is to preserve the network topology and
value distribution as faithfully as possible, so the summarized view
reflects the underlying detailed view effectively. We first use the
current CNN model to illustrate the techniques, then demonstrate
how it works for a much larger model. We describe how we scale
the convolutional and fully connected layers separately since this is
performed differently.

6.1 Convolutional Layer Summarization

For convolutional layers, the system provides clustering in the hori-
zontal direction (i.e., clustering feature map columns) and compres-
sion in the vertical direction (i.e., merging of adjacent rows). Users
can choose to cluster or compress independently, or perform both
sequentially.

Clustering. The system uses k-means clustering combine the feature
maps in convolutional layers. Users begin by choosing the number
of clusters k. After clustering, the centroids of the clusters are
visualized. Users can expand any cluster to see which feature maps
belong to the cluster. This provides a summarized view of the feature
maps, groups similar feature maps together and reduces the size of
the visualization in the horizontal direction. Users can return to the
full detail visualization using an unclustering button. We do not
limit the number of clusters to provide the flexibility to experiment.
Fig. 6a shows an example of clustering.

Compression. In the vertical direction, we refer to nodes spanning
the feature maps and aligned to the same input character as a compo-
nent in the convolutional layers. To compress, the system merges
adjacent components as long as their Euclidean distance is below a
chosen threshold. The average values of the merged components are
visualized following compression. Users can choose the compres-
sion threshold to control the number of components that are merged.
Similar to clustering, merged components can be expanded to see
which components are in a given group. The full detail visualization
can be retrieved by using an uncompress button. Fig. 6b shows an
example of compression.
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Figure 7: Node and layer summarization for the fully connected
layers: (a) node summarization for the maxpooling, hidden and
output layers; (b) layer summarization for the hidden layer; (c) layer
summarization for all layers in the fully connected region

Clustering and compression can be used together to summarize
in both the horizontal and the vertical direction. Since each feature
map is produced independently, reordering in the clustering process
is possible. Order matters for horizontal components, however,
because they are aligned with input sequences. Because of this, we
choose to compress adjacent components to preserve order.

6.2 Fully Connected Layer Summarization
For fully connected layers, our system provides node summariza-
tion to summarize nodes in one layer and layer summarization to
summarize across layers.

Node Summarization. Nodes in a layer are summarized by merg-
ing groups of adjacent nodes that have activations that are either
all below or all above the average activation of all nodes in the
layer. A summarized node is colored based on the average of the
original nodes’ activations. The incoming and outgoing edges of a
summarized node are colored based on the average of the original
nodes’ edge activations. As the node–link diagram is summarized,
the matrices are summarized accordingly. This technique preserves
the order of the nodes in a layer while still providing a summarized
view of the nodes. Node and link thresholding are available after
compression to further reduce the number of compressed nodes and
links. One drawback of this summarization technique is that the
amount of compression depends on the statistical variance of the ac-
tivations across adjacent nodes. A suggestion from the DNN experts
was to threshold the nodes prior to merging, thereby only retaining
high or low activation nodes. Users can compress a single layer or
multiple layers at the same time. Fig. 7a shows the fully connected
region of the DNN when the maxpooling layer, the hidden layer and
the output layer are all summarized.

Layer Summarization. For scaling across layers, users can interac-
tively “activate” or “deactivate” individual layers or groups of layers.
Active layers retain full detail: all nodes will be visualized, and
edges between adjacent layers will be shown. Inactive layers will be
reduced to a single line. During visual aggregation, it is important
to provide appropriate summary information to allow viewers to
choose effectively where to request additional detail. To this end,
an inactive hidden layer line is subdivided into n subblocks, one per
node. Each subblock is colored based on the activation of the node
it represents. This allows viewers to examine an inactive layer’s acti-
vation pattern, something our DNN experts emphasized was critical
for their investigations.

Summarizing layers affects their edges. Given adjacent layers l1
and l2, the edges are displayed based on the layers’ states.

• l1 and l2 are active: all edges between l1 and l2 are shown
• l1 and l2 are inactive: no edges are shown
• l1 is active, l2 is inactive: for each node ni,2 ∈ l2, a single

edge visualized as a dashed line is displayed representing the
average weight of all edges from ni,2 to all nodes in l1

Figure 8: Summarized view of the large DNN

The vertical space between an inactive layer and an active layer
can be reduced since the edges are summarized without overlap
among them, thereby requiring less space to differentiate visually.
The vertical space between two inactive layers can be further reduced
as there are no edges between them. Node summarization can
be performed before layer summarization to scale fully connected
layers both horizontally and vertically. In Fig. 7b, the hidden layer
is summarized, while in Fig. 7c, the maxpooling layer, the hidden
layer and output layer are all summarized. While these techniques
summarize information to allow visualization of large DNNs, the
network topology and layer structure are preserved, to effectively
guide users’ exploration through the summarized views.
6.3 Visualizing Large DNNs
To study scalability, we applied the visualization system to a large
PoS CNN. The large model still takes input of 27 characters, each
with 5 embeddings, but it has a much larger convolutional layer with
1200 feature maps. The corresponding maxpooling layer has 1200
nodes, followed by two fully connected layers each with 1000 nodes,
followed by an output layer with 27 nodes representing candidate
classifications. This model is comparable to the models proposed
for the text domain in the deep learning community. The CNN for
sentence classification proposed by Kim [15] has one convolutional
layer with 300 feature maps, and the maxpooling layer is directly
connected to the output layer. The PoS tagging CNN proposed by
Santos et al. [29] has one convolutional layer with 50 feature maps
and one hidden layer with 300 nodes.

To reduce memory usage and accelerate the speed of rendering,
we remove the nodes with zero activation in the fully connected
region of the large model before rendering. Since nodes with zero
activation carry no information, removing them does not exclude
any important parts of the model. Before using scaling techniques,
a large portion of the visualization is not visible since the size of
the convolutional layer and the fully connected region exceeds a
typical desktop monitor’s resolution. After clustering the convolu-
tional layer into 12 clusters and summarizing the fully connected
region, the entire model is visible on screen (Fig. 8). The summa-
rized view presents the overall structure of the model. Coloring
preserves activation patterns. Based on the summarized view, users
can interactively inspect the details of any part of the model.

7 USE CASES

In this section, we demonstrate how our system helps experts under-
stand DNN models by presenting several use cases. The visualiza-
tion is applied to three models with different size and structure. The
same experts are involved in every use case. Each scenario demon-
strates how the experts employ the visualization system to make
discoveries within a model. These findings pointed to a number of
potentially useful future directions for experts to examine. They
noted that these directions may have gone unnoticed without the
visualization tool.
7.1 FCN PoS Model Characteristics
In this use case, the experts aim to study whether the coloring scheme
combined with instance-based analysis reveals patterns of a model’s
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Figure 9: FCN PoS model: (a) overall structure; (b–d) link colors
hidden → output layer for visualizing, computation and ideally
respectively; (e) link colors input→ hidden layer for visualizing

behavior. They use a fully connected feed forward PoS model.
Fig. 9a shows the overall visualization of the model. The system
allows the experts to display quilts by default when sufficient space.
By trying different inputs in the input mode, certain characteristic
of the FCN PoS model were uncovered. For every input, the edges
between the hidden layer and the output layer are mostly blue, which
indicates negative activation for those edges. Fig. 9b–d show the
quilt visualizations between the second hidden layer and the output
layer for visualizing, computation and ideally as example inputs,
respectively. This clearly contrasts with the edges from the input
layer to the first hidden layer, which are a mixture of positive and
negative values (Fig. 9e with ideally as input).

Since an ReLU function is applied to the hidden layer, the node
activations of the layer are non-negative. An edge is colored based
on the multiplication of its weight and its source node’s activation,
so this means that most of the edges between the second hidden
layer and the output layer have negative weights. Why is this the
case? The DNN experts noted that mathematically, the model uses a
softmax function in the output layer to calculate probabilities (Eq. 1).
Based on this equation, there is no requirement that the edge weights
are negative, but it does lead to an interesting insight by the DNN
experts: negative weights represent a reversal of how they assumed
the DNN functioned. Rather than collecting features representing a
given class to encourage selection, the DNN seems to be collecting
features that represent the absence of a class to discourage selection,
similar to a “process of elimination.”

This example demonstrates the usefulness of the red–blue color-

Figure 10: Noun versus verb differences in the CNN PoS model

ing scheme, as well as the matrix representations to quickly detect
color distribution patterns [7]. For a general neural network model,
experts can identify the distributions of positive and negatives values
of the nodes and edges. Areas with concentrated red or blue draw
attention, identifying potentially important findings to pursue.

7.2 Stable Patterns

In this use case, rather than trying individual instances, the experts
intend to use the animate mode to perform subset-based analysis
to expose patterns. A set of 100 correctly classified nouns were
chosen as an input set to animate the FCN PoS model in the previous
use case, while a set of 100 correctly classified verbs were chosen
as an input set to animate the CNN PoS model presented at the
beginning of the paper. For both models, the visualization has a
noticeable number of fluctuations during the first 30 to 50 time steps,
but stabilizes afterwards.

In the stabilized visualizations, the highly activated nodes and
edges remain highly activated while low activation nodes continue
to exhibit low activation. Experts commented that the convergence
to a stable visualization exposes the fact that a common set of highly
activated nodes and edges is responsible for assigning the set of
inputs to a particular class. It represents a signature of a model’s re-
sponse to that class, exposed by the model’s color encoding. Experts
can use this as a starting point to further study the distribution and
structure of the signature.

Animation is a general function as long as a set of inputs is speci-
fied. While inputs from the same class are a representative choice,
there are many other possibilities. For example, words ending in
ly can be used for word-based models, or sentences sharing words
with strong sentiment can be used for sentiment classification mod-
els. The convergence to a stable visualization can reveal the most
responsive nodes and edges for a given set of inputs. Failing to
converge has several possible explanations. It may be that a model
has not learned the feature chosen by an expert to group the input set,
or that a model is not trained well enough to respond consistently
to obvious features, or that a model simply reacts with a different
subset of nodes and edges to each input from the input set (i.e., the
input includes subclasses that the model and the visualization are ex-
posing). In all cases, animation can confirm the existence or absence
of a stable pattern, pointing to further directions to investigate.

Similar to aggregated activation, gradient animation and training
animation can be applied. Stable patterns also emerge as the training
proceeds. Gradient animation shows overall decreasing of gradi-
ent values and reveals the nodes with large gradients. We include
several videos in the supplementary material to demonstrate these
animations.

7.3 Noun–Verb Pattern Differences

In this use case, the experts seek to answer the question: How does
a model respond differently to different PoS classes? The stabilized
CNN PoS visualizations formed by 100 nouns and 100 verbs are
saved and compared (Fig. 10). Highly saturated colors represent
large activation differences, while gray represents small differences.
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Figure 11: A large CNN: (a) feature map patterns with 12 clusters
using scalability as input; (b) first two clusters expanded

More highly saturated nodes are present in the maxpooling layer
than in the hidden layer. Moreover, numerous highly saturated edges
exist between the maxpooling and the hidden layer, but only a few
occur between the hidden and the output layer. These noun–verb ac-
tivation differences between involve more nodes in the maxpooling
layer. Experts inferred the model has learned a more concise, higher
level representation of the inputs after the hidden layer, requiring
only a small number of nodes to differentiate one class from another.
This corresponds to the general belief in the deep learning commu-
nity that a DNN learns more abstract and higher level representations
as the depth of layers increases. Experts anticipated that, for DNNs
with more hidden layers, the number of highly activated nodes and
edges should decrease as layer depth increases. If a model has a
large number of highly activated nodes and edges in the final layers,
increasing its depth might improve its performance. This approach
can be used to diagnose, refine, and test a model.

7.4 Large CNN PoS Characteristics
To validate the system on large models, the experts applied the
visualization to a large CNN PoS model introduced in the section
on scalability (Section 6), which reveals several findings. By testing
multiple inputs, then clustering the feature maps into a number of
clusters approximately equal to the length of the inputs, experts
found that the centroid of most clusters has one and only one highly
activated node. Moreover, the node in each centroid is centered at
a different character in the input word. This is in contrast to the
CNN PoS model with a smaller number of features maps, which has
a more distributed pattern (Fig. 6a). Expanding the clusters shows
that most feature maps in the same cluster have the same pattern as
the centroid map. Experts concluded that in the large CNN, every
feature map is dedicated to feature extraction at a single position
in the input sequence. This is probably due to the large number of
feature maps, allowing each feature map to focus on one character.
Furthermore, there is always one centroid with no highly activated
node. Expanding the cluster shows that the majority of the feature
maps fall in this cluster, suggesting the majority of the feature maps
have zero activation and do not directly contribute to the result of
the model. Thus, 1200 feature maps are likely more than needed
for part of speech tagging. Using less feature maps might achieve
the same performance, while reducing model size and training time.
Fig. 11 show this observation with scalability as an example input.

8 DISCUSSION AND LIMITATIONS

While our visualization system is demonstrated with PoS models, it
is applicable to other tasks in the text domain. Based on feedback
from our DNN collaborators, the system generalizes to other types
of models by replacing the final classification layer. For sentiment
analysis, the final layer would predict -1, 0 or 1 for negative, neutral,
or positive sentiment. Since the general structure of the model re-
mains consistent, the visualization system can be directly applied.
As research on deep learning accelerates, however, novel model
architectures may emerge that do not fit into the structures we cur-
rently support. Though ideas such as coloring, thresholding, insight,

animation and comparison can be applied with little modification,
new layouts need to be designed for new architectures.

To visualize large DNNs, rather than initially presenting a detailed
view, we can provide a summarized visualization by default. Users
can choose to expand and explore the details of any region they find
interesting. For animation, we would animate the summarized visu-
alization. If DNNs stabilize in the full detail visualization, they will
also stabilize in the summarized visualization. For comparison, we
can again present the summarized visualization by default. However,
it can become less effective for users to identify interesting regions
of a model when layers exceed a certain threshold. Selectively hid-
ing parts of a model or automatically suggesting regions of interest
can be considered.

To render large DNNs in a reliable and responsive manner, pre-
processing becomes necessary. For the convolutional layer, this is
not an issue since a single weight matrix is shared for each feature
map and the connections are sparse. But for fully connected layers,
the number of edges is the square of the number of nodes between
adjacent layers. Given several such layers, rendering the nodes and
edges quickly exceeds the memory limits of a typical machine. To
address this, we prune all nodes and associated edges with zero
activation before rendering. The amount of pruning depends on a
specific model. For our large model, it removes approximately sixty
percent of the nodes and edges in the fully connected region. This
heuristic usually preserves important information and proves to be
effective at controlling the number of edges. But its effectiveness
for different models requires further study.

9 IMPLEMENTATION

TNNVis is a server–client system that uses JavaScript, SVG and D3
on the client side, and Python, Flask and TensorFlow on the server
side. Server and client communicate through multiple endpoints,
using a predefined data format. The server can be built using any
technology as long as it provides data in the specified format. The
running time complexity of most operations, including animation
and comparison, is linear with the number of nodes and edges in
a DNN. Since scalability operations are performed on a selected
layer, it runs in linear time with the number of nodes and associated
edges in a layer. Clustering has the highest complexity O(k×d×N)
where k is the number of clusters, d the size of a feature map, and N
the number of filters.

10 CONCLUSION AND FUTURE WORK

We present TNNVis, a visualization system to facilitate the under-
standing of DNNs for text analytics. TNNVis displays the structure
of a DNN using a combination of node–link diagrams and matrix
representations. Node and edge activations are encoded in red–
blue, allowing rapid perception of value difference and distribution.
Threshold, node inspection, insight query, and tooltips provide basic
functions to control and explore information at various levels of
detail. Visualizing an arbitrary input is performed in input mode;
animating the aggregation of a set of inputs or the training process
is performed in animate mode; and comparison of two activation
patterns is performed in compare mode. This provides methods to
visually explore and discover within a DNN, hinting at new and
promising insights. Multiple summarization techniques are em-
ployed to generalize and scale to large DNNs. Several sample use
cases are presented. The system helped identify basic model charac-
teristics, stable patterns, and differences between patterns.

In the future, we plan to extend our system to support recurrent
neural networks (RNN) [13, 36]. The global structure of an RNN
is sequential and repetitive, which is largely different from FCNs
or CNNs. Specific designs are needed to layout recurrent structures
effectively. In the interim, our current approach can be employed to
visualize the details of an RNN at any single timestep.
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