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ABSTRACT

 

This paper describes visualization techniques for interac-
tive planning in a physical force simulation called AFS.
We have developed a 3D environment in which textures
are overlaid on a simulated landscape to convey informa-
tion about environmental properties, agent actions, and
possible strategies. Scenes are presented, via automated
camera planning, such that in some cases agent goals can
be induced visually with little effort. These two areas of
visualization functionality in AFS exploit properties of
human low-level and intermediate-level vision, respec-
tively. This paper presents AFS, its visualization environ-
ment, and an experiment we have run to explore the
relationship between AFS visualizations and the high-level
planning process.

 

INTRODUCTION

 

In mixed-initiative planning, users collaborate with an
automated assistant to generate and carry out different
courses of action. Effective collaboration between a
human planner and an automated planning system requires
that the participants work in areas where they perform
best, use appropriate representations for communication,
and effectively acquire and transfer authority for planning
tasks [1, 5]. A number of mixed-initiative systems have
been developed in planning and natural language process-
ing research (e.g., TRAINS [11], TRIPS [12], COL-
LAGEN [23], AIDE [24, 25]), and significant progress has
been made on abstract models of mixed initiative (e.g.
[7]). Nevertheless, although the broad outlines of the area
are gradually becoming better understood, basic questions
about user interaction techniques for mixed-initiative
assistance remain open.
The term mixed-initiative assistance covers a wide range
of potential activities, including providing timely informa-
tion for situation assessment, helping users focus on criti-
cal problem areas, making suggestions about appropriate
actions, and handling plans and actions delegated by the
user. Many of the systems developed to date have relied on
natural language in interacting with users, an appropriate
choice for many situations. Our interest, in contrast, lies in
a different interaction style, one more closely associated
with conventional graphical user interfaces.

Direct manipulation techniques combined with graphical
data presentation (which we will refer to here simply as
GUI techniques) dominate modern interactive software.
The purported benefits of GUIs, in comparison to other
styles of interaction, include reduced error rates, faster
learning and better retention, and facilitation of explor-
atory behavior. GUI interfaces gain these benefits by offer-
ing users a structured, predictable environment: like real-
world objects, static software objects remain static over
time; environmental response to a given action is the same
if the action is repeated under the same conditions; actions
are usually taken at the user's direction and pace, rather
than those of the environment; the environment does not
initiate activity, but rather only responds to user actions
[25]. These properties reduce the space of decisions the
user must make to a more manageable level (e.g., time
pressure, uncertainty, and environmental instability,
including exogenous events, are abstracted away.) Unfor-
tunately, the same properties that help users solve prob-
lems working alone also limit the role of an assistant. How
can an assistant contribute effectively to the problem-solv-
ing process if it is not allowed, for example, to take visible
actions that the user may not yet have thought of?
We believe that GUI techniques can benefit the interaction
between a user and an intelligent assistant, but that some
concessions must be made in the design of the assistant.
Our approach has been to emphasize the visual communi-
cation abilities of an assistant, so that it can use the visual
GUI environment to guide and sometimes constrain the
potential actions of the user. Our work on mixed-initiative
assistance has focused on strategic, physical planning
problems in AFS, an abstract force simulator [2, 22]. AFS
is a general-purpose simulation system that supports
experimentation with interactive planning techniques and
their relationship to physical processes. AFS incorporates
an assistant that works behind the scenes to generate plans
potentially helpful to the user; a visualization interface
presents these plans and their supporting information to
the user by graphical means, relying as much as possible
on visual techniques rather than language (i.e., text, sym-
bols, or iconic representations) for communication. Our
goal is not to build an intelligent, collaborative assistant
that relies solely on direct manipulation and graphics
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(though intelligent rooms and ubiquitous computing
research suggest that this is at least conceivable) but rather
to gain a better grasp of the relationship between GUI
techniques and mixed-initiative assistance. We believe that
a better understanding of this relationship may lead to
improved problem-solving performance and increased
user acceptance of intelligent assistants.
Although our work arises from research on planning in the
user interface, it can also be seen as a form of intelligent
visualization, a staple of research in the intelligent user
interfaces community. Intelligent visualization researchers
have built systems for automatic explanation generation,
intelligent tutoring, and other tasks [10, 20, 8, 9, 14, 3, 4],
relying on many of the same sources we use. The require-
ments for our work differ in some ways from these efforts,
however: the assistant and the user observe an external
process, each able to guide it but without complete con-
trol; camera manipulation is viewed as a means of commu-
nication, rather than only a mechanism for visual
orientation; problem-solving is reactive and opportunistic,
with no extended narratives involved; neither party acts in
a fixed role in the interaction (e.g., user as commander or
student, assistant as tutor or information provider.) None-
theless similarities to existing systems will be clear. 
The remainder of this paper is structured as follows. The
AFS section describes the simulation, which provides a
concrete setting for interaction issues relevant to mixed-
initiative planning. We describe the visualizations AFS
produces and explain their relationship to models of
human visual processing. The experimentation section dis-
cusses a study of user consistency in associating visual
features with specific physical interpretations; this consis-
tency will eventually be exploited by AFS to convey the
planning intentions of the assistant in an unobtrusive, natu-
ral-seeming fashion in the physical domain. In the conclu-
sion, we tie our research to ongoing efforts to formalize
the concept of affordances in the user interface.

 

AFS

 

AFS provides a physical domain in which abstract agents
(which we alternatively call “agents,” “force units,” or
simply “blobs”) can interact, based generally on Newto-
nian physics. Units and inanimate objects have mass, size,
and shape; they may be solid or permeable; they move
with variable friction over a domain-dependent surface;
they apply force to one another, causing damage/mass
reduction.
In AFS's Capture the Flag (CTF) domain, two teams of
force units move over a terrain, their travel constrained by
mountains, water, and forests. Each team is responsible for
defending a set of stationary flags. A team successfully
completes a scenario by destroying all the members of the
opposing team or capturing all of its flags. Figure 1 shows
a sample scenario, in a birds-eye or plan view. In this
domain, as in all AFS domains, force units rely on a small

set of primitive physical actions: they may move from one
location to another and apply-force to other units and
objects such as flags. These actions can be specialized and
combined in various ways to form higher level strategies,
such as blocking a pass, encircling a flag, attacking an
opponent in a group, and so forth. Plan execution and
monitoring is provided by a hierarchical planner at the
center of the system.
Ordinary interaction with AFS is via direct manipulation.
The user can direct agents by selecting them and assigning
to them either low-level actions or higher-level plans. One
role of the assistant is to interpret the strategic situation in
the unfolding simulation, to inform the user of significant
relationships or events, and to suggest ways of dealing
with them, in order to help the user make informed deci-
sions Visual communication toward these ends is carried
out by two means: texture-based visualizations and sce-
nario-based camera planning. We discuss each type in
turn.

 

Texture-based visualizations

 

Our work on texture-based visualization studies ways of
harnessing the low-level human visual system to the task.
When we look at an image, certain visual features can be
identified very quickly, without the need for search. These
features are often called preattentive, because their detec-
tion precedes focused attention in the low-level human
visual system [27, 30]. Preattentive features include visual
properties like color, brightness, orientation, size, and
motion. When applied properly, these features can be used
to perform exploratory data analysis. Examples include
searching for data elements with a unique feature, identi-
fying the boundaries between groups of elements with
common features, tracking groups of elements as they
move in time and space, and estimating the number of ele-
ments with a specific visual feature. Preattentive tasks are
performed very rapidly and accurately; they can often be
completed in a “single glance'' of 200ms or less. The time
required for task completion is furthermore independent of
display size; users can increase the number of data ele-
ments in a display with little or no increase in the time
required to analyze the display.
Our research focuses on identifying such findings in the
vision and psychophysical literature, then extending these
results and integrating them into a visualization environ-
ment. To date, we have compiled an interlocking collec-
tion of results on the use of color (hue and luminance) [15]
and texture (size, density, and regularity) [16, 17] for mul-
tidimensional visualization. These results have been used
to visualize a number of real-world applications including
medical scans [26], weather tracking [16, 17], and scien-
tific simulations [19].
In our AFS work, we have applied these findings to the
presentation of strategic, spatially distributed information
to assist the user in making planning decisions. The design
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of our visualizations in AFS and the work cited above cen-
ters around the concept of a perceptual texture element, or
pexel. Pexels are graphical icons that collectively convey
color and texture information: hue, luminance, size, den-
sity, and regularity, among other possibilities. Pexels
appear in the visualization in Figure 2 as small vertical
strips of color standing on end over the landscape. In this
visualization, for example, the height of a pexel represents
the shortest time it will take any agent to reach a given
location; the color of a pexel corresponds to the team of
that agent. As a simulation unfolds, the user sees the local
colors and heights of the pexel field spread and change; it
becomes immediately obvious when a red or blue flag is
enveloped by a pexel field of the opposite color, indicating
that it is in danger of capture.
This is not intelligent assistance in any significant sense;
however, the ability to manipulate the association between
textures and strategic information in the simulation does
provide an assistant with an important communicative
tool. We revisit this point in the Experimentation section.

 

Scenario-based camera planning

 

The Capture the Flag scenario is presented in an environ-
ment that allows the user to navigate using an “eye in
hand” interface. The user is free to view the scenario from
any position and angle. The automated system is also able
to manipulate the camera through a camera-planning mod-
ule. In particular, the camera can be positioned by the sys-
tem to present the scenario such that certain user actions
are more readily realizable that others. Using knowledge

of situated problem solving and visualization, the camera
planner attempts to situate the camera, and thereby situate
the embodied user, in order to control the affordances per-
ceived within the virtual environment. In this way, the AFS
system can lead the user into taking specific actions.
Our approach to camera planning treats the problem as a
form of constraint satisfaction. Constraints are placed on
what the resulting visualization should look like and the
camera planner must meet those constraints to place the
camera in the optimal position. Inconsistent constraints
cause conflict, which must be resolved by relaxing one of
the conflicting constraints to some degree. Based on the
high-level goals assigned to the force-units in the scenario,
a set of visualization constraints are fed into the camera
planner. The camera planner uses these constraints to eval-
uate possible camera positions as it performs a limited
depth hill-climbing search. Some of the constraints that
can be passed into the camera planner are given below.
Most are related to conveying a suggestion that one agent
should attack a specific opponent or capture a flag.

 

•

 

In-scene:

 

 Whether the agents and objects participat-
ing in the action are visible.

 

•

 

Centered-vertical:

 

 Whether the agents and objects
are centered vertically in the scene.

 

•

 

Background:

 

 Whether “distractor” agents are visi-
ble.

 

•

 

Attack-angle:

 

 How closely the “optimal” view is
met: from an attacking agent to the center of a tar-
get object. 

 

•

 

Agent-occlusions:

 

 Whether any agents obscure par-
ticipating agents or objects.

 

•

 

Terrain-occlusion:

 

 Whether uneven terrain (e.g. a
mountain range) obscures agents or objects.

 

•

 

Too-low:

 

 Whether the angle of view is too low to
show sufficient context.

 

•

 

Viewing-distance:

 

 How closely a specific, constant
viewing distance is matched.

These constraints are represented by heuristic functions
that execute in sequence to evaluate every candidate cam-
era position during the search. The constraints return
numerical values and the camera planner satisfies with the
smallest total score. To reduce the size of the search space,
we approximate the solution algorithmically and select
that as a starting point. The constraints are ordered by
importance and weighted so that more important con-
straints are less likely to be relaxed before less important
constraints. For example, terrain-occlusion is ranked high
in importance because it is essential that specified objects
are visible to the user. The weight values for each con-
straint were determined experimentally.
The constraints coded into the camera planner capture the
relationships between objects to be viewed in a given
scene. To accomplish this is a manner consistent with our

 

Figure 1. AFS plan view
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model of visualization in situated environments, we based
our heuristic functions on plausible visual routines in the
intermediate layer of vision. The intermediate layer of
vision is responsible for capturing and decoding informa-
tion about relationships between objects in the visual field,
such as inside/outside, above/below, less than/greater than
(angle of body orientation), etc. The visual routines are
computationally implemented in AFS using geometric
comparisons that simulate the effects of the visual routines
themselves in order to provide the camera-planning mod-
ule with sound, rapidly calculable heuristics.
A sample visualization is shown in Figure 3. The assistant
has smoothly moved the camera from its previous position
to the current one, to convey the suggestion that the blue
force unit in the foreground should attempt to capture the
red flag immediately in front of it. AFS can also generate
visualizations for comparing opponent agents, to help the
user evaluate a potential suggestion. Further camera-plan-
ning visualizations have been designed and user-tested
with paper diagrams, but these have not yet been imple-
mented. In contrast to the texture-based visualizations,
here the system contributes actual assistance, via sugges-
tions and the implicit ruling out of alternatives. The assis-
tant currently operates under the restriction that the visible
scene may not be modified to improve a visualization

(e.g., simply removing irrelevant agents, flags, or land-
scape features). As we come to a better understanding of
the capabilities and limitations of the system under this
restriction, it may be relaxed.

 

EXPERIMENTATION

 

We gain some significant advantages in relying on rela-
tively low-level perceptual mechanisms in our visualiza-
tion techniques—speed, high volume, multi-dimensional
data integration through texture manipulation, effective
(though limited) recognition of simple agent plans by
exploitation of visual routines. One of the drawbacks of
the approach, however, is that the interaction takes place
below the cognitive level—that is, in AFS we have
adopted the traditional view of planning as search through
a problem space, with states represented in symbolic
terms. Although users are able to extract properties of the
visualizations efficiently, there is no necessary relationship
between these properties and abstract concepts relevant to
planning problems.
A straightforward solution is to rely on conventions for
visual representation: the height of a pexel corresponds to
some plan or situation assessment variable x, its hue, lumi-
nance, density, and so forth to other variables. These rela-
tionships must be learned by the user before the

Figure 2. Texture-based visualization of strategic status in AFS
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visualization can be interpreted. We have experimented
with a different approach, however, one especially well-
suited to the physical planning domain. Texture fields such
as the ones shown in Figures 2 and 3 can be viewed as
abstractions for conveying information, but that can also
be interpreted in physical terms. It is possible to see the
pexel field as a field of grass, for example, or other, similar
visual texture-producing ground cover. We naturally asso-
ciate such textures with our physical interaction with it;
that is, we are attuned to its affordances [13]. If users con-
sistently relate specific visual texture properties to specific
physical properties, such as ease of movement, direction,
or speed, then AFS might exploit this relationship to con-
vey physical planning suggestions in visual terms, without
depending on the user's learned knowledge of display con-
ventions.
To explore this issue, we conducted an experiment based
on artificial visualization scenarios. Our 20 subjects were
students and interns, both men and women, working at
North Carolina State University. Their ages varied
between 20 and 30. Each subject was presented with a
sequence of snapshots consisting of a 3D field of red pex-
els surrounding a blue ball (which would represent an
agent or blob in AFS), as shown in Figures 4 and 5. Values
of blob radius, pexel density, and pexel height, which we

will refer to as the variables Radius, Density, and Height,
were varied across the snapshots. For each snapshot, the
subject was asked, “If the ball were to be rolled across the
field shown, how fast would it move?” A discrete set of
choices was available from a pop up menu, ranging from
Speed 1, the lowest, to Speed 10, the highest. Subjects
were allowed to experiment with a few different snapshots
before starting the experiment proper, in order to develop
an internal calibration of speeds for the textures they
would see.
Because of the small number of variables we chose to
examine, a full factorial design was possible. Radius alter-
nated between 0.60 and 0.75 units; Height ranged among
four values of 0.25, 0.40, 0.55, and 0.75 units; Density
ranged similarly among four values of 0.25, 0.40, 0.55,
and 0.75 units. The units of measurement here are unim-
portant; the specific values were chosen after prototyping
and testing by the experimenters. Thirty two combinations
of these values are possible (2 x 4 x 4); each subject saw
every combination three times, in randomized order. The
data resulting from the experiment consisted of a Subject
identifier, the specific values of Radius, Density, and
Height for each snapshot, the Speed selected, and the
Duration of the user's selection action.

Figure 3. Camera planning visualization result in AFS
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An analysis of variance shows that all factors have a sig-
nificant influence on the mean value of speed (for Radius
F=26.48, p<0.0001; Density, F=51.71, p<0.0001, Height,
F=700.05, p<0.0001.) Subjects most strongly associated
Height with Speed, followed by Density and then by
Radius. We found a significant effect of Subject on Speed
as well (F=9.80, p<0.0001), which limits the generality of
this study, but an exploratory examination of the data is
nevertheless informative.
Figure 6 shows projections through the experimental
dataset. In the top graph, for example, we collected all the
values for each combination of Subject and Height, merg-
ing the different values of Radius and Density, and com-
puted the mean of each partition. For each subject we then

see four values, shown as marks on a line, that represent
the average speed of the blob for each of the four possible
pexel height values: 0.25, 0.40, 0.55, 0.75. The other two
graphs are constructed analogously for Radius and Den-
sity. We discarded the first subject’s results because of pro-
cedural irregularities, but found significant patterns of
similarity among the remaining subjects. In general, sub-
jects judged that the higher the pexel field, the slower a
blob will be able to move. (Subject 2’s results are consis-
tent with a reversal of the magnitude of speed choices;
talking with subjects afterwards we found this to be a
minor source of confusion for others as well.) Except for
subjects 19 and 20, a comparable pattern holds for Radius:
larger blobs are judged to be able to move faster than
smaller ones. Finally, a more complex and slightly unex-
pected pattern holds for Density. For most subjects, higher
pexel density is associated with higher speed, which corre-
spond to a physical interpretation in which the blob rolls
over the field rather than through the individual pexels For
a few subjects (e.g., 6, 12, 13), however, the lowest density
affords faster movement as well, producing a U-shaped
relationship between Density and Speed.
This exploratory study is a small but promising step in our
research. Given experimentally validated relationships of
this kind, we intend to extend the current assistant in AFS
to convey suggestions about agent assignments by the gen-
eration of appropriate textures. For example, the assistant
currently does path planning for force units, and can draw
such paths in the plan view of the simulation to show its
suggested courses of action. If the assistant’s suggestions
conflict with the user’s intended plans, however, the path
icons are superfluous and possibly confusing. Textures
offer a less obtrusive solution: the assistant can map lower
height pexels over the regions over which force units can
move more safely, or possibly to greater strategic effect,
without forcing an obvious choice on the user. We are cur-
rently running a comparable study of user inference of
direction of movement based on the orientation of pexels;
we will continue by designing more formal experimental
studies of the relative associations between texture fea-
tures and physical behavior. We hope to identify consistent
relationships between visual textures and physical proper-
ties such as speed and direction, but also accessibility,
safety, vantage point utility, among others.

 

DISCUSSION

 

Our work in this area grows out of an interest in situated
problem-solving and affordances in the user interface [25].
Situated problem solving differs from more conventional
forms of problem-solving. When embodied within an
environment, how one perceives the environment and what
is perceptible within the environment is of paramount
importance to what actions one chooses to make. The
environment itself provides cues—affordances—about
what appropriate actions there are, but these cues must

 

Figure 4. Sample experiment trial (A)

Figure 5. Sample experiment trial (B)
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first be perceived and understood within the context of
one’s relationship with elements within the environment.
For example, the brink of a gulch may be perceived as
affording falling off of, but if one is moving towards the
brink at a high velocity, the brink may suddenly be per-
ceived to afford leaping across [28]. Likewise, one cannot
make use of tools within the environment if they are hid-
den from view or out of reach.
In our view, the process of situated problem solving is iter-
ative in nature, involving three stages: perception, inten-
tion, and action. The first stage, perception, involves using
the senses to determine possible actions that can be made
in the environment. This process involves registering the
affordances the environment provides for action. The sec-
ond stage, intention, involves taking the results of percep-
tion and choosing the best action that will advance the
organism towards a given goal. The final stage, action,
occurs when intent is transformed into behavior by inter-
acting directly with the environment [21]. Actuators in the
environment, including the organisms own motor control,
are activated in order to bring the organism closer to
achieving its goal. Actuators affect the environment and
the organism’s relationship with the environment, result-
ing in a new situation. The cycle iterates, starting with per-
ception of the environment and how it has been changed
by the previous cycle. New intentions are formed and car-
ried out.

Intentions are formed when there is a mismatch between
the goals internal to the organism and the state of the
external world [21]. Before intentions can be formed, the
organism must sense its own situation within the surround-
ing environment: it must become aware of the environ-
ment’s current state as well as its relationship with the
environment. Needless to say, the perceptual senses play
an important role in situated problem solving. The sensory
apparatus, however, cannot be merely instruments for
recording sensory stimuli; they must proactively interpret
and transform the sensory stimuli into affordances. 
The perception of affordances is primarily a cognitive
interaction with perceptual stimuli. Affordances do not
exist without an organism to perceive them. By presenting
plans three-dimensionally, viewed from a camera that is
allowed to move anywhere within the playing-space, we
call on the metaphor of embodiment within a 3D environ-
ment. By embodiment we mean that the user interacts with
the virtual 3D environment as if he were present in the
environment at the location of the camera. With the user
embodied in a 3D virtual environment, we are able to
make use of the same problem-solving strategies one uses
when interacting with the real-world environment.
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