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Abstract. This paper presents a technique that allows test engineers to visually
analyze and explore within memory chip test data. We represent the test results
from a generation of chips along a traditional2D grid and aspiral. We also show
correspondences in the test results across multiple generations of memory chips.
We use simple geometric “glyphs” that vary their spatial placement, color, and
texture properties to represent the critical attribute values of a test. When shown
together, the glyphs form visual patterns that support exploration, facilitate dis-
covery of data characteristics, relationships, and highlight trends and exceptions
in the test data that are often difficult to identify with existing statistical tools.

1 Introduction

One of the biggest challenges in analyzing memory test data is discovering interrela-
tionships between different test attributes. It is often time consuming and difficult to
correctly interpret different test attributes using existing data analysis tools. With semi-
conductor manufacturing processes and technology changing rapidly, and test complex-
ity increasing with every new generation of chips, its imperative that test data analysis
tools keep pace.

The objective of memory testing (or, more generally, Integrated Circuit (IC) testing)
is not only to isolate bad chips, but also to identify the root cause of failure which could
be either weaknesses in chip design, or issues in manufacturing processes. Thus testing
also acts as a feedback loop for design and manufacturing. With time to market the chip
being absolutely critical for any IC company, its important that this feedback is inte-
grated into the design and manufacturing process in a timely and efficient manner. This
depends on how the data is organized, and more importantly, on how well it is presented
for analysis and interpretation. One possible solution is to use visualization techniques
to convert this large and complex dataset into a multi-dimensional visual image that
the test engineers can use for exploring, discovering, comparing, validating, account-
ing, monitoring, identifying faults and process excursions, and studying the effects of
adjusting different test parameters.

Numerous efforts have been made to use test data to improve yield and optimize
tests. Previous research work includes developing a fault simulator to determine fault
coverage of test patterns [1]. Sang-Chul et al. have developed an automatic failure anal-
ysis system based on production data [2]. Researchers have applied data-mining tech-
niques to optimize VLSI testing [3]. Test visualization techniques have also been used



2 Amit P. Sawanta, Ravi Rainab, and Christopher G. Healeyc

in area of software engineering to assist fault localization [4]. Recently Van de Goor et
al. have developed methods to evaluate DRAM production test results to optimize tests
and fault coverage [5].

The remainder of this paper proceeds as follows. In Section 2, we provide details on
data collection. Section 3 describes our visualization technique. Sections 4 and 5 pro-
vide a few examples of visualizing memory chip test data. Finally, Section 6 discusses
conclusions and future work.

2 Data Collection

The visualization process begins by collaborating with domain experts to identify the
important parameters relating to yield and test optimization they want to analyze, ex-
plore, and monitor. The test datasets for this paper are taken from Qimonda AG1, the
fourth largest DRAM chip design and manufacturing company in the world. Generally
memory test results are collected from manufacturing sites for analysis purpose. They
consist of a spreadsheet report of the tests with corresponding failure rates and perti-
nent information about the individual test’s attributes for each type of memory chip. It is
then up to the test engineer to manually interpret the test results. The memory chip goes
through different sets of tests called insertions. Each test typically has more than one
critical attribute associated with it. Moreover, the same critical attributes may appear in
multiple insertions. This leads to a complex dataset that is very large, and difficult to
analyze and interpret correctly.

Data is viewed as a spreadsheet where rows represent individual tests and columns
represent the attributes of the test. These attributes are typically related to critical tim-
ings and voltages of the chip, for example:tRP, tRCD, tWR, tRAS, Vdd, Retention, Lo-
gistics, Current, andFailure Rate. Attribute definitions are provided in the Appendix.
The engineers currently depend on their experience and expertise to analyze the data
and deduce meaningful information. Unfortunately, this is not an efficient method as
the amount of data is huge and the interrelationships complex enough to confuse even
the most experienced engineer.

The test datasets for this paper are taken fromDDR2/DDR3memory chips. In this
paper, we visualized the following four datasets:

1. Low Vdd at LT: This dataset contains test results from a lot (a set of memory chips)
with high failure rates at low temperature (LT) and low voltage (Vdd).

2. Retention at High Vdd and HT: This case contains a certain memory chip with
high retention failure rates on certain lots at high voltage and high temperature
(HT).

3. tRCD and tRP at HT/LT: This case contains high row to column address delay
(tRCD) and row precharge time (tRP) failure rates across multiple critical attributes
at high or low temperatures.

4. Optimized Test Data: This dataset represents a stable, high volume product in
which the tests/processes are already highly optimized and exceed the required
pass thresholds.

1 http://www.qimonda.com , formerly the memory chip division of Infineon Technologies
AG
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3 Visualization Technique

To visualize the memory test results, we adopted the following design guidelines pro-
posed by Eick [6]: (1) ensure that the visualization is focused on the user’s needs by
understanding the data analysis task; (2) encode data using color and other visual char-
acteristics; and (3) facilitate interaction by providing a direct manipulation user inter-
face.

A number of well-known techniques exist for visualizing non-spatial datasets, such
as, geometric projection, iconic display, hierarchical, graph-based, pixel-oriented and
dynamic (or some combination thereof) [7, 8]. We decided an iconic display was most
relevant to our goal of visualizing a memory chip’s test data. Our visualizations were
designed by first constructing an object to represent a single data element. Next, the
objects are positioned to produce a static visualization of the memory chip test data.
Glyphs are positioned based on scalar ranking attribute(s) within a traditional2D grid
or along a linearspiral embedded in a plane.

3.1 Placement Algorithm

Glyphs representing the attribute values embedded in a dataset have to be positioned
appropriately in order to create an information workspace for visual sense making. We
decided to use two layout methods: a traditional 2D grid, and a spiral.

A two-dimensional ordering is imposed on the data elements through user-selected
scalar attributes. We chose a 2D grid layout because it is intuitive and well-known
placement algorithm.

A one-dimensional ordering is imposed on the data elements through a single user-
selected scalar attribute, or “ranking” attribute. One way to map this ordering to a 2D
spatial position is to use a 2D space-filling spiral. Our algorithm is based on a tech-
nique introduced by Carlis and Konstan to display data along an Archimedean spiral
[9]. We have previously used 2D grid and spiral layouts to visualize storage controller
performance data [10].

3.2 Data-Feature Mapping

When we design a visualization, properties of the dataset and the visual features used
to represent its data elements must be carefully controlled to produce an effective re-
sult. Important characteristics that must be considered include [11]: (1) dimensionality
(number of attributes in the dataset), (2) number of elements, (3) visual-feature salience
(strengths and limitations that make it suitable for certain types of data attributes and
analysis tasks), and (4) visual interference (different visual features can interact with
one another, producing visual interference; this must be controlled or eliminated to
guarantee effective exploration and analysis).

Perceptual knowledge of how the human visual system “sees” different properties
of color and texture allow us to choose visual features that are highly salient, both in iso-
lation and in combination [12–14]. We map visual features to individual data attributes
in ways that draw a viewer’s focus of attention to important areas in a visualization.
Our glyphs support variation of spatial position, color and texture properties, including:
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x-positionandy-positionor linear radial position, hue, luminance, height, size, and
orientation. A glyph uses the attribute values of the data element it represents to select
specific values of the visual features to display. After consulting with the domain experts
we identify the attributes to include in a default data-feature mapping. The most impor-
tant attributes should be mapped to the most salient features. The order of importance
for the visual features we used is luminance, hue, and then various texture properties
[12]. ChipVizallows the user to interact with the visualizations by translating, rotating,
and zooming the environment. Users can change which visual features are mapped to
each attribute using click-and-drag sliders. Finally, users can select individual data ele-
ments to display a pop-up balloon that describes the exact attribute values encoded by
the element.

4 Visualization of Single Memory Chip Test Data

We selected different cases of test results taken from actualDDR2/DDR3products, and
analyzed and interpreted the results with the help of our visualization tool,ChipViz.
These cases represent four typical scenarios an engineer would encounter while ana-
lyzing memory chip test results. The first case shows the analysis of a lot with high
fallout atLT and low Vdd. The second case describes the situation where high fallout
in Retentionoccurs atHT andhigh Vdd. In the third case, we represent a more compli-
cated scenario where high fallout occurs atHT due to multiple critical attributes (tRCD
andtRP). Finally in the fourth case, we show the test results for a stable, high volume
product in which the tests/processes are already highly optimized and results exceed the
required pass rates.

4.1 VisualizingLow Vdd at LT

This dataset represents memory chip test results taken from a lot with high fallout. By
visualizing the test results run atLT, it is evident that numerous tests have high failure
rates and the overall yield is low. It is not immediately clear from the spreadsheet data
what attributes are causing this high fallout, however.

By usingChipViz in Figure 1, we take advantage of visualizing multi-dimensional
elements. TheFailure Rateof a test is directly proportional tox-position and height,
so high failure tests are sorted and can be easily viewed.y-position represents theTest
ID number. In addition to this spatial filtering process, we visualize additional critical
attributes among the high failing tests. The engineers requested to visualizeVdd as
a primary attribute, andtRASas a secondary attribute.Vdd is redundantly mapped to
luminance, hue, and size (dark to light, red to blue, and small to large for lower to higher
values, respectively).tRASis mapped to orientation (more counterclockwise twist for
larger values). By displaying the primary critical attributeVdd with the most salient
visual features (luminance, hue, and size), it is immediately evident that most of the high
failure tests are dark, red, and large, showing an inverse relationship betweenFailure
RateandVdd. Low Vdd is a common characteristic for most of the high failure tests.
This is an important piece of information as it could point to design weakness for low
voltage. The same information is visualized along a spiral in Figure 1b with distance
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(a) (b)

Fig. 1. Visualizing Low Vdd at LT, Vdd → luminance, hue, size andtRAS→ orientation: (a)
Failure Rate→ x-position, height andTest ID→ y-position; (b)Failure Rate→ radial position,
height

from the center of the spiral proportional toFailure Rate(i.e., farther from the center for
higherFailure Rates). We can easily conclude that as a data element moves away from
the center of the spiral, its glyph becomes dark, red, and large, indicating the inverse
relationship betweenFailure RateandVdd. Orientations varied randomly, suggesting
no correspondence betweentRASandFailure Rates.

4.2 VisualizingRetention at High Vdd and HT

A second dataset is taken from a high volume memory chip tested at high temperatures.
Retention at high temperatures is one critical attribute to test. For yield improvement, it
is necessary to identify the top failing tests and identify their critical attributes. We can
gain yield by trying to optimize these attributes. One of the most common problems for
memory chips isRetentionas the temperature increases. Again in Figure 2, we map the
Failure Rateof the test tox-position and height, andy-position toTest ID in order to
sort the data. We then mapRetentionto size. We can see that most of the high failure
tests have large sizes, confirming a criticalRetentioncomponent. By mappingVdd to
luminance and hue, we see most glyphs becoming bright and blue as we move along
thex-axis, indicating thatVdd is directly proportional toFailure Rate. The high failure
tests, apart from beingRetentioncritical, also have highVdd. This is confirmed by our
spiral view. As we move away from the center of the spiral, the size of the glyphs
increase, hue tends to blue, and luminance increases. As before, no patterns between
tRAS(represented with orientation) andFailure Ratewere visible.
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(a) (b)

Fig. 2.VisualizingRetentionatHigh Vdd and HT, Vdd→ luminance, hue,Retention→ size, and
tRAS→ orientation: (a)Failure Rate→ x-position, height andTest ID→ y-position; (b)Failure
Rate→ radial position, height

4.3 Visualizing tRCD, tRP at HT

The third dataset represents a case with high fallout at high temperatures due to the
row to column access delay (tRCD) and row precharge time (tRP) critical attributes. By
looking at the spreadsheet of test results, it is difficult to decipher any useful informa-
tion quickly, unless an experienced engineer remembers the critical attributes of every
test. As before,Failure Rateis represented byx-position and height, andy-position rep-
resentsTest ID. We maptRP to size andtRCD to orientation. From Figure 3, we see
two trends:tRPdecreases along thex-axis (smaller glyphs) andtRCD increases along
x-axis (more counterclockwise twist). We can conclude that most of the high failure
tests have two critical attributes,tRPandtRCD. In this dataset there was no correspon-
dence betweenVdd (represented by color) andFailure Rate. The same information can
be gleaned from the spiral visualization.

4.4 VisualizingOptimized Test Data

The final dataset contains test results from a stable, high volume product. From the
spreadsheet data, we can interpret that theFailure Ratefor the tests are all low and
of the same order. This usually happens for a product which is in high volume with
optimum yields. There is a possibility that even though theFailure Ratefor the tests is
low, a particular attribute is contributing significantly toward the top failing tests. With
ChipViz, we can try to interpret not only the individualFailure Rateof the tests but
also the different attributes of each test by sorting the data and mapping each critical
attribute to different visual features. In this dataset, from Figure 4 we do not see any
correlation or trend among the different tests and their various attributes. This suggests



Lecture Notes in Computer Science 7

(a) (b)

Fig. 3. Visualizing tRCD, tRP at HT, Vdd→ luminance, hue,tRP→ size, andtRCD→ orienta-
tion: (a)Failure Rate→ x-position, height andTest ID→ y-position; (b)Failure Rate→ radial
position, height

the dataset is for a product which is at a mature stage and for which the processes in the
Front End (manufacturing sites) are stable and optimized.

5 Visualization of Multiple Memory Chips Test Data

One additional advantage ofChipViz is that we can visualize test data for more than
one product. This is extremely helpful in analyzing test results for a product family
or for products of a particular technology or from a particular manufacturing site. This
allows engineers to identify design, technology or process issues on a much wider scale.
Given this powerful capability, viewers can increase or decrease the resolution of the
data analysis on the fly.

Figure 5 shows such a case for three types of memory chips visualized together. All
three products belong to the same chip generation and technology, but have different
physical sizes. We useFailure Ratesto position each glyph, then define the chip be-
ing tested withhue(Figure 5a),luminance(Figure 5b),size(Figure 5c), ororientation
(Figure 5d). The visualizations show that all three products have similar failure rates
for most of the tests as expected. However, a small number of tests exhibit very dif-
ferent behavior across the different chips. That is, for someTest ID (i.e., rows in the
visualization in Figure 5a), the failure rates for the three different chips are significantly
different (e.g., there is no overlap between the three glyphs forTest ID24). These tests
are targeted for further analysis using individual chip visualizations from Section 4 to
identify the common critical attributes that produce variableFailure Rates.

These examples illustrate the power and versatility ofChipViz. Our system can
present complicated test results in a way that allows an engineer to decipher the results
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(a) (b)

Fig. 4. Visualizing optimized test data,Retention→ hue,Vdd→ luminance,tWR→ size, and
tRCD→ orientation: (a)Failure Rate→ x-position, height andTest ID→ y-position; (b)Failure
Rate→ radial position, height

and draw conclusions efficiently. It also helps in highlighting information or relation-
ships which are buried in the dataset.

6 Conclusions and Future Work

We have successfully applied perceptual visualization techniques to represent memory
chip test data. This allows our engineering colleagues to gain more understanding of
the relationships between various attributes measured during their testing process. Our
results help the engineers rapidly analyze large amounts of test data and identify critical
attributes that result in high failure rates. Based on anecdotal observations of real chip
engineers, it took between one to two minutes to interpret a visualization. Our visualiza-
tion methods are not necessarily restricted to memory chip test data, and may be useful
for other datasets with appropriate ranking attributes. In the future, we would like to
conduct validation studies to quantify our visualization design choices, and to measure
the improvement our system provides over existing analysis techniques. We also plan
to extend our techniques to analyze simulation results from VLSI circuit design and
verification.
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Appendix: Definitions

Below are definitions of the attributes included in the memory chip test datasets:

1. tRP (Row Precharge time): the number of clock cycles taken between issuing a
precharge command and an active command to the same bank

2. tRCD(Row Address to Column Address Delay): the number of clock cycles taken
between issuing an active command and a read/write command to the same bank

3. tWR(Write Recovery time): the number of clock cycles taken between writing data
and issuing a precharge command to the same bank, required to guarantee that all
data in the write buffer can be safely written to the memory core

4. tRAS(Row Active time): the number of clock cycles taken between issuing an
active command and a precharge command to the same bank

5. Vdd: power supply voltage
6. Retention: the maximum time a DRAM cell can store its programmed data
7. Logistics: a value defining whether there is a handling issue of chips in the manu-

facturing site
8. Current: current measured under different conditions on the chip
9. LT: low temperature (degree Celsius)

10. HT: high Temperature (degree Celsius)
11. tRC(Row Cycle time): the minimum time interval between successive active com-

mands to the same bank, defined astRC= tRAS+ tRP


