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Abstract

Stereo matching is a classic challenging problem in computer vision, which has
recently witnessed remarkable progress by Deep Neural Networks (DNNs). This
paradigm shift leads to two interesting and entangled questions that have not
been addressed well. First, it is unclear whether stereo matching DNNs that are
trained from scratch really learn to perform matching well. This paper studies this
problem from the lens of white-box adversarial attacks. It presents a method of
learning stereo-constrained photometrically-consistent attacks, which by design
are weaker adversarial attacks, and yet can cause catastrophic performance drop for
those DNNs. This observation suggests that they may not actually learn to perform
matching well in the sense that they should otherwise achieve potentially even better
after stereo-constrained perturbations are introduced. Second, stereo matching
DNNs are typically trained under the simulation-to-real (Sim2Real) pipeline due
to the data hungriness of DNNs. Thus, alleviating the impacts of the Sim2Real
photometric gap in stereo matching DNNs becomes a pressing need. Towards
joint adversarially robust and domain generalizable stereo matching, this paper
proposes to learn DNN-contextualized binary-pattern-driven non-parametric cost-
volumes. It leverages the perspective of learning the cost aggregation via DNNs,
and presents a simple yet expressive design that is fully end-to-end trainable,
without resorting to specific aggregation inductive biases. In experiments, the
proposed method is tested in the SceneFlow dataset, the KITTI2015 dataset, and
the Middlebury dataset. It significantly improves the adversarial robustness, while
retaining accuracy performance comparable to state-of-the-art methods. It also
shows a better Sim2Real generalizability. Our code and pretrained models are
released at this Github Repo.

1 Introduction
Stereo matching remains a long-standing problem in computer vision that has been studied for several
decades. As shown in the left of Fig. 1, given a pair of (rectified) stereo images, the reference left
image IL and the right image IR, for a pixel IL(x, y), its corresponding pixel in IR is constrained to
be at IR(x−D(x, y), y), where D(x, y) is called the disparity of the pixel (x, y) in the reference
left image. The disparity is inversely proportional to the depth Z(x, y), D(x, y) = f ·b

Z(x,y) , where
f is the focal length of the left camera and b is the baseline (i.e., the distance between the two
cameras). High-performing stereo matching will enable highly reliable and cost effective depth
estimation from stereo images without leveraging expensive Lidar sensors, which has great potential
in a wide range of applications such as autonomous driving and robot autonomy. To infer the disparity,
the basic approach is to first compute the matching costs between IL(x, y) and IR(x − d, y) for
different values of the disparity d and then find the best match that corresponds to the minimum cost.
Due to occlusions and textureless regions, the pixel correspondences can not be solved individually
and the disparity map needs to be inferred in its entirety via prior-constrained (e.g., local disparity
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Figure 1: Left: Illustration of the stereo matching problem, which conventionally emphasizes the matching
component between the (reference) left image, IL and the right image, IR. Right-Bottom: A typical workflow
of DNN-based stereo matching in the prior art. Right-Top: The proposed method casts stereo matching as a
cost aggregation/optimization problem (solved by training a DNN) over a non-parametric cost volume (that
truly focuses on matching) with (optional) parametric contextual features from the reference left image only.
The non-parametric cost volume is realized by the census transform (CT) features [1]. CT enables blocking
the gradients in learning white-box adversarial attacks (or significantly eliminating the effects even when a
differentiable approximation of CT is used). Due to the binary nature of CT, it also helps improve the Sim2Real
generalizability. To handle occluded and/or textureless regions better, the proposed method also utilize the
contextual features computed from the left image only. See text for details.

smoothness) global matching cost optimization, which remains a challenging problem. Stereo
matching has recently witnessed remarkable progress using Deep Neural Networks (DDNs). As
shown in the right-bottom of Fig. 1, DNN-based stereo matching methods amortize the need of
inducing inductive biases and of designing global matching cost optimization algorithms, which often
consist of four components (see Appendix. A).

For the end-to-end fully differentiable learning of stereo matching in the prior art, two interesting
questions arise: First, how well do DNNs that are trained from scratch learn to match? We can
do some deductive reasoning: If they indeed learn to perform matching, their performance should
potentially increase after we add the same perturbations at IL(x, y) and IR(x−D(x, y), y) using the
ground-truth disparity D(x, y) (i.e., the stereo-constrained photometric consistency), regardless of
what the perturbations are (e.g., adversarial attacks). As we shall show, DNNs do not learn to match
well and state-of-the-art stereo matching DNNs are vulnerable even when the photometric consistency
is preserved against adversarial attacks (Section 2). Second, parallel to the adversarial vulnerability,
cross-domain generalizabilty also is an important problem in stereo matching: DNN-based stereo
matching is typically pre-trained under the so-called simulation to reality (Sim2Real) pipeline due to
the high cost of collecting ground-truth matching results in practice and the data-hungry aspect of
DNNs. It has been shown that DNNs may learn shortcut solutions that are strongly biased by the
training dataset [2]. At the same time, it is desirable to have stereo matching systems that are more
directly transferable from the simulation (training) to the reality (testing). Since stereo matching
methods are widely used in autonomous driving, adversarial vulnerabilities in these models can lead
to catastrophic consequences, and boosting the Sim2Real generalizability can significantly improve
the applicability in diverse driving scenarios. Thus, jointly addressing adversarial vulnerabilities and
the Sim2Real generalizability has become a pressing need in DNN-based stereo matching, as well as
many other deep learning applications.

To address the two questions jointly in stereo matching, one key is to enable learning to really
perform matching based on features that are robust and generalizable between the simulated data
(training distributions) and real data (testing distributions). To that end, this paper proposes DNN-
contextualized binary-pattern-driven non-parametric cost-volumes. On top of that, it revisits the
perspective of learning the cost aggregation via DNNs for stereo matching, and presents a simple yet
expressive design that is fully end-to-end trainable, without resorting to specific aggregation inductive
biases. We briefly summarize the proposed methods as follows.

To defend against adversarial attacks, most methods rely on adversarial training [3], often at the
expense of decreasing performance on clean images, long training time, and potential over-fitting
to specific attacks and datasets (e.g. cannot transfer the robustness to other datasets as shown in
the later sections). In contrast, we propose to utilize domain-specific knowledge to facilitate the
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built-in robustness of the neural networks. Because of the strong photometric consistency between
stereo images, stereo matching provides an ideal case to defend against adversarial attacks through
the design of the neural network (see the right-top of Fig. 1, and Fig. 5 and Table 7 in the Appendix).

For non-occluded regions in stereo images, the corresponding pixels of the same physical point
have similar colors. We observe that by using DNN features for matching, attacks will increase the
matching costs for features that belong to the same physical point (see the appendix for details).
Therefore, we propose to remove DNN features for matching and use hand-crafted features that will
preserve the color differences to construct the cost volume, then the DNN is used to aggregate/optimize
a non-parametric cost volume. To further make the cost as hard to alter as possible, we use local
binary patterns that compare each pixel intensity to their neighbors (i.e., Census Transform [1, 4])
as the feature descriptor. For occluded regions, the photometric consistency does not hold. For
textureless non-occluded regions, the local photometric features are weak for matching, even
though the underlying consistency is retained. Thus, high-level semantic information learned by
DNN features will be entailed. We use a DNN feature backbone for the reference (left) image only to
contextualize the feature volume, which, albeit being fully differentiable, turns out not to hurt the
adversarial robustness (see Sec. 4.2). This shows that the majority of the vulnerability actually comes
from the matching part rather than the end-to-end trainable contextual information.

The non-parametric feature volume and the contextual DNN features will be fed through a head
sub-network playing the role of a learnable optimizer that seeks the best matching result (Fig. 1). In
essence, we cast stereo matching as a cost aggregation/optimization problem over a non-parametric
cost volume with parametric contextual features. In experiments, we show that this more transparent
approach improves adversarial robustness significantly while maintaining high accuracy.

In regards of boosting the Sim2Real generalizability, removing the DNN feature backbone for
matching and utilizing the binary patterns of CT will induce the DNN to be a more general cost
volume optimizer, thus alleviating the opportunity of shortcut learning in the feature space and
resulting in better performance in cross-domain deployment, especially when no fine-tuning is used.
These are verified in our experiments from the SceneFlow dataset [5] to the KITTI benchmark [6]
and the MiddleBury dataset [7] when no fine-tuning is used.

With a comprehensive study of the proposed method (Section 4), we have five observations as
follows: (1) By removing feature backbones (i.e., (ii) in the right-bottom of Fig. 1) that are trained on
certain datasets and using non-parametric cost volumes as inputs, we can improve the cross-domain
genearlizability through training the DNN as a general optimizer. (2) Even without contextual
information (i.e., the component shown in dashed arrows and boxes in the right-top of Fig. 1), DNNs
can do reasonably well on aggregating/optimizing the raw cost volume, which is nontrivial due to the
loss of image information. (3) The vulnerability mostly comes from the matching part instead of the
learned contextual information. (4) Since the vanilla CT can block the gradients in learning attacks,
the obfuscated gradient problem [8] of CT is studied using a differentiable approximation. With this
approximation, the overall DNN output can still be altered, showing the internal vulnerability of
DNNs. (5) The robustness of adversarial training in stereo matching does not transfer well to other
datasets or attacks, thus inducing the built-in robustness is very important, as done by the CT based
non-parameteric cost volume in our proposed method (Section 3.2).

Our Contributions. This paper makes two main contributions to the field of stereo matching: (i) It
proposes a novel design for stereo matching by utilizing DNNs to aggregate/optimize non-parametric
cost volumes with parametric contextual features, which shows significantly better adversarial
robustness and improved cross-domain (Sim2Real) generalizability when no-fine tuning is used.
(ii) It presents the stereo-constrained projected gradient descent (PGD) attack method, which by
design preserves photometric consistency to show the more serious vulnerabilities of state-of-the-art
DNN-based stereo matching methods.

2 Attacking Stereo Matching Deep Neural Networks
2.1 The Proposed Stereo-Constrained PGD Attacks
To study the brittleness of DNN based stereo matching models, we intentionally develop a physically
realizable attacking method based on the widely-used white-box PGD method [3], which retains
the underlying photometric consistency in stereo matching by changing the pixel values of the same
physical point in both images. Given a perturbation map P (x, y), (x, y) ∈ Λ (Λ denotes the image
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EPE Bad 1.0 Bad 3.0
CL CT-0.03 CT-0.06 UCT-0.03 CL CT-0.03 CT-0.06 UCT-0.03 CL CT-0.03 CT-0.06 UCT-0.03

PSMNet [9] 0.28 29.05 84.04 91.08 2.00 84.75 90.41 92.75 0.16 54.80 83.68 89.91
GANet-Deep [10] 0.25 3.93 9.75 23.75 1.42 70.64 84.68 89.48 0.10 29.94 68.70 79.11
LEAStereo [11] 0.37 4.02 11.38 14.71 4.54 71.20 83.24 82.42 0.42 29.09 63.61 64.31
Ours w/o ctx. 0.38 1.13 1.43 2.36 4.14 24.64 30.69 41.34 0.32 2.46(↑26.63) 8.05 16.30
Ours 0.36 (↓0.11) 0.88 (↑2.05) 1.16(↑8.59) 1.81(↑12.90) 3.61(↓2.19) 21.20(↑49.44) 29.19(↑54.05) 36.42(↑46) 0.27(↓0.17) 3.75 6.17(↑57.44) 11.29(↑53.02)
PSMNet + adv. 0.46 0.70 1.02 1.06 8.04 17.78 33.54 36.50 0.66 1.40 3.08 4.14
GANet + adv. 0.42 0.65 0.98 1.05 6.47 14.99 28.56 31.22 0.63 1.40 3.76 4.36
LEAStereo + adv. 0.51 0.81 1.23 1.30 9.89 21.73 38.72 42.06 0.99 2.34 5.59 6.07
Ours w/o ctx. + adv. 0.42 0.78 0.90 1.26 5.95 16.83 21.42 32.27 0.73 2.88 3.83 7.51
Ours + adv. 0.41(↑0.01) 0.61(↑0.04) 0.69(↑0.27) 0.88(↑0.17) 5.77(↑0.7) 13.46(↑1.53) 16.29(↑12.27) 22.93(↑8.29) 0.52(↑0.11) 1.39(↑0.01) 2.00(↑1.08) 3.99(↑0.15)

Table 1: Stereo-constrained and unconstrained PGD attack results in the KITTI2015 training dataset [6]. For
each metric (Section 4), the four columns show that metric on CLean images, stereo-constrained attacked images
(CT, ϵ = 0.03, and CT, ϵ = 0.06), and unconstrained attacked images (UCT, ϵ = 0.03). Row 1 & 3: State-
of-the-art stereo matching methods have catastrophic performance drop w.r.t. PGD attacks, and adversarially
trained versions can not counter the drop. The results are tested in the KITTI2015 training dataset [6]. Row
2 & 4 (see Sec. 4.2): Compared with the best result (in bold) of each metric by the prior art in Row 1 and 3
respectively, without adversarial training, the proposed method obtains slightly worse performance (as shown by
↓) on clean images, but achieves significantly better adversarial robustness (as shown by the ↑). With adversarial
training, the proposed method consistently outperforms the prior art on both clean images and attacked images.

Patch Attack (left)  Patch Attack (right)  Disparity error map (attack) Predicted disparity map (attack)  PSMNet GANet-Deep LEAStereo

Figure 2: Illustration of the physical realizability of the proposed stereo-constrained attack method using
adversarial patch attacks. Best viewed in color and magnification.

lattice), the distorted pixel values for each pixel location (x, y) are computed as:
ILadv(x, y) = IL(x, y) + P (x−D(x, y), y), IRadv(x, y) = IR(x, y) + P (x, y), (1)

where D(x, y) is the ground-truth disparity map, and occluded areas will not be modified. Since the
left image is the reference image for computing the disparity loss, we disallow to attack and evaluate
occluded regions of the reference image.We note that by excluding occluded pixels, our goal is to
show that the matching component is still vulnerable even with this constraint, and thus seeking
more robust matching components is a pressing need in robust stereo matching. We also provide
experiments on unconstrained attacks for comparisons.

Intuitively, this is a weaker attack method by design compared with the unconstrained counter-
part, since it actually leaks the ground-truth disparity information to the algorithm using the pair
(P (x, y), P (x − D(x, y), y)) which may potentially help stereo matching, instead of attacking it.
Consider two corresponding patches with constant disparity on the left and the right images containing
the same physical points, the absolute sum of difference between these two patches will remain the
same after the attack. The proposed stereo-constrained attacks uses the ground-truth disparity map
in generating the perturbations, which is designed (i) to understand better the underlying vulner-
ability in stereo matching methods, and (ii) to simulate the physical scenarios, as the adversarial
stereo-constrained patch attack experiments shown in Section 2.2.

We use the L∞ norm to measure similarities between images. Two images will appear visually
identical under a certain threshold. To learn a L∞ bounded adversarial perturbation P adv , the iterative
PGD method is used,

P adv
t+1 = clipϵP {P adv

t + α · sign(∇P ℓ(P
adv
t ))}, (2)

where t = 0, 1, 2, · · · , T and P adv
0 starts with all zeros. ℓ(·) denotes the mean absolute error for

a perturbation P adv
t between the predicted disparity map for the perturbed images (Eqn. 1) and

the ground-truth disparity map. And, clipϵP clips the perturbation to be within the ϵ-ball of the
corresponding zero-plane and the maximum color range. In our experiments, we set ϵ = 0.06 or 0.03
(the larger it is, the stronger the attack is), α = 0.01 and T = 20. Appendix C.1 shows a toy example.

2.2 Attacking Results in KITTI2015
We test the proposed stereo-constrained PGD attack method and the unconstrained counterpart using
three state-of-the-art methods in the KITTI2015 benchmark dataset. Table 1 (Row 1 & 3) shows
the results. Since different methods use different training and validation splits when finetuning in
the KITTI benchmark, the performance in Table 1 are computed on the entire dataset (200 images
in total). Both the stereo-constrained attacks and the unconstrained ones can lead to catastrophic
drop of performance. Such vulnerability may raise serious concerns for the deployment of DNNs in
safety critical applications. The three methods cover DNN architectures by both sophisticated manual
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design and differentiable neural architecture search. These strong attack performance clearly call for
alternative designs of stereo matching networks that can exploit the nature of stereo matching for
better robustness. We can see that the stereo-constrained attacks are indeed relatively weaker attacks.

The Physical Realizability of the Proposed Stereo-Constrained Attack. To test if the adversarial
vulnerability can be intentionally exploited in a more realistic setting, such as autonomous driving,
we constructed the patch attack experiment to demonstrate the possibility of such attempts. We select
10 scenarios where 40 × 40 adversarial patches can be put on more flat surfaces (Fig. 2, details
and all images are provided in Appendix C.2). To preserve the depth of the scene, the ground truth
disparities of the patches are the same as the corresponding part of the original image. For each image
pair, we apply stereo-constrained PGD attacks with ϵ = 0.03 and T = 100. Table 2 shows the results
supporting the physical realizability.

2.3 Adversarial Training
Clean Synthetic Patch Attack

Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 0.28 2.30 0.21 0.80 15.41 4.46
GANet-Deep 0.25 1.46 0.12 1.84 12.52 9.09
LEAStereo 0.41 5.60 0.69 1.34 20.32 6.18
Ours w/o ctx. 0.46 5.51 0.63 0.48(↑0.86) 6.42(↑6.1) 0.81(↑5.37)
Ours 0.40(↓0.15) 4.79(↓3.33) 0.46(↓0.34) 0.54 7.58 0.85
PSMNet + adv. 0.58 12.56 1.44 1.44 26.55 8.59
GANet + adv. 0.55 11.24 1.32 2.31 23.5 11.98
LEAStereo + adv. 0.71 15.87 2.24 1.96 30.88 11.72
Ours w/o ctx. + adv. 0.52(↑0.03) 8.95(↑2.29) 1.03(↑0.29) 0.54(↑1.42) 9.45(↑14.05) 1.18(↑7.41)
Ours + adv. 0.53 11.25 1.17 0.58 12.01 1.40

Table 2: Stereo-constraine adversarial patch attack results in the
KITTI2015 training dataset. Note that the errors are computed
using the whole image, while only a small portion of the image is
attacked. Numbers in the bracelets with ↑ or ↓ are the difference
between the performance of our method and the best results by the
prior art (Row 1 & 3 respectively).

To further support the pressing need
of exploring alternative networks to-
wards robust stereo matching, we
show that the prior art reinforced by
adversarial training still do not per-
form sufficiently well against the at-
tacks. To compare with adversarial
training, we fine-tune each method on
the KITTI2015 training images per-
turbed by 3-step unconstrained PGD
attacks for 20 epochs 1, denoted as
+adv. in tables. The bottom of Table 1 and the bottom of Table 2 show the results of attacks at the
image level and the patch level respectively. While being relatively more robust after adversarial
training, the performance drops significantly on clean images. The proposed robust stereo matching
method will significantly improve this.

3 The Proposed Stereo Matching Network
Strong attacking results on state-of-the-art stereo matching methods and the lack of sufficient correc-
tion via adversarial training in Section 2 motivate us to explore alternative design of stereo matching
networks that enjoy built-in robustness. In this section, we present the details of the proposed method.

3.1 Harnessing the Best of Classic Designs and DNNs
Fig. 1 illustrates the proposed workflow consisting of four main components:

Extracting Features and Computing the Feature Volume Using Multi-Scale Census Transform.
Most current stereo matching methods use DNN-based features to form the 4D feature volume. In

124 74 32

124 64 18

157 116 84

1 1 0

1 1 0

1 1 1

Census Transform 
(Local Binary Pattern)

Figure 3: Illustration of the CT.

terms of matching, DNNs can increase the uniqueness of the
feature for each pixel, but they also suffer from the inherent ad-
versarial vulnerability. In contrast, traditional methods often use
simple window-based similarity functions to initialize the costs,
then rely on the optimization or cost aggregation stage to integrate
all local cost information [12]. Following the same philosophy,
we propose to use hand-crafted feature descriptors and similarity
functions that are less sensitive to adversarial perturbations to ini-
tialize the costs, then rely on DNNs to integrate the local cost information. Specifically, we want the
feature descriptor to change as little as possible when local intensities are perturbed. This specific
requirement lead us to the Census Transform (CT), a traditional feature descriptor that is developed to
eliminate the issue of radiometric differences caused by different exposure timing or non-Lambertian
surfaces. Previous studies find that CT is the most robust and well-rounded cost function with global
or semi-global methods [1, 4]. We use grey-scale raw intensity values in computing the census
transform. Given a local window patch R centered at a pixel u ∈ Λ (Fig. 3), the census transform

1Due to the time-consuming adversarial training from scratch and the concerns of reproducing results of the
prior art by retraining them from scratch, we use this post-hoc adversarial training strategy.

5



computes the local binary pattern by comparing each neighboring pixel v ∈ R with u such that it
equals 1 if I(v) >= I(u) and 0 otherwise. Hamming Distance (i.e. the number of different values in
two bit strings) is used to compute the cost between two patches.

Unlike in traditional semi-global or global methods in which the cost of each pair can only be a
scalar, we utilize multi-scale CTs to incorporate the context at different scales. We use local windows
with sizes from k1 to k2 (e.g. k1 = 3, k2 = 11 in our experiments) so there are K = k2 − k1 + 1
costs associated with each matching candidate pairs, resulting in an initial 4D cost volume of the
dimensions, K ×D×H ×W . To normalize the cost at each scale, we divide the Hamming Distance
by the number of pixels of each local window. To reduce the overall computational cost and the
memory footprint, we use 3D convolutions to down-scale the cost volume to 1/3 (i.e., s = 3 in
Fig. 1) of its spatial size and the maximum disparity level, resulting the down-scaled cost volume of
the dimensions, C ×D1 ×H1 ×W1. Details of the architecture are included in the Appendix B.

Boosting the Sim2Real generalizability. Due to its binary nature, the cost curves will be less affected
by the different color distributions of different datasets, thus improving the Sim2Real generalizability
of the proposed stereo matching network, especially when no finetuning is used.

Contextualizing the Feature Volume and Computing and Aggregating the Cost Volume. Al-
though being robust to adversarial attacks, the CT-based feature volume alone is not sufficiently
powerful to handle occlusion, textureless (flat) regions, and more challenging semantic information,
such as transparent objects and specular reflections. We introduce a 2-stack Hourglass [13] module
with 2D convolutions to extract context information from the left reference image, resulting in a
feature map of the same spatial size as the down-scaled CT cost volume, i.e., C ×H1 ×W1. The
contextual feature map is unsqueezed and broadcasted along the second dimension to account for the
down-scaled disparity levels, i.e., C ×D1 ×H1 ×W1. The two are then concatenated along the first
channel dimension (see Fig. 1). The contextualized cost volume will be fed into an encoder-decoder
sub-network for the cost volume computation and aggregation stage, CD×H×W , which is realized by
a 3-stack Hourglass [13] module with 3D convolutions. If the DNN feature backbone is not used
to extract context information from the left image (Fig. 1), our model will be denoted as “ours w/o
ctx." in tables and figures.

Disparity Map Prediction. To predict the final disparity map D(x, y),∀(x, y) ∈ Λ, the output of
each module in the decoder (i.e., a stack in the Hourglass module) of the cost aggregation is first
up-sampled to the original size D×H×W , denoted as Dm(d, x, y) where m is the stack layer index.
Then, similar to the method used in [14], the predicted disparity map Dm(x, y) is computed by,

Dm(x, y) =

D∑
d=1

d× Softmax(Dm(d, x, y)), (3)

where Softmax is applied along the first disparity level dimension in Dm.

The Loss Function. In training, we use the smooth L1 loss, ℓL1
(z) = z2

2 , (if z < 1); |z| −
0.5, (otherwise) due to its robustness at disparity discontinuities and low sensitivity to outliers [9, 10].
Given the ground-truth disparity map D∗(u), the loss is defined by,

L(Θ;D∗) =

M∑
m=1

βm · 1

|Λ|
∑

(x,y)∈Λ

ℓL1(Dm(x, y)−D∗(x, y)), (4)

where Θ collects all parameters in our model, βm represents the weight for the output from a stack
layer m (e.g., 0.5, 0.7, and 1 are used for the 3-stack Hourglass module in our experiments).

3.2 Attacking Census Transform and Its Built-in Robustness
Since Census Transform contains the non-differentiable comparison operator, the gradients from
the constructed cost volume are blocked to the input images thus leading to an illusion of safety, i.e.
the obfuscated gradient problem [8]. For fair comparisons with differentiable methods, we combine
subtraction and the sigmoid function as a differentiable approximation of the comparison operator.

a > b ≈ sigmoid(a− b) · C (5)
As suggested in [8], we should perform the usual forward pass through the comparison operator, but
compute the gradients through the differentiable combination of subtraction and the sigmoid function
on the backward pass. However, as the derivative of the sigmoid function is (1 − x)x, a boolean
value (0 or 1) will make it zero, and thus blocking the gradient flow. Therefore, we use the sigmoid
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KITTI 2015 KITTI 2012 Middlebury
Models (trained on SceneFlow) EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0

PSMNet 6.89 72.93 31.55 5.90 71.59 28.42 4.33 73.01 19.01
GANet 1.66 42.12 10.48 1.48 31.61 9.51 2.26 27.45 11.40
LEAStereo 2.00 51.29 13.90 1.91 44.26 14.28 3.47 32.67 14.81
Ours w/o ctx 1.25 25.95 6.12 1.23 19.66 6.80 1.71 18.72 9.16
Ours 1.26 27.92 6.31 1.28 20.62 7.16 1.96 20.09 10.05

Table 3: Comparisons for the Sim2Real cross-domain generalizability from the SceneFlow trained models to
the KITTI 2015, KITTI 2012 and Middleburry datasets in testing without any fine-tuning.

in the forward pass as well and multiply the inputs by a large constant (e.g. C = 105) such that the
output of the sigmoid function is close to either zero or one, while maintaining the gradient flow.

Built-in Robustness of Census Transform. Without using this differentiable approximation, our
method without the contextual feature backbone will be unattackable since the gradient flows are
completely blocked. From the perspective of attacks, the binary patterns generated by Census
Transform is more difficult to alter due to the comparison operator. Given a threshold of maximum
pixel difference in perturbation ϵ, neighbors will not be altered if their difference with the center is
larger than 2ϵ. Let CT (u, v) denote the local binary value at u with the neighbor v, I be the image,
and CT ′ be the binary pattern after the perturbation, we have:

CT ′(u, v) = CT (u, v), if |I(u)− I(v)| > 2ϵ (6)
If the attack does not violate photometric consistency, it will be even harder to alter the cost between
binary patches of corresponding pairs. Specifically, if a neighboring pixel appears in both the left and
the right binary patches, its relative magnitude relationship with the center pixel will be the same for
both patches, no matter how its intensities change. It is our interest to test if this highly non-linear
operator can defend the DNNs against attacks.

4 Experiments
We first present the results on the Sim2Real cross-domain generalizability, followed by showing
results on the adversarial robustness. Implementation details are provided in the Appendix B.

Data. We evaluate our method on the SceneFlow [5] and KITTI2015 [6] datasets. We also test
pretrained models on the KITTI2012 [15] and the Middlebury [7] dataset at quarter resolution. The
SceneFlow dataset is a large-scale synthetic dataset that contains 35, 454 training images and 4, 370
test images at the resolution of 540× 960. The KITTI2015 dataset is a real-world dataset of driving
scenes, which contains 200 training images and 200 test images at the resolution of 375 × 1242.
Since the depth of each scene is obtained through LiDAR, the ground truth is not dense.

Evaluation Metrics. We adopt the provided protocols in the two datasets. There are three metrics:
EPE [px] which measures the end-point error in pixels, Bad 1.0 [%] and Bad 3.0 [%] which
represents the error rate of errors larger than 1 pixel and 3 pixels respectively.

Baseline Methods. We compare with state-of-the-art deep stereo matching methods: the PSMNet [9],
the GANet [10], and the LEAStereo [11]. We use their publicly released codes and trained model
checkpoints in comparisons.

4.1 The Sim2Real Cross-Domain Generalizability
To verify the conjecture that cross-domain generalizability in stereo matching can be induced by
removing the dependency between the cost volume computation and the dataset-dependent feature
backbone, we evaluate all models pretrained on SceneFlow directly on the KITTI training datasets
and the Middlebury training dataset [7]. As shown in Table 3, our method outperforms prior art
by a large margin. This result shows that our proposed design of combining a non-parametric cost
volume formed by the multi-scale census transform and a generalized cost aggregation/optimization
DNN is indeed more cross-domain consistent. It also shows that the head sub-network DNN indeed
learns to play the role of a domain-independent optimizer over a given cost volume.

4.2 The Adversarial Robustness
Attacks at the image level. To evaluate the adversarial robustness in KITTI2015, we directly test the
trained models on the entire training dataset (200 images). Due to the GPU memory limitation, we
only use the 240× 384 center part of each image. Because of cropping, we also ignore those pixels
where their correspondences are outside of the cropped images.
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Clean PGD Attack (ϵ = 0.03) PGD Attack (ϵ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet + adv. 0.8 18.24 3.03 1.37 33.87 6.72 2.07 51.00 12.28
GANet + adv. 0.80 18.82 3.03 1.45 36.79 7.75 2.29 54.07 15.42
LEAStereo + adv. 0.85 20.17 3.56 1.48 38.24 8.60 2.3 55.67 16.24
Ours w/o ctx. 0.49 6.40 1.23 1.58 26.69 9.66 1.92 32.52 12.87
Ours 0.46 6.07 1.00 1.37 22.45 7.29 1.80 29.61 10.50
Ours w/o ctx. + adv. 0.65 11.18 2.25 1.28 24.62 6.64 1.48 28.93 8.31
Ours + adv. 0.56 10.14 1.73 0.89 18.35 4.14 1.09 22.64 5.95

Table 4: Transferrability of Adversarial Robustness: stereo-constrained 20-step PGD Attack Results in the
KITTI2012 training dataset using adversarially trained neural networks on KITTI2015.

Disparity error map (attack) Predicted disparity map (attack)  Ours

Figure 4: An example of adver-
sarial patch attack on our method.
Compared with Fig. 2, it is much
more robust.

Table 1 (Row 2 & 4) shows the results. Compared with the prior
art, our method shows significantly better robustness on both
stereo-constrained and unconstrained attacks. We note that
although the approximation used in attacking the CT is highly non-
linear (Eqn. 5), adversarial attacks can still find ways to perturb
the input images, which further demonstrate the vulnerability of
the DNNs. As aforementioned, our method with the contextual-
ized feature volume is more robust than its counterpart, showing
that the majority of the vulnerability actually comes from the
matching part rather than the contextual information. We note
that although the context extractor is fully differentiable and thus vulnerable to attacks, to attack the
CT-based matching component and the context extractor at the same time, an attaching method (e.g.,
the PGD) must find ways to alter both the cost volume and the context cues from the reference image.
The fact that the robustness is not affected significantly shows that the alternation of the context
cues either contradicts the alternation of the matching component, or being too weak compared to
the matching component. In other words, the gradients from the context extractor have different
directions or much smaller magnitudes compared to the gradients from the matching component.
This finding shows a way to improve accuracy without sacrificing robustness in stereo matching.
Those been said, the context extractor may still introduce the training domain dependence.

Attacks at the patch level. Table 2 shows the comparisons. Fig. 4 shows an example. Our method
is very robust against adversarial patches. In contrast, other methods perform poorly, even with
adversarial training.

4.3 Improvement via Adversarial Training

As shown in Table 1, our method without adversarial training shows comparable adversarial robustness
with ϵ = 0.03, 0.06, especially for EPE and Bad 1.0. In comparisons, for the prior art (Row 1 & 3),
the difference between with and without adversarial training are significantly larger.

For the patch attack experiment, our method w/o adversarial training is already much more robust
than the prior art with adversarial training (see Tabel 2). With adversarial training, our method has a
stronger robustness than all other methods, showing that our approach is orthogonal to adversarial
training and they could be jointly used to further improved robustness.

Transferability of the reinforcement. To show the importance of built-in robustness, we also test on
KITTI2012 using models trained on KITTI2015 to see how the adversarial robustness generalize on
unseen data. In Table. 4, our method shows a stronger cross-domain adversarial robustness than other
adversarially trained methods. Similarly, our method with adversarial training is the most robust over
all methods.

4.4 Ablation Study

How important is the non-parametric cost volume? To check whether the importance of the
non-parametric cost volume can be justified, we modify our model by replacing the CT component
with the concatenation of normal DNN features from the left and right images, while keeping other
components unchanged (denoted by “ours w/ feat."). We compare with traditional Sum of Absolute
Difference (SAD) and CT with a single scale. Table 5 shows that the ones with non-parametric cost
volumes generalize much better than the one with DNN features. The contextualized CT feature
volume is consistently better than the DNN feature volume.
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Why using the CT? It is chosen due to its non-differentiability and the fact that it is a well-rounded
choice in the literature. We use multi-scale representations to respect the common recognition of its
expressivity, and to alleviate choosing window size as a dataset-dependent hyper-parameter. From
Table 5, we can see that CT is indeed much more robust than SAD due to its non-differentiability. CT
with multiple scales has a stronger robustness than the single-scale version, while having a slightly
better accuracy due to its flexibility.

SceneFlow KITTI15 (Sim2Real) KITTI15 Attack (ϵ = 0.03)
Models EPE [px] Bad 3.0 [%] EPE [px] Bad 3.0 EPE [px] Bad 3.0 [%]
multi-scale SAD 1.02 4.02 1.71 9.69 2.30 18.20
CT (w=11) 1.18 4.77 1.28 6.38 1.88 7.22
Ours w/ feat. 0.85 3.75 3.25 26.76 2.13 15.23
Ours w/o ctx. 1.10 4.40 1.25 6.12 1.13 2.46
Ours 0.84 3.70 1.26 6.31 0.88 3.75

Table 5: Comparison between single-scale CT and multi-
scale SAD.

Non-Occlusion All Areas
Models FG Avg All FG Avg All
GCNet [14] 5.58 2.61 6.16 2.87
PSMNet [9] 4.31 2.14 4.62 2.32
GANet-15 [10] 3.39 1.84 3.91 2.03
GANet-Deep [10] 1.34 1.63 1.48 1.81
LEAStereo [11] 2.65 1.51 2.91 1.65
Ours 3.54 2.09 4.16 2.39

Table 6: KITTI2015 leaderboard using the Bad
3.0 [%] metric in the protocol.

4.5 KITTI Leaderboard Comparisons
Table 6 shows the comparisons. Our method is competitive compared to other state-of-the-art
methods, while having much stronger adversarial robustness and cross-domain generalizability.

5 Related Work
Deep Stereo Matching. After the first deep learning approach for stereo matching was proposed
in [16], the first end-to-end trainable DNN-based method (DispNet) was developed by [5], together
with the synthetic SceneFlow dataset. The GCNet [14] further extends the end-to-end approach by
concatenating features in the cost volume stage, using 3D convolutional layers for cost aggregation,
and introducing the soft argmin operator to compute the expected disparity. Most subsequent
approaches followed these design choices and use the SceneFlow dataset in pretraining [6].

The cost aggregation stage was further studied in [9, 17, 18] using the Spatial Pyramid Pooling module
for feature extraction and the stacked Hourglass structures [13]. In [19], fast stereo matching is studied
by by building the cost volume purely using highly optimized hand-crafted features (e.g. Census
Transform and Sum of Absolute Differences) at the expense of accuracy performance. They did not
study adversarial attack and defense and the Sim2Real generalizability, which are the focuses of this
paper. In [20], multiple hand-crafted features including CT are used for improving the Sim2Real
generalizability, but did not study the contextualized settings as done in the proposed method. Spatial
cost propagation layers are studied in [10, 21] to reduce the number of 3D convolutional layers.
Neural Architecture Search techniques are used in [11] to automatically find optimal architectures for
each stage and further improve the performance, which are the current state-of-the-art in the KITTI
2015 benchmark [6]. However, they significantly suffer from the proposed adversarial attacks.

The SGM-Nets [22] provide an elegant and well-designed integration between exploiting the SGM
for more robust cost aggregation (handling occlusion) and leveraging DNNs for learnable hyper-
parameter optimization (P1 and P2 in SGM). In terms of the integration strategy, our method shares
similar spirits and motivations with SGM-Nets. The main differences lie in (i) the generic fully-
trainable cost aggregation component in our method versus the SGM inductive bias, and (ii) with
versus without contextualized cost volumes.

In [23], domain-invariant stereo matching networks were proposed using the “domain normalization”
approach that regularizes the distribution of learned representations to allow them to be invariant to
domain differences. In [24], the generalizability of stereo matching is addressed using multi-level
cost volume and multi-scale feature constancy. In [25], cascade and fused cost volumes are used for
robust stereo matching. While these works improve cross-domain generalizability, our approach is
orthogonal to theirs (i.e., different normalization techniques and cost volume refinement strategies)
and we believe they can be used together to further improve the cross-domain accuracy. From the
perspective of adversarial attacks, the first two approaches focus on the cross-domain representation
power of DNN features, which will potentially make them more vulnerable against attacks.

Adversarial Attacks and Defense. Assuming full access to DNNs pretrained with clean images,
white-box targeted attacks are powerful ways of investigating the brittleness of DNNs. In autonomous
driving, although physically realizable attacks are investigated in many tasks [26, 27, 28, 29, 30],
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attacking stereo matching has not been well studied. [31] show that DNN-based stereo matching
methods are vulnerable against unconstrained adversarial attacks on both images separately. Without
enforcing photometric consistency, these attacks will violate the underlying physical properties
of binocular vision and thus are not realizable in practice. For example, unconstrained attacks
cannot compute adversarial patches to fool stereo systems. They also only focused on the relatively
simpler FGSM attacks [32]. To find out whether stereo matching methods are indeed vulnerable in a
physically realizable setting, we propose the stereo-constrained projected gradient descent (PGD)
attack [3] and show that state-of-the-art methods are vulnerable even when the color differences
between corresponding pixels are preserved. [27] studied adversarial patch based attacks in optical
flow, which is inherently different to attacking stereo matching due to the underlyingly different
matching nature of the problems. They did not study adversarial defense for optical flow methods.
The neural matching paths [33] leverage neural paths in DNNs trained for classification for matching,
which exploit low, middle and high level features jointly and thus are robust with respect to the style
transfer experiments. Consider that DNNs trained for classification are also significantly vulnerable
to adversarial attacks, we suspect that we could still learn to “fool" those DNNs in neural-path-based
matching using the white-box PGD method.

Towards defense, adversarial training is the most widely used method to improve adversarial robust-
ness [3, 34]. However, it also suffers from the disadvantages of dropping accuracy, long training time,
and over-fitting to specific attacks and datasets. While adversarial training is universal to all kinds
of DNNs, our method increases the built-in robustness by utilizing the photometric consistency of
stereo matching, thus avoiding the mentioned disadvantages. It can also be combined with adversarial
training to further improve robustness.

6 Limitations and Potential Negative Impacts of the Proposed Work
One main limitation is that while being more robust and Sim2Real generalizable, the performance
of the proposed method on clean images has some room to improve. One direction is to leverage
neural architecture search to find more suitable DNN aggregation component. One potential negative
impact of the proposed attack method is that since it is easy to implement the proposed physically
realizable attacks they could be used in some unintended way to computer vision systems relying on
the conventional DNN-based stereo matching. Another limitation is that handcrafted CT features used
in the proposed method may cause accuracy performance issues in multi-view stereo matching, where
there can be strong viewpoint and illumination changes as the images can be taken at different points
in time and by different cameras. It is not clear whether the proposed contextualized non-parametric
cost volume and the generic Hourglass stack based cost aggregation could potentially address them,
which we leave for future work.

7 Conclusions
This paper presents a novel design for stereo matching, which utilizes DNNs to aggregate/optimize
non-parametric cost volumes with parametric contextual features. It harnesses the best of classic
features (multi-scale census transform) and end-to-end trainable DNNs for adversarially-robust and
cross-domain generalizable stereo matching. The proposed method is motivated by the observation
that DNN-based stereo matching methods can be deceived by a type of physically realizable attacks
that entail stereo constraints in learning the perturbation. In experiments, the proposed method is
tested in SceneFlow and KITTI2015 datasets with significantly better adversarial robustness and
Sim2Real cross-domain generalizability achieved.
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A Background on Stereo Matching

The left of Fig. 1 illustrates the stereo matching setup. The rectified left image is used as the reference
image to infer the disparity map. For each pixel in the left image, the goal of stereo matching is to
find the target pixel on the rectified epipolar line in the right image. The search range (i.e., disparity
levels) often is predefined and fixed to a sufficiently large value in the cost volume computation stage.
The matching is based on minimizing the cost between features centered at the source pixel and the
target pixel respectively. The challenge of stereo matching is to seek the globally optimal matching
for all pixels in the left reference image and to handle many uncertainties such as in the appearance
features (textureless regions and specularities), the cost function, and unknown repeated patterns and
occlusion situations.

Let Λ be an image lattice (e.g., 540× 960) on which the rectified left and right images are defined,
denoted by IL and IR respectively. Denote by D(x, y) be the disparity map for the reference image
IL. In traditional methods, stereo matching is formulated as an energy/cost minimization problem,

min
D

Ed(I
L, IR, D) + λ · Es(D), (7)

where the first term is the data energy/cost, Ed(I
L, IR, D) =

∑
(x,y)∈Λ Cost(FIL(x, y), FIR(x−

D(x, y), y)) capturing the matching cost between a source pixel (x, y) in the left reference image
and the target pixel (x −D(x, y), y) on the rectified epipolar line (i.e., the same row) in the right
image. The cost is measured based on features FIL and FIR extracted for the source and target
pixel respectively. The second term represents the prior/regularity of a disparity map such as the
pairwise smoothness assumption, Es(D) =

∑
(u,v)∈N S(D(u), D(v)) where u, v ∈ Λ and N the

set of neighboring pixels (e.g., the 4-connected neighborhood). The challenges in the traditional
formulation are in two-fold: what are the good features and the cost functions in the data term?
And, what is the good prior that are sufficiently expressive to capture the disparity structures while
facilitating efficient optimization (e.g., by the dynamic programming algorithm or semi-global
method [35])?

Deep learning approaches mitigate the aforementioned challenges by exploiting the highly-expressive
representational power and the end-to-end learning capability of DNNs. As shown in the right-
bottom of Fig. 1, DNN-based stereo matching methods amortize the need of inducing proper priors
(inductive biases) and of designing global matching cost optimization algorithms, which often
consist of four components: (i) Extracting DNN features, FL and FR for matching with the spatial
downsampling rate, s, (ii) Computing the 4D feature volume F by concatenating features FL(u, v)
and FR(u− d, v) w.r.t. each disparity level d ∈ [0, D

s ] where D is the predefined maximum disparity
level, (iii) Computing and aggregating the matching cost volume C for each disparity level at the
input resolution, which is typically realized via 3D convolution under an U-Net type of encoder-
decoder architecture, which represents the solution space with respect to the data term in Eqn. 7,
and (iv) Estimating the final disparity map D. The prior/regularity term of a disparity map is made
implicitly by the supervised loss function. The optimization algorithms (e.g., the traditional global
or semi-global methods [35]) are also implicitly realized by a head sub-network (e.g., the stacked
Hourglass sub-network in Fig. 5).
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Cost Volume
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Figure 5: Network architecture.
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B Network Architecture and Training Details

We show the detailed configuration of the proposed architecture in Table 7 with the workflow
reproduced in Fig. 5. Besides how layers are wired, one key difference is the down-sample scale
of the cost volume. While our method uses the same 1/3 scale as GANet, PSMNet uses 1/4 and
LEAStereo uses 1/6. Intuitively, a smaller down-sample size should lead to a stronger robustness,
because more perturbations are averaged out in the cost volume. Therefore, our method is not taking
advantage of the dowm-sampled size. In fact, it is much more robust than PSMNet and LEAStereo
with a finer resolution.

Implementation Details. Our method is implemented in PyTorch and trained end-to-end using
the Adam optimizer with β1 = 0.9 and β2 = 0.999. All images are preprocessed with color
normalization. During training, we use a batch size of 8 on four GPUs (Tesla V100) using 240× 576
random crops. The maximum disparity level is set to 192 and any values larger than this threshold
will be ignored during training. For SceneFlow, we train our model from random initialization for 20
epochs with a constant learning rate of 0.001. For KITTI2015, we split the 200 training images into
a training set of 140 images and a validation set of 60 images. We fine-tune our model pretrained on
the SceneFlow with 600 epochs and use the validation set to select the best model.

Name Layer description Output dimension
input normalized image pairs H ×W × 3

Backbone for the left reference image

conv_start
3× 3 Conv, stride 1
5× 5 Conv, stride 3
3× 3 Conv, stride 1

1/3H × 1/3W × 32

conv_1a 3× 3 Conv, stride 2 1/6H × 1/6W × 48
conv_2a 3× 3 Conv, stride 2 1/12H × 1/12W × 64
conv_3a 3× 3 Conv, stride 2 1/24H × 1/24W × 64
deconv_1a 3× 3 Deconv, stride 2, add conv_2a 1/12H × 1/12W × 64
deconv_2a 3× 3 Deconv, stride 2, add conv_1a 1/6H × 1/6W × 48
deconv_3a 3× 3 Deconv, stride 2, add conv_start 1/3H × 1/3W × 32
conv_1b 3× 3 Conv, stride 2, add deconv_2a 1/6H × 1/6W × 48
conv_2b 3× 3 Conv, stride 2, add deconv_1a 1/12H × 1/12W × 64
conv_3b 3× 3 Conv, stride 2, add conv_3a 1/24H × 1/24W × 64
deconv_1b 3× 3 Deconv, stride 2, add conv_2b 1/12H × 1/12W × 64
deconv_2b 3× 3 Deconv, stride 2, add conv_1b 1/6H × 1/6W × 48
deconv_3b 3× 3 Deconv, stride 2, add deconv_3a 1/3H × 1/3W × 32
backbone output repeat deconv_3b ℓ/3 times (dim=2) 1/3H × 1/3W × 1/3ℓ× 32

Multi-Scale Census Transform
census_transform census transform of the input with window size 11 H ×W × 120

Cost Volume
init_cost_volume the initial cost volume H ×W × ℓ× 9
conv_3d_0a 5× 5 Conv3D, stride 3 1/3H × 1/3W × 1/3ℓ× 32
concat [optional] concatenate with the backbone output (as context) 1/3H × 1/3W × 1/3ℓ× 64
conv_3d_0b 3× 3 Conv3D 1/3H × 1/3W × 1/3ℓ× 32

Cost Aggregation
conv_3d_1 [3× 3 Conv3D, stride 1]×2

1/3H × 1/3W × 1/3ℓ× 32

conv_3d_2 3× 3 Conv3D, stride 2
[3× 3 Conv3D, stride 1]×2

1/6H × 1/6W × 1/6ℓ× 32

conv_3d_3 repeat above 1/12H × 1/12W × 1/12ℓ× 32
conv_3d_4 repeat above 1/24H × 1/24W × 1/24ℓ× 32
conv_3d_5 repeat above 1/48H × 1/48W × 1/48ℓ× 32
deconv_3d_1 3× 3 Deconv, stride 2, add conv_3d_4 1/24H × 1/24W × 1/24ℓ× 32
deconv_3d_2 3× 3 Deconv, stride 2, add conv_3d_3 1/12H × 1/12W × 1/12ℓ× 32
deconv_3d_3 3× 3 Deconv, stride 2, add conv_3d_2 1/6H × 1/6W × 1/6ℓ× 32
cost_agg_1 3× 3 Deconv, stride 2, add conv_3d_1 1/3H × 1/3W × 1/3ℓ× 32
cost_agg_2 repeat cost aggregation (input: cost_agg_1) 1/3H × 1/3W × 1/3ℓ× 32
cost_agg_3 repeat cost aggregation (input: cost_agg_2) 1/3H × 1/3W × 1/3ℓ× 32

Disparity Regression

output_1 5× 5 Deconv, stride 3 (input: cost_agg_1)
disparity regression (Eqn. 1 in the submission) H ×W × 1

output_2 repeat above (input: cost_agg_2) H ×W × 1
output_3 repeat above (input: cost_agg_3) H ×W × 1

Table 7: Details of the proposed network architecture. All convolution (Conv and Conv3D) and
deconvolution (Deconv) layers are followed by batch normalization and ReLU.
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Left image Right image Ground-truth disparity map

Error map by GANet-Deep  Error map by LEAStereo  Error map by our model 

Figure 6: Illustration of adversarial vulnerability of deep stereo matching methods using a toy
example: GANet-Deep [10], LEAStereo [11], and the proposed method. See text for detail.

Clean / After Attack, (EPE [px])
Models ℓ =20 60 100 140 180
PSMNet 1.89/78.85 1.22/63.57 0.45/3.29 0.94/4.59 0.48/36.10
GANet 2.36/9.94 6.74/27.72 7.37/80.39 13.56/115.77 15.09/31.95
LEAStereo 0.54/31.86 0.32/1.13 0.36/1.18 0.33/98.23 0.96/146.68
Ours w/o ctx. 0.057/0.051 0.20/0.20 0.29/0.25 0.25/0.24 0.26/0.26
Ours 0.36/3.12 0.28/5.56 0.13/0.44 0.37/9.47 0.094/1.77

Table 8: Result comparisons on synthetic adversarial patches at different disparity levels ℓ.

C More Results

C.1 A Toy Experiment

We conduct a toy experiment to show that state-of-the-art stereo matching methods can be easily
attacked even by the simplest form of stereo-constrained attack, i.e. shifted patches (Fig. 6).

We create five synthetic toy stereo image pairs. In a stereo pair, the left reference image is composed
by superposing a white-noise patch onto a constant background. The right image is created using
the same patch and the same background in which the patch is horizontally shifted with respect to a
given disparity level (such as ℓ = 20). So, the ground-truth disparity for the entire patch will be the
specified ℓ. The background is excluded from the evaluation.

As shown in Table 8, for the clean synthetic images, state-of-the-art stereo matching methods work
very well using the SceneFlow trained model checkpoints. Our model shows better performance
for all disparity levels. After applying the proposed stereo-constrained PGD attack only to the

Disparity
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PSMNet GANet LEAStereo Ours Ours (w/o backbone)

Figure 7: Test results of of shifting an adversarial patch on the left image at disparities from 10 to
180, while fixing the right image. Each point represents a testing pair with a different displacement.
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patches (similar in spirit to the adversarial patches [36]), state-of-the-art methods’ performance drop
significantly except for the LEAStereo method [11] at two disparity levels (60 and 100). Fig. 7 further
shows the effects of applying the same adversarial patch at different disparity levels, showing that
this simplest form of attack has a certain transferability with different depth levels.

Through this toy experiment, we can observe: (i) Although not trained with this synthetic setting,
state-of-the-art stereo matching methods are capable of recovering matching results when no attacks
are applied. (ii) However, the matching capabilities are not stable even with respect to the much
weaker stereo-constrained attacks. This may indicate that state-of-the-art methods could learn shortcut
solutions in computing the cost volume, while our methods that directly utilize local rank information
in computing the cost volume are more robust, either with or without the feature backbone in
computing the cost volume.

C.2 Examples of Adversarial Patch Attacks

We show all of the 10 scenarios for adversarial patch attack in figures 8, 9, 10, 11, and 12. All
scenarios are selected where the adversarial patches can be put on more flat surfaces, but they are not
necessarily horizontal to the image plane. Note that the ground truth disparities of the patches are
the same as the corresponding part of the original image. The first row shows the attacked image
pairs for our method. Other methods will have patches on the same location but the texture will be
different. PSMNet [9], LEAStereo [11], and GANet [10], and our method are shown on the second,
third, fourth, and fifth row respectively. The first and the third columns are the after attack disparity
maps, and the second and the fourth columns are the after attack error maps from the ground truth.

From the results, we can see that our method is significantly more robust than others in this physically
realizable attack setting.

Figure 8: Illustration of the adversarial patch attack (1/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.
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Figure 9: Illustration of the adversarial patch attack (2/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

clean PGD Attack (ϵ = 0.03)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
Ours w/o CT. 0.38 4.24 0.34 2.13 56.34 15.23
fgsm 20-epoch 0.44 6.97 0.65 0.86 23.92 2.46
adv-3 20-epoch 0.45 7.67 0.72 0.79 20.91 1.91
adv-9 20-epoch 0.52 10.36 1.06 0.79 21.50 2.18
adv-9 50-epoch 0.52 10.36 1.06 0.74 19.26 1.98
Ours 0.36 3.61 0.27 0.88 21.20 3.75
Ours + adv. 0.41 5.77 0.52 0.61 13.46 1.39

Table 9: Stereo-constrained attack results under different adversarial training settings. The first 5
rows show the results of our modified version with two feature backbones.

C.3 Ablation Study on Adversarial Training

Here we modify our model by using two feature backbones while keeping other components fixed and
use this setting to study the effects of different PGD iteration steps and training epochs on adversarial
training in Table 9. Our method is not suitable for justifying these hyper-parameters since it has
significantly stronger robustness.

In this experiment, we test the modified counterpart under FGSM attack, the unconstrained PGD
attacks with different iterations (3 and 9) and training epochs (20 and 50). In order for adversarial
training to be effective, the attack should be as strong as possible [3]. Table 9 shows that all the
model trained with PGD attacks are indeed more robust than the one with FGSM attack. However, it
does not make much difference for using 9 iterations or 50 epochs, showing that 3 iterations with 20
epochs are sufficient for the adversarial training.

Besides justifying the hyper-parameters, this result also shows that our method is indeed more robust
than its counterpart as it uses the proposed multi-scale Census Transform for the matching.
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Figure 10: Illustration of the adversarial patch attack (3/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

Clean Synthetic Patch Attack
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 0.28 2.30 0.21 0.80 15.41 4.46
GANet-Deep 0.25 1.46 0.12 1.84 12.52 9.09
LEAStereo 0.41 5.60 0.69 1.34 20.32 6.18
Ours 0.40 4.79 0.46 0.54 7.58 0.85
Ours w/o ctx. 0.46 5.51 0.63 0.48 6.42 0.81
PSMNet + adv. 0.58 12.56 1.44 1.44 26.55 8.59
GANet + adv. 0.55 11.24 1.32 2.31 23.5 11.98
LEAStereo + adv. 0.71 15.87 2.24 1.96 30.88 11.72
Ours w/o ctx. + adv. 0.52 8.95 1.03 0.54 9.45 1.18
Ours + adv. 0.53 11.25 1.17 0.58 12.01 1.40

Table 10: Adversarial Patch Attack Results in the KITTI2015 training dataset with photometric
consistency retained in attack.

C.4 Supplementary Results on the Experiments

Here we provide the EPE and Bad 1.0 for the adversarial patch attack and the transferability of
adversarial robustness experiments. From Tables 10 and 11, our method shows significantly stronger
robustness also in EPE and Bad 1.0, especially in Bad 1.0.

In addition, we show two different versions of the unconstrained attacks in KITTI2015, where one use
the ground truth to attack, and the other use the original neural network prediction. Results are shown
in Table 12. It shows that using prediction is weaker than using the ground truth for unconstrained
attacks.

C.5 Occluded Regions

For the proposed stereo-constrained PGD attack, we disallow to attack and evaluate occluded regions
of the reference image, which prevents the perturbation to attack the regions where the estimation
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Figure 11: Illustration of the adversarial patch attack (4/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

Clean PGD Attack (ϵ = 0.03) PGD Attack (ϵ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet + adv. 0.8 18.24 3.03 1.37 33.87 6.72 2.07 51.00 12.28
GANet + adv. 0.80 18.82 3.03 1.45 36.79 7.75 2.29 54.07 15.42
LEAStereo + adv. 0.85 20.17 3.56 1.48 38.24 8.60 2.3 55.67 16.24
Ours w/o ctx. 0.49 6.40 1.23 1.58 26.69 9.66 1.92 32.52 12.87
Ours 0.46 6.07 1.00 1.37 22.45 7.29 1.80 29.61 10.50
Ours w/o ctx. + adv. 0.65 11.18 2.25 1.28 24.62 6.64 1.48 28.93 8.31
Ours + adv. 0.56 10.14 1.73 0.89 18.35 4.14 1.09 22.64 5.95

Table 11: Transferrability of Adversarial Robustness: stereo-constrained 20-step PGD Attack Results
in the KITTI2012 training dataset using adversarially trained neural networks on KITTI2015.

does not rely on matching. Nonetheless, it is still possible to make perturbation on the occluded
regions of the right image to hinder the matching, e.g. by creating false positive correspondence. We
also consider this situation and experiment with an even weaker attack such that the occluded regions
of both the left and right images will not be attacked.

The results are shown in Table 13 Table 15, which are consistent with those reported in the submission.
Our methods are the best in all metrics except for EPE in ScenFlow with ϵ = 0.03.

C.6 Results in SceneFlow

We first compare the adversarial robustness. Table 14 and Table 15 shows the comparisons: our
models are much more robust than the prior art. As the original SceneFlow dataset does not
have ground truth occlusion, we use a subset provided by the same authors [5] with occlusions. We
randomly select 1, 000 images from the test data. Our methods show significantly better robustness
against attacks. In fact, our methods are the best in all metrics except for EPE in ScenFlow with
ϵ = 0.03 in Table 15. We note that if we do not allow to use the proposed differentiable approximation
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Figure 12: Illustration of the adversarial patch attack (5/5). The first row shows the attacked image
pairs. PSMNet [9], GANet [10], LEAStereo [11], and our method are shown on the second, third,
fourth, and fifth row respectively. The first and the third columns are the after attack disparity maps,
and the second and the fourth columns are the after attack error maps from the ground truth.

PGD Attack (ϵ = 0.03) w/ GT PGD Attack (ϵ = 0.03) w/ Prediction
Models EPE [px] Bad 1.0 [%] Bad 3.0 [%] EPE [px] Bad 1.0 [%] Bad 3.0 [%]
PSMNet 91.08 92.75 89.91 58.75 84.11 70.49
GANet 23.75 89.48 79.11 19.49 68.01 51.58
LEAStereo 14.71 82.42 64.31 12.03 74.21 54.00
Ours w/o ctx. 2.36 41.34 16.30 2.27 34.98 14.74
Ours 1.81 36.42 11.29 1.53 29.25 10.09

Table 12: Vanilla 20-step PGD Attack Results in the KITTI2015 training dataset [6]. The PGD
attacks are learned using either the GT disparity map or the predicted disparity map from clean
images in the loss function used to compute PGD. The performance are still measured in terms of the
GT disparity map.

of Census Transform, our method shows much better robustness, thanks to the non-differentiable cost
volume computation.

We also compare the results using the entire image, instead of only non-occlusion regions in evaluating
attack performance. Table 16 shows the comparisons. Our method obtains competitive performance
against state-of-the-art methods. Recent work suggests there exists an inherent conflict between
accuracy and robustness [37, 38]. From this perspective, the comparable performance on clean
images and the significantly better robustness of our method show that the proposed design for stereo
matching is effective.

D Environment

All the experiments were done on a Nvidia DGX server running Ubuntu 18.04.5, which equips 4
Tesla V-100 GPUs, each has 32 gigabytes of memory. For Pytorch, we use version 1.8.0 with CUDA
11.1.
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Clean PGD Attack (ϵ = 0.03) PGD Attack (ϵ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 0.28 2.00 0.16 1.29 45.79 5.12 5.19 70.73 30.08
GANet 0.25 1.42 0.10 1.25 39.76 5.92 2.93 63.88 25.84
LEAStereo 0.37 4.54 0.42 1.44 46.57 7.61 3.20 66.26 27.45
Ours w/o ctx. 0.38 4.14 0.32 0.60 12.95 1.16 0.64 14.39 1.42
Ours 0.36 3.61 0.27 0.53 9.90 0.75 0.59 11.97 0.93

Table 13: Stereo-Constrained 20-step PGD Attack Results in the KITTI2015 training dataset [6].
Attacks on occluded regions of both the left and the right image are disallowed.

Clean (Non-occlusion regions) After PGD Attack (ϵ = 0.03) After PGD Attack (ϵ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 1.56 20.62 5.36 12.37 68.12 30.75 25.51 75.66 51.13
GANet 1.04 10.82 3.37 11.52 51.47 36.10 28.54 72.75 64.03
LEAStereo 1.03 8.87 2.69 12.12 55.69 33.82 22.30 68.04 53.63
Ours 1.02 8.85 3.28 9.87 31.94 25.67 20.74 45.84 41.37
Ours w/o ctx. 1.16 9.49 3.55 9.23 30.61 25.15 10.85 32.88 27.84
Ours† 1.02 8.85 3.28 2.25 12.64 6.71 5.79 18.09 13.04

Table 14: Stereo-Constrained 20-step PGD Attack Results in SceneFlow [5]. † shows results by
our method without using the modified census transform in learning attacks, which are much more
resistant to attacks. See text for detail.

Clean After PGD Attack (ϵ = 0.03) After PGD Attack (ϵ = 0.06)
Models EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0 EPE Bad 1.0 Bad 3.0
PSMNet 1.56 20.62 5.36 12.32 68.15 30.76 20.15 74.50 46.74
GANet 1.04 10.82 3.37 14.37 57.90 42.03 23.59 69.28 57.90
LEAStereo 1.03 8.87 2.69 9.32 54.86 31.16 16.51 64.26 45.77
Ours w/o ctx. 1.16 9.49 3.55 11.63 34.18 29.26 13.09 36.55 32.21
Ours 1.02 8.85 3.28 11.70 35.36 29.56 16.08 42.14 37.21

Table 15: Stereo-Constrained 20-step PGD Attack Results in SceneFlow [5]. Attacks on occluded
regions of both the left and the right image are disallowed.

Models Params [M] EPE [px] Bad 1.0 [%] Bad 3.0 [%]
PSMNet 3.5M 1.49 20.6 5.9
GANet 6.6M 0.82 9.0 3.5
LEAStereo 1.8M 0.83 8.0 3.3
Ours w/o ctx. 1.9M 1.10 9.7 4.4
Ours 2.7M 0.84 8.8 3.7

Table 16: Result comparisons using clean images in the SceneFlow dataset [5].
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