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Figure 1. Our method’s soft shadowing of static and dynamic geometry using an area light.
The inlays (right) highlight how our approach has soft penumbra and faithfully represents the
occlusion relationship of the character’s head and the flagpole. PCSS (persentage closer soft
shadows) fails in this situation. HDR-VDP2 heatmaps visualize the perceptual image quality
of our algorithm and PCSS compared to a high-quality reference. Blue is high quality and red
is low quality.

Abstract

Rendering soft shadows cast by dynamic objects in real time with few visual artifacts is
challenging to achieve. We introduce a new algorithm for local light sources that exhibits
fewer artifacts than fast single-view approximations and is faster than high-quality multi-
view solutions. Inspired by layered depth images, image warping, and point-based rendering,
our algorithm traverses complex occluder geometry once and creates an optimized multi-
view point cloud as a proxy. We then render many depth maps simultaneously on graphics
hardware using GPU Compute. By significantly reducing the time spent producing depth
maps, our solution presents a new alternative for applications that cannot yet afford the most
accurate methods, but that strive for higher quality shadows than possible with common
approximations.
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1. Introduction

Shadows provide important perceptual cues about the location, shape, arrangement,
and perceived motion of objects and light sources [Kersten et al. 1996]. These cues
are even stronger when shadows exhibit natural characteristics, such as penumbra
[Mamassian et al. 1998]. Despite much research effort, generating realistic shadows
with penumbra in real time for complex dynamic content remains an open problem.

The primary task of a soft shadowing algorithm is solving the visibility factor,
i.e., the proportion of an area light visible to each point on a receiving surface. This
problem remains difficult because 1) accurate soft shadowing requires visibility data
from many light samples across an area light, and 2) occluder fusion, the non-trivial
interaction of multiple occluding surfaces, prevents the individual (and parallel) pro-
cessing of visibility data for these many samples [Eisemann et al. 2013]. Recent
advances in the precomputation and compression of visibility data solve this prob-
lem efficiently for static occluders [Scandolo et al. 2016; Myers 2016]; however,
visibility is constantly changing and cannot be precomputed for dynamic occluders
and lights.

Multi-view rasterization (MVR) has long been the most reasonable proxy for a
ground truth solution that real-time applications can consider to recompute the visi-
bility of dynamic objects every frame. The views rendered with rasterization at area
light samples are quite similar and promise computational efficiencies; however, the
GPU must traverse and rasterize all occluder geometry for every view rendered, mak-
ing this approach inefficient for complex dynamic occluder geometry and impractical
within real-time budgets on existing GPUs using rasterization APIs. Highly customiz-
able software triangle rasterizers utilizing GPU Compute [Laine and Karras 2011] are
an attractive alternative; however, their performance is unable to match hardware-
accelerated MVR. We therefore seek an alternative to standard triangle rasterization
that exploits today’s GPU hardware.

We introduce a new algorithm, called view-warped soft shadows (VWSS), that
addresses the MVR bottleneck for dynamic occluders and local area lights. The core
of our algorithm is inspired by image warping, which can reduce the computation
required to produce similar images by performing geometric transformations on post-
render data [Wolberg 1994; McMillan and Bishop 1995; Mark et al. 1997; Walter
et al. 1999]. Since views distributed across an area light source are often spatially
proximal, the associated depth maps contain highly similar data ideal for reuse. We
leverage the discretize-and-reuse strategy of image warping by constructing a point
cloud of view-dependent data that is subsequently used to generate a complete set
of depth maps. Traversing occluder geometry only once, we rasterize a central view
of the area light to produce a multi-view optimized point cloud. We then construct
multiple depth maps in each traversal of the points. Inspired by layered depth images
[Shade et al. 1998], our algorithm avoids artifacts typically associated with warping
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(e.g., at disocclusions) by storing all front-facing rasterized fragments along each ray
of a central view enlarged to contain all light sample views.

Our experimentation focuses on local area lights, since these lights benefit the
most from the view-dependent sampling and reuse strategy we employ to simplify the
soft shadowing workload. The results demonstrate that our method is more accurate
than existing fast single-view methods; and faster than existing accurate multi-view
solutions. The perceptual image comparison measure HDR-VDP2 [Mantiuk et al.
2011] rates our algorithm’s output significantly closer to an offline quality MVR ref-
erence than other approximations (see Figure 1), and by reducing the time spent on
rendering depth maps, we facilitate a more practical quality-to-performance tradeoff
than MVR. We observe that when provided identical point data workloads, notable
performance improvements are realized when using GPU Compute instead of the
graphics pipeline for parallel point-rendering of depth maps. This makes our ap-
proach an ideal candidate for asynchronous execution on newer GPUs and APIs that
support this feature. Ultimately, the quality of our algorithm’s output is limited by
the shadow mapping algorithm from which it is derived; however, these limitations
are well understood and typical strategies to mitigate these problems are still effective.
We provide example source code of the implementation variations in code listings. We
compare our algorithm’s performance, visual quality, and temporal stability against
other popular methods in motion in the supplementary video.

2. Related Work

Point-based rendering uses points rather than triangles as the primary rendering prim-
itive [Levoy and Whitted 1985]. Complex splatting and interpolation techniques are
typically employed to construct complete images from points without discontinuities
(also called holes) [Grossman and Dally 1998; Zwicker et al. 2001; Marroquim et al.
2007; Gross and Pfister 2007]. Our approach avoids complicated reconstruction meth-
ods by generating frame-specific points in real time tailored to the shadow map reso-
lution and the local area light’s multi-view configuration.

Image warping is a discretize-and-reuse strategy designed to improve rendering
performance by deriving novel images from previously rendered data [Wolberg 1994].
For example, temporal warping techniques are a critical tool in achieving the low la-
tency and high performance required for virtual reality headsets and stereoscopic dis-
plays [McMillan and Bishop 1995; Beeler and Gosalia 2016]. Image warping is most
successful when the source and derived images are similar, since the GPU rasterizer
emits points with a distribution and sampling density optimized for a single view and
output resolution. Consequently, the data necessary to produce a complete novel im-
age is not always available in the source. Previous work addresses this problem by
filtering [Walter et al. 1999; Yu et al. 2010] or storing additional data in the source
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[Mark et al. 1997; Shade et al. 1998]. Our algorithm stores additional data in our
optimized point cloud; this process is discussed further in Section 3.1.

2.1. Shadows

Due to the long history of shadow rendering, we refer the reader to detailed
surveys on the topic [Hasenfratz et al. 2003; Eisemann et al. 2011; Scherzer et al.
2011]. In short, accurate methods solve for the visibility factor using either distributed
ray tracing [Cook et al. 1984] or by accumulating a large number of rasterized depth
maps from multiple views [Haeberli and Akeley 1990], while approximate methods
abandon accuracy for plausible—but incorrect—visual results.

Multi-view rasterization (MVR) distributes randomly positioned points across an
area light. We refer to these points as light samples. Light samples are set as an
eye location, and the GPU rasterizes geometry between the eye and the receiver to
produce a depth map. To calculate the visibility factor, shadow mapping [Williams
1978] executes for each depth map and the results are averaged [Herf and Heckbert
1996]. The visual quality of this brute-force approach is excellent, since occlusion for
each light sample is correctly computed; however, this is often prohibitively slow due
to multiple traversals of the geometry. Existing graphics hardware is not designed to
render multiple similar views of the same geometry efficiently, performing redundant
triangle setup, tessellation, and fragment operations for each view.

Imperfect shadow maps (ISM) approximate visibility for indirect illumination us-
ing many low-resolution depth maps, generated by splatting a point-based represen-
tation of the geometry [Ritschel et al. 2008]. ISM generates its view-independent
point representation either offline or at runtime using GPU tessellation hardware
[Barák et al. 2013]. To enable real-time performance, ISM constructs depth maps
by splatting each point to one randomly chosen depth map. This contributes to
ISM’s crude approximation of visibility, which must be hole-filled using a pull-push
post-process. Developers rarely use ISM to render shadows cast by direct light sources,
since it is unable to capture fine detail and avoid undesirable artifacts. In contrast,
our approach uses the rasterizer to generate a set of points specialized to the cur-
rent area light and restructures computation to allow the use of high-resolution depth
maps, with each point splatted to all of them. This denser sampling eliminates the
need for any post-processing, while still producing high-quality shadows at
practical speeds.

Statistics and filtering-based algorithms approximate soft shadows using visibil-
ity data from a single depth map. Although these approaches are fast, they are built
upon assumptions that fail in common situations [Eisemann et al. 2011]. Statistics-
based methods such as convolution [Annen et al. 2007] and exponential shadow maps
[Annen et al. 2008] have fixed-size penumbras and are not capable of reproducing
the contact-hardening effect. The percentage closer soft shadows (PCSS) algorithm
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varies the size of a percentage closer filter (PCF) kernel [Reeves et al. 1987] to ap-
proximate contact hardening [Fernando 2005]. PCSS and methods based on it, such
as variance soft shadows [Dong and Yang 2010] and moment soft shadow mapping
[Peters et al. 2016], compute an average depth for nearby occluders and use the par-
allel planes equation to estimate filter-kernel size. This simplification prevents these
algorithms from correctly handling occluder fusion when highly differing depths are
present at adjacent depth-map texels. Our algorithm makes no approximations of this
kind and properly handles occluder fusion. Although statistics and filtering methods
are inaccurate, we compare our algorithm to them due to their speed, popularity, and
inclusion in recent video-game titles, such as Rockstar’s Grand Theft Auto V [Burnes
2015b] and Ubisoft’s Assassin’s Creed Syndicate [Burnes 2015a].

3. View-warped Soft Shadows

Our view-warped soft shadows algorithm is a combination of point-generation and
rendering approaches that quickly and accurately produce many depth maps for use
with multi-view shadow mapping. At a high level, this is accomplished by 1) effi-
ciently transforming complex dynamic occluder geometry from triangles to an opti-
mized multi-view point set, and then 2) rendering multiple depth maps simultaneously
by reprojecting, z-buffering, and writing depth results for the point-based geometry
proxy in parallel on the GPU. We experimented with two implementations of the
VWSS concept: buffered and unbuffered.

Illustrated in Figure 2, the buffered implementation maps directly to the concep-
tual steps of VWSS. First, the complex occluder geometry is rasterized and the gen-
erated fragments are stored as points in an unstructured linear (D3D11 Append/Con-
sume) intermediate buffer. In a second step, depth maps are rendered by dispatch-
ing GPU Compute (or Pixel Shader) threads that load point data from the interme-
diate buffer and reproject, z-buffer, and store depth results for multiple light-sample
views to multiple depth maps. We use a single linear intermediate buffer in our im-
plementation, since this data structure simplifies the implementation and maximizes
GPU utilization during point rendering. By providing the GPU with one large buffer
of points, we ensure the machine is always achieving the full parallelism of which
it is capable. For game scenes with large numbers of complex dynamic objects,
a single linear intermediate buffer may be insufficient, since not all characters will
need to be rendered in a given frame. In this scenario, more advanced data struc-
tures or partitioning schemes (e.g., BVH or Octree) are better-tailored to manage this
kind of complexity. Regardless of the data structure necessary to optimally traverse
and cull the scene data, points should be organized and compacted such that they
are fed to the GPU in large chucks that maximize the parallelism afforded by the
point representation.
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Figure 2. Buffered VWSS. In Step 2, each GPU Compute (or Pixel) Shader thread reprojects,
z-buffers, and writes point data for multiple views simultaneously. A single traversal of the
point data results in multiple complete depth maps. The number of target depth maps per
point traversal and total depth maps is configurable. A two-pass, four depth-map example is
shown.

We prefer GPU Compute threads over Pixel Shaders since the compute model
provides improved flexibility when scheduling the point-rendering workloads. For
even more flexibility, asynchronous GPU Compute may be used to schedule the point-
rendering workload; however, our implementation does not yet take advantage of this
feature since it is not available in Direct3D 11.1. On platforms that do support it, we
suggest inserting asynchronous point-rendering workloads during traditionally low
GPU utilization or memory bandwidth tasks, such as shadow depth map rendering
for sun-shadow depth-map cascades. Additionally, geometry-heavy tasks where GPU
time is dominated by the GPU’s fixed-function units (tessellator, rasterizer) are ideal
candidates, since asynchronous VWSS workloads will then be able to spread across
many more GPU cores without decreasing the coherence of the graphics workload.

Alternatively, our unbuffered implementation combines the point-generation and
depth-map rendering steps into a single execution of the graphics pipeline. The point-
generation process is identical to the buffered version; however, instead of storing
points in an intermediate data structure, they are streamed directly to Pixel Shaders
that perform depth-map rendering. This is illustrated in Figure 3. Combining the two
steps of VWSS has desirable qualities: 1) we avoid the management of intermediate
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Figure 3. Unbuffered VWSS. Point-generation and depth-map rendering steps are combined
into a single execution of the graphics pipeline. Points are streamed from the rasterizer to
Pixel Shader threads without storing points in an intermediate buffer.

memory by leveraging the direct connection between the rasterizer and Pixel Shader
stages, and 2) we bound total memory usage. These advantages come at a cost though.
By combining the two steps of VWSS, the entire algorithm is executed in the GPU
graphics pipeline, which decreases the flexibility of workload scheduling and pre-
vents the possibility of point rendering executing as an asynchronous GPU Compute
process. Additionally, the parallelism (and thus performance) of unbuffered VWSS
is more dependent on GPU memory bandwidth than the buffered approach. This is
the case since streaming points from the rasterizer to Pixel Shaders while simulta-
neously writing z-buffered results to several depth maps from Pixel Shaders causes
competition for memory bandwidth, decreases coherence, and potentially thrashes
the memory subsystem. Consequently, the optimal number of points and target depth
maps the unbuffered implementation can handle will be lower than the buffered im-
plementation. Although the performance delta will vary per GPU, the graph at the top
of Figure 13 illustrates this tradeoff on a NVIDIA GeForce GTX Titan X (Maxwell).

3.1. Point Generation

VWSS points are generated from triangles by the rasterizer streaming fragments to
Pixel Shaders, where the 3D world-space position (XYZ) of each fragment—interpo-
lated as an attribute—is either a) appended to an intermediate buffer (buffered) or
b) immediately reprojected, z-buffered, and written to depth maps (unbuffered). We
store point world-space positions as three 32-bit floating-point values; however, this
can be compressed to half precision to save storage and memory bandwidth. This
lower precision option may be acceptable for some use cases, but we prefer the higher-
precision format to resolve fine details of character models. During point generation,
the rasterizer and output merger do not actually write to a render target; therefore,
we avoid allocating memory for the source depth map and instead simply supply the
rasterizer with the appropriate viewport dimensions.
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Naive Image Warping View-Warped Soft Shadows

(a)

(b)

(c)

Figure 4. Standard image warping naively applied to multi-view depth map rendering (left)
incorrectly leaks light at areas of disocclusion (b) and boundaries of the light sample’s field
of view (a,c). These common artifacts are eliminated using our approach (right).

Standard image warping reprojects the final result (depth of the closest surface in
the case of depth maps) computed from a source view to another nearby target view
in space. Naively applying this approach to depth maps when computing multi-view
visibility for area lights is insufficient, since the necessary point data to represent
all occlusion relationships is not present in the source image. Shown on the left of
Figure 4, reprojection of the closest view-dependent samples stored in a typical z-
buffer results in incorrect light-leaking artifacts. These artifacts are caused by a lack
of data in the source depth map at 1) areas of disocclusion and 2) the boundaries of
the area light’s influence (imposed by the light sample’s field of view).

We solve the lack of data at areas of disocclusion by storing all front-facing sam-
ples produced by the rasterizer for the source depth-map buffer (inspired by layered
depth images [Shade et al. 1998]). This is illustrated on the right of Figures 4 and 5.
Practically, we generate and store these point samples by disabling z-buffering and

Naive Image Warping View-Warped Soft Shadows
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Figure 5. Diagrams of the area light depth-map rendering configuration for naive image
warping (left) and our multi-view optimized approach (right).
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enabling back-face culling during the rasterization pass that transforms geometry to
point samples. This decreases the depth complexity encountered by each light source
ray and reduces the points generated. To increase accuracy, back-face culling can be
disabled to also capture the back-facing fragments along each light ray. Despite a dou-
bling of the point count, we find the improvement in depth-map rendering accuracy
not worth the additional cost of storing and rendering these points. Depth buffering
is only performed for complex dynamic and static objects within the local area light’s
influence. Including all static geometry from a global light source (e.g., the sun) may
produce an unwieldy number of points that overwhelms the achievable parallelism
of the target GPU. We find that 500,000 to 1.5M points works well on a NVIDIA
GeForce GTX Titan X (Maxwell) from 2015.

To address the lack of data at the edges of the light’s influence, we transform
the source depth map’s view to contain the entire area light (as opposed to being
placed on the area light). See the right diagram of Figure 5. This guarantees that the
source depth map includes data relevant to all light samples distributed across the area
light. In order to maintain a similar sampling rate of each surface compared to MVR,
we match this transformation with an increase to the source depth-map’s resolution
proportional to the distance the source depth-map’s view is translated.

To compute the containing source depth-map view, we initially locate the eye
ve at the center of the area light lc. We ensure the eye’s vertical field of view fovv
and horizontal field of view fovh match the respective field(s) of view of the target
light sample’s depth-map views. Ideally, the field of view aspect ratio of the source
and target depth-map views mimic the shape of the area light. We then translate ve
along the negated light normal vector l̂n by the distance dlc→ve , calculated using
Equations (1) and (2), where lw and lh are the width and height of a rectangular area
light.

dlc→ve =
max(lw, lh)

2 · tan(max(fovv,fovh)
2 )

(1)

ve = lc − (dlc→ve · l̂n) (2)

vres =
[
m · zn + dlc→ve

zn

]2
(3)

Given a source depth map of resolution m2, the increased source depth-map res-
olution vres is computed using Equation (3), where zn is the source depth-map view’s
frustum near plane. We locate zn of the new source depth-map view in the same plane
as the area light to avoid rasterizing samples behind the area light source. Example
C++ code that implements this process using Equations (1), (2), and (3) is provided
in Listing 1.
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// Information about an area light source.
struct LightInfo
{

float width, height;
float fov_v, fov_h,
float nearZ;

};

// Information about a depth map
struct DepthMapInfo
{

float width, height;
};

/**
* Transform geometry into points tailored for multiple depth maps.

*/
void RenderPoints( DepthMapInfo source, LightInfo light, bool bCullBackFace )
{

// disable z-buffering (no depth compare) and disable blending
d3d11Context->OMSetDepthStencilState( DS_NoDepthNoStencil, 0 );
d3d11Context->OMSetBlendState( BS_None, NULL, D3D11_DEFAULT_SAMPLE_MASK );

// enable or disable back-face culling
if( bCullBackFace ) d3d11Context->RSSetState( RS_CullBackFace );
else d3d11Context->RSSetState( RS_CullNone );

// transform the source depth map view to contain the area light source
float HalfMaxFov = max(light.fov_v, light.fov_h) / 2.f;
float D_LcVe = max(light.width, light.height) / (2.f * tanf(HalfMaxFov));

// compute the source depth map’s viewport resolution
float Scaling = ( ( light.nearZ + D_LcVe ) / light.nearZ );

D3D11_VIEWPORT Viewport;
Viewport.Width = source.width * Scaling;
Viewport.Height = source.height * Scaling;
d3d11Context->RSSetViewports( 1, &Viewport );

//...bind input layout, constant buffers, and shaders
//...bind append buffer UAV for point storage
//...draw calls to rasterize occluder geometry

}

Listing 1. Example C++ code implementing our multi-view point generation algorithm.

3.2. Depth-Map Rendering (View-Warping)

We render depth maps corresponding to each light sample by reprojecting the points
produced by the rasterizer. Both the GPU graphics pipeline and GPU Compute are
capable of exploiting locality and increasing parallelism by projecting points into mul-
tiple depth buffers during a single thread execution. We classify and compare point-
rendering approaches based on the amount of parallelism achieved by each traversal
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of the point data (see Figure 13 for performance results). Rendering depth maps from
points is accomplished by either producing 1) one depth map per traversal (serial), 2)
multiple depth maps per traversal (partially parallel), or 3) all depth maps in a single
traversal (fully parallel). The implementation that is most appropriate (graphics or
GPU Compute) is dictated by GPU memory bandwidth and the availability of asyn-
chronous compute features. Unlike triangle rasterization, it is possible for either of
our implementations to efficiently construct n depth maps with less than n traversals
of our point data (illustrated in Figure 2).

We invoke a GPU thread (GPU Compute or Pixel Shader) for each point. In each
thread, we read a point’s world-space location, apply the view-projection matrix cor-
responding to each light sample, snap the projected location to the nearest neighbor
pixel, and perform z-buffering using atomic functions. Although we are implicitly
limiting a point-sample’s area of influence to a single depth-map texel, the adjust-
ments to sampling made during point generation allows us to sidestep more complex
surface-splatting techniques [Zwicker et al. 2001] and still produce a hole-free result.

The depth maps generated by our algorithm create a very slight bloating of shadow
results when compared to the multi-view rasterization reference. The bloating artifact
is a result of the differences in how texel coverage is approximated in polygonal raster-
ization and point-based rendering. Figure 6 illustrates these differences and compares
(a) standard polygon rasterization, (b) point-based rendering, and (c) conservative
polygon rasterization. All of these approaches are coarse approximations of the actual
amount a texel is covered by a polygon, and as such no approach is definitively cor-
rect. Standard rasterization is biased towards undersampling, since only texels whose
central point is contained within the polygon are considered covered. Conservative
rasterization is biased towards oversampling, since all texels intersecting a polygon
are marked as covered. Point-based rendering using nearest-neighbor reconstruction
presents a middle ground between the two polygon-rasterization options.

Image
 Raster Grid

Pixel Center

Projected 
Polygon

Projected
Point Sample

Covered
Pixel

Standard Rasterization Point-Based Rendering Conservative Rasterization

(b)(a) (c)

Figure 6. A comparison of texel-coverage approximations. (a) standard polygon rasterization,
(b) point-based rendering, and (c) conservative polygon rasterization.
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Figure 7. A visualization of buffered VWSS. Note how GPU threads (Compute Shaders in
this illustration) may project multiple points to the same destination depth-map texel. Atomic
min/max functions are used to resolve these conflicts.

Our optimized point data is often mildly oversampled compared to standard
rasterization and causes the visual bloat. If our algorithm’s shadows were compared
to MVR using conservative rasterization for depth-map rendering,
VWSS shadows would instead appear slightly smaller. As the resolution of the
depth maps increase the magnitude of the bloat decreases, since the influence of an
individual depth texel declines and the various texel coverage approaches
converge.

Depending on how GPU memory cache lines are configured, it may be best to
load several points in each GPU thread. Also, the change in geometry orientation
and occlusion may cause reprojected point samples to project to the same depth-map
texel during point rendering. This type of collision is illustrated in Figure 7 and is
resolved by atomic min/max (InterlockedMin/Max in D3D11) functions available to
Compute and Pixel Shaders. These atomic functions have varying performance char-
acteristics across hardware vendors; however, heavy use of atomics will decrease per-
formance. AMD’s GCN architecture exposes instructions for hardware-accelerated
32-bit floating-point min/max atomics on the Sony PlayStation 4 R© / Microsoft Xbox
One R© generation of game consoles.

Example depth-map point-rendering Compute Shader HLSL source code is in-
cluded in Listing 2. Note that atomics functions are performed using 32-bit integer
resources since most graphics hardware does not yet support full precision floating-
point atomic functions.
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// ---[ Defines ] ---
#define LIGHT_SAMPLES 32
#define LIGHT_SAMPLES_PER_THREAD 8

// ---[ Resources ] ---
StructuredBuffer<Float3Point> points : register( t0 );
RWTexture2DArray<uint> rt_depth_int : register( u2 );

// ---[ Constant Buffers ] ---
cbuffer PointRenderingCB : register( b12 ) {

float2 resolution;
float numPoints;
float lightSampleOffset;
matrix viewToLight[LIGHT_SAMPLES];

};

/**
* Warp points, storing depth to an array of depth maps.

* Atomic functions perform z-buffering. Can be used iteratively,

* where the number of depth maps (samples) per thread is specified.

*/
[numthreads( 128, 1, 1 )]
void CS( uint3 threadID : SV_DispatchThreadID ) {

uint lightIndex;
uint lightSampleMax;
float x, y;
float4 wp, cp;

// early exit check
if( threadID.x < ( uint ) numPoints ) {

wp = float4( points[threadID.x].pos, 1.f );
lightSampleMax = lightSampleOffset + LIGHT_SAMPLES_PER_THREAD;

[unroll( LIGHT_SAMPLES_PER_THREAD )]
for( lightIndex = lightSampleOffset;

lightIndex < lightSampleMax;
lightIndex++ )

{
// project fragment into view-texture space
cp = mul( wp, viewToLight[lightIndex] );

// perspective divide
cp.xyz /= cp.w;

// nearest neighbor destination pixel
x = ( cp.x * resolution.x );
y = ( cp.y * resolution.y );

// write to destination with atomic z-buffering
InterlockedMax( rt_depth_int[ float3( x, y, lightIndex ) ],

asuint( cp.z ) );
}

}
}

Listing 2. Example depth-map point-rendering Compute Shader HLSL source code.
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4. Results

We implement our algorithm in a deferred renderer, because these are popular in
current commercial game engines (e.g., Unreal R© Engine 4, Unity, and Frostbite).
The final shaded and shadowed output is constructed by: 1) rendering a G-Buffer
(with albedo, normals, and world positions), 2) executing VWSS, MVR, or stan-
dard depth-map rendering for PCSS, and 3) executing a fullscreen pass to perform
shading and shadow mapping using the depth map(s) produced by each shadowing
approach.

Our experimental test environment uses Microsoft Windows 10, Microsoft Di-
rect3D 11.1, Intel i7-4790k CPU @ 4.0 GHz, and a NVIDIA GeForce GTX Titan X
(Maxwell) GPU. MVR and VWSS use identical area light-sample positions with Pois-
son distribution. All depth maps use 32-bit floating-point precision and light sample
depth-maps are 10242 resolution. Depth-map precision and resolution were chosen
based on the needs of our scene and the desire for the highest quality. Half-precision
depth maps and alternate resolutions were not tested, but they may provide improved
performance in scenarios where the quality tradeoff is acceptable. Our tests use vary-
ing polygonal complexity and focus on dynamic (skinned and animated) assets. We
have adapted content from Unity Technologies’ real-time Blacksmith GDC demon-
stration [Unity 2015]. The geometric complexity of each of our four primary tests
are listed in Table 1, and images of them can be found in Figures 1, 4, 8, and 9. We
chose a PCSS implementation with a 64-sample blocker search and 96-sample PCF
filter, since this is similar to the ‘Ultra’ preset configuration of PCSS available in some
high-end shipping PC game titles. We report GPU times averaged from 1,000 frames
of execution, and all VWSS performance numbers are captured from the buffered
implementation unless otherwise specified.

We compare the visual quality of all algorithms against a reference image created
using an ultra-high quality MVR with 512 rasterized depth maps and a 5-sample PCF
filter per pixel (resulting in 2,560 depth samples per pixel). As a numerical measure of
image quality, we compute root mean squared error (RMSE). To evaluate perceptual
image quality, we use the image comparison measure HDR-VDP2 [Mantiuk et al.
2011], which includes various filters modeling human vision.

4.1. Quality and Performance

Figures 8–13 and Tables 1 and 2 include image-quality comparisons and perfor-
mance results. Each figure, table, and graph includes detailed captions describing
their meaning and a brief analysis of the result shown. A summary analysis of
the results presented in the figures, tables, and graphs is included in the discussion
in Section 5.
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Figure 8. Soft shadowing of the animated Volund character, and a quality comparison of VWSS and MVR as the area light (yellow) grows to 64× its
original area. Additional light samples are distributed across the area light as it grows. A constant rate of one light sample per two units of light area is
maintained (ranging from 8 to 512 samples). The value of an algorithm based on reprojection is demonstrated by examining how rapidly the quality of
the result declines as the synthesized view(s) diverge from the source view. A close-up comparison (bottom) of shadows generated by MVR (left) and
VWSS (right) reveals very similar results even as new light samples are further from the source view located at the center of the area light.
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Figure 9. The output of VWSS (left) and PCSS (right) for the Warriors(top) and Cliff-
side(bottom) scenes. Perceptual image-quality measure HDR-VDP2 generates heatmaps by
comparing each algorithm’s output with the high-quality reference image while applying fil-
ters that model human vision. Red areas indicate a high probability that differences will be
perceived, and blue areas indicate low probability. In these scenes, VWSS renders shadows
with higher perceived quality in a similar amount of time as PCSS.
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Figure 10. The output of PCSS (left), VWSS (middle), and MVR (right) for the Challenger
model. PCSS and other single-view approximations have common failure cases. For example,
thin projected geometry that falls between depth-map texels won’t be found during the PCSS
blocker search step. This is demonstrated by noticeable holes appearing in the sword’s shadow
(top left). Using an identical number of samples per pixel, VWSS (top middle) has no such
failure, delivers quality closer to MVR (top right), and retains rendering time similar to PCSS.
Additionally, PCSS-style algorithms that perform a blocker search compute an average of
the depth values found. This approximation prevents them from properly handling occluder
fusion in some scenarios (bottom left). By z-buffering points projected to many depth maps,
VWSS handles occluder fusion properly and produces a result similar to MVR.

PCSS
Constant Depth Bias Constant Depth Bias Constant Depth Bias

VWSS MVR

Figure 11. VWSS exhibits self-shadow banding artifacts similar to PCSS when using a con-
stant depth-bias value during shadow mapping. This similarity exists since VWSS still sam-
ples occluder geometry from only a single view. MVR does not have these banding artifacts
since it rasterizes (resamples) polygons for every depth map before applying a depth bias.
Despite the banding, VWSS introduces less incorrect light leaking than PCSS in complex
occlusion scenarios (box highlight). Images modified to emphasize self shadowing.
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GPU Performance of Soft-Shadowing Algorithms on Various Scenes

Multi-View Algorithms use 24 Depth Maps @ 120 spp

Scene
# of # of

Algorithm G-Buffer
Point Depth

Lighting Total SD
×Faster ×Faster

RMSE
Triangles Points Generation Maps Depth Total

Challenger 90,007 40,541

MVR 0.261 0.860 1.300 2.421 0.161 1.497

VWSS 0.262 0.115 0.286 1.259 1.922 0.421 2.15 1.26 1.801

PCSS 0.262 0.021 1.590 1.873 0.092 2.753

Volund 240,186 57,188

MVR 0.300 1.358 1.308 2.966 0.149 1.995

VWSS 0.293 0.109 0.261 1.272 1.935 0.131 3.67 1.53 1.428

PCSS 0.291 0.052 1.767 2.110 0.105 2.503

Warriors 510,523 101,002

MVR 0.400 4.095 1.280 5.775 0.298 1.437

VWSS 0.397 0.471 0.342 1.120 2.330 0.481 5.04 2.48 1.627

PCSS 0.394 0.157 2.060 2.611 0.144 3.608

Cliffside 672,927 347,060

MVR 0.683 5.148 1.271 7.102 0.540 1.129

VWSS 0.660 0.746 0.636 1.261 3.303 0.575 3.73 2.15 1.316

PCSS 0.681 0.153 2.246 3.080 0.161 3.232

Table 1. GeForce GTX Titan X (Maxwell) GPU performance of VWSS compared to MVR and PCSS. VWSS and MVR use 24 depth maps of 10242

resolution and 32-bit precision. Each screen pixel uses a 5 sample PCF filer on each depth map, resulting in 120 depth-map samples per pixel. PCSS
uses a single depth map, a 64 sample blocker search, and a 96 sample PCF filter, resulting in 160 depth-map samples per pixel. VWSS accelerates
multi-view depth-map rendering time ∼2×-5× (highlighted blue) and improves on MVR’s total rendering time up to 2.5× (highlighted red). Although
VWSS uses fewer total visibility samples, it matches PCSS performance (bolded) while producing images with less total error (RMSE). Scenes with
complex geometry benefit the most from VWSS. GPU times reported in milliseconds.
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GPU Performance of Soft-Shadowing Algorithms on Various Scenes

Multi-View Algorithms use 128 Depth Maps @ 640 spp

Scene
# of # of

Algorithm G-Buffer
Point Depth

Lighting Total SD
×Faster ×Faster

RMSE
Triangles Points Generation Maps Depth Total

Challenger 90,007 40,541

MVR 0.261 5.396 7.822 13.485 1.709 0.407

VWSS 0.262 0.115 1.118 7.757 9.260 0.943 4.38 1.46 0.774

PCSS 0.262 0.021 1.590 1.873 0.092 2.753

Volund 240,186 57,188

MVR 0.300 10.816 8.242 19.371 2.928 0.411

VWSS 0.293 0.109 1.216 7.952 9.588 0.795 8.16 2.02 0.772

PCSS 0.291 0.052 1.767 2.110 0.105 2.503

Warriors 510,523 101,002

MVR 0.400 22.101 7.469 29.990 5.876 0.403

VWSS 0.397 0.471 1.253 6.938 9.098 0.440 12.82 3.30 0.702

PCSS 0.394 0.157 2.060 2.611 0.144 3.608

Cliffside 672,927 347,060

MVR 0.683 30.320 7.679 38.834 6.243 0.255

VWSS 0.660 0.746 2.910 6.823 11.525 0.821 8.29 3.37 1.129

PCSS 0.681 0.153 2.246 3.080 0.161 3.232

Table 2. GeForce GTX Titan X (Maxwell) GPU performance of VWSS compared to MVR and PCSS. VWSS and MVR use 128 depth maps of 10242

resolution and 32-bit precision. Each screen pixel uses a 5 sample PCF filer on each depth map, resulting in 640 depth-map samples per pixel. PCSS
uses a single depth map, a 64 sample blocker search, and a 96 sample PCF filter, resulting in 160 depth-map samples per pixel. VWSS accelerates
multi-view depth-map rendering time ∼4×-13× (highlighted blue) and improves on MVR’s total rendering time up to 3× (highlighted red). Despite
being slower than PCSS, the increased light-sample counts of VWSS significantly improves RMSE at a lower cost than MVR. Scenes with complex
geometry benefit the most from VWSS. GPU times reported in milliseconds.
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Figure 12. GeForce GTX Titan X (Maxwell) GPU performance of shadowing algorithms as
geometric complexity increases. The top graph plots the data presented in Table 1, and the
bottom graph plots data from Table 2. Multi-view rasterization (red) exhibits the expected lin-
ear rise in rendering time as geometric complexity increases. Unlike MVR, the performance
of VWSS (blue) is weakly linked to the scene geometry. Instead, VWSS performance is in-
fluenced by the number of points and target depth maps. VWSS performance is also more
stable than MVR, as shown by the lower standard deviation (especially at higher geometry
complexity and depth-map counts).
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Figure 13. Top: A comparison of GPU performance of the buffered and unbuffered VWSS
implementations described Section 3, with an increasing number of depth maps. As the num-
ber of depth maps increases, the unbuffered implementation incurs a performance penalty due
to memory-bandwidth saturation during its fully parallel execution. Bottom: A comparison
of point-rendering implementations using GPU Compute (blue) or the programmable GPU
graphics pipeline (red). Each implementation processes an identical workload. The GPU
graphics pipeline is unable to render points in a partially parallel manner without decreas-
ing performance. Unexpectedly, a serial GPU graphics pipeline implementation is slower
than serial GPU compute, especially as the number of rendered depth maps increases. This
demonstrates that passing point data through the GPU graphics pipeline as vertices rather
than directly loading them in GPU Compute, or as output generated from rasterized triangles,
reduces the achievable performance. 21
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5. Discussion

Our algorithm establishes a useful new point on the quality-to-performance contin-
uum for real-time applications rendering soft shadows using local area lights and
complex dynamic occluders. Scenes with high-complexity occluders benefit the most.
Performance is faster than MVR since we traverse occluder geometry only once, im-
prove parallelism with an optimized point representation, and exploit locality while
rendering depth maps. As the geometric complexity of the scene decreases, the bot-
tleneck we address no longer exists and brute-force rasterization is acceptable.

Although our approach has similarities to imperfect shadow mapping(ISM), it
takes a fundamentally different approach aimed specifically at exploiting current GPU
hardware to produce high-quality shadows cast by direct light sources in real time.
ISM also uses point clouds, but our approach produces point data specific to the cur-
rent area light, using rasterization hardware ideal for view-specific real-time point
generation. Both algorithms create many shadow maps, but we restructure the render-
ing computation to increase GPU utilization, enabling a denser sampling of visibility.

Of our two VWSS implementations— buffered and unbuffered— the buffered im-
plementation is faster. Although there are likely scenarios where this relationship isn’t
true, the unbuffered implementation’s single pass execution in the graphics pipeline
is usually stalled by memory-bandwidth contention and saturation. Despite this, the
advantage of simplified and bounded memory management may be well worth the
performance penalty in certain cases. For example, some order-independent trans-
parency algorithms that sort per-pixel fragments [Wyman 2016] can be challenging to
use since they must work around unbounded memory requirements.

We experimented with point-rendering implementations using both GPU Com-
pute and the GPU graphics pipeline. GPU Compute is faster in every configuration
(serial, partially parallel, fully parallel) when processing identical point workloads.
We attribute this performance difference to 1) unnecessary setup and raster operations
that the graphics pipeline performs on point primitives and 2) increased parallelism
achieved in GPU Compute from the ability to explicitly control scheduling. As a
result, our recommendation is to use GPU Compute for point rendering. We are pur-
suing further gains that may be realized by asynchronous compute on platforms that
support it.

We evaluated the geometric and temporal aliasing of our technique compared to
MVR and PCSS. Since our method uses multiple depth maps, it exhibits less aliasing
of both types compared to PCSS. However, since we do not resample the occluder
geometry for each depth map, aliasing is still more pronounced than MVR. We ex-
perimented with temporal averaging, inspired by previous temporal improvements to
shadows [Scherzer et al. 2009; Schwärzler et al. 2013], to improve VWSS aliasing.
The preliminary results are encouraging (see the supplementary video), but can suffer
from ghosting artifacts like most temporal methods.
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5.1. Limitations

There are scenarios where our point-based approach is not optimal. When only a few
occluding polygons exist that generate many points in the light’s view, the geometry is
easily cached and brute-force rasterization is better designed for this kind of workload.
This scenario is becoming less common since the complexity of real-time geometry
is increasing faster than image resolution [Gross and Pfister 2007], but pathological
situations can still present themselves.

Our solution makes heavy use of GPU storage and memory bandwidth. As a con-
sequence, the lighting phase remains a challenging problem. In the near term, render-
ing screen-space lighting at a lower resolution, utilizing dynamically varying lower
resolution or precision depth maps, employing reconstruction filtering techniques, or
adopting temporal and/or stochastic methods may improve lighting performance at
varying costs to image quality and latency. Asynchronous compute may provide the
opportunity to pipeline and overlap the depth-map rendering and lighting steps, fill-
ing utilization gaps. Longer term, better compression techniques may emerge for
multi-view depth maps. We do not integrate any of these optimization solutions in
our algorithm, since they are not central to our contribution, are applicable to nearly
all shadowing algorithms, and no single solution is best in all cases.

Similar to PCSS, our approach displays bands of self-shadowing. Even though
we store more information than a typical depth map, occluder geometry is still sam-
pled from a single view. After shadow-map depth biasing, the reprojected (warped)
samples we produce are less accurate than those produced by resampling occluder ge-
ometry in rasterization. Beyond this, VWSS shares the same core limitations as all al-
gorithms based on shadow mapping. Several decades of refinements and workarounds
can be applied to VWSS, just as they would for any shadow-mapping algorithm. For
clarity and simplicity of evaluation, we have not employed them here.

5.2. Conclusion

Soft shadows are one of many complex lighting phenomena that can be approximated
using multi-view rendering. Unfortunately, today’s GPUs do not support multi-view
rendering well, even when those views are quite similar to one another. We chose
points produced frame-by-frame to avoid the existing limitations; however, current
GPU hardware can be improved for point rendering. Specifically, robust support for
high-performance atomic functions and increased memory bandwidth are critical to
improve multi-view z-buffering in GPU compute.

As useful as they are, points are not a direct attack on the multi-view problem.
Utilizing a hardware-accelerated GPU graphics pipeline to render multiple views in
a single pass is essential. In the short term, this may be accomplished by removing
limitations of the Geometry Shader, the rasterizer, or using ray tracing as its viability
matures. In the longer term, the GPU graphics pipeline should be improved to effi-
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ciently support multi-view rendering directly from triangles, without a transformation
into points. A potential alternative may be to create a separate, more efficient path-
way designed for indirect effects by providing a flexible compute system with direct
access to hardware-accelerated processing of geometry.

The point generation, warping, and parallelism we exploit might also find appli-
cation elsewhere. For VWSS, high-quality image warping is enabled by the viewing
constraints typical of real-time area lights. Other applications with similar constraints
may benefit from our approach. Soft shadows cast from omni-directional and volume
light sources, depth of field, and ambient occlusion may all benefit, since they rely
heavily on depth maps and their approximations require many views.

Acknowledgements

We thank Unity Technologies for releasing the Blacksmith demo content to the public for
free. We also thank David Luebke, Josef Spjut, Turner Whitted, and Jon Story for helpful
discussions.

References

ANNEN, T., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND KAUTZ, J. 2007. Con-
volution Shadow Maps. In Proceedings of the 18th Eurographics conference on Render-
ing Techniques, Eurographics Association, Aire-la-Ville, Switzerland, EGSR’07, 51–60.
doi:10.2312/EGWR/EGSR07/051-060. 4

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E., AND KAUTZ, J. 2008.
Exponential Shadow Maps. In Proceedings of graphics interface 2008, Canadian In-
formation Processing Society, Toronto, Ont., Canada, GI ’08, 155–161. URL: http:
//dl.acm.org/citation.cfm?id=1375714.1375741. 4
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