
Usability Guidelines for Interactive Search in Direct Manipulation Systems

Robert St. Amant and Christopher G. Healey
Department of Computer Science
North Carolina State University

EGRC-CSC Box 7534
Raleigh, NC 27695-7534, U.S.

Abstract

As AI systems make their way into the mainstream
of interactive applications, usability becomes an in-
creasingly important factor in their success. A wide
range of user interface design guidelines have been
developed for the direct manipulation and graphical
user interface conventions of modern software. Un-
fortunately, it is not always clear how these should
be applied to AI systems. This paper discusses
a visualization assistant, an e-commerce simula-
tion domain we have applied it to, and the guide-
lines we found relevant in the construction of its
user interface. The goal of this paper is to explain
how an interactive system can incorporates search-
based intelligent behavior while still respecting
well-established rules for effective user interaction.

Keywords: user interfaces, expert systems, simulation

1 Introduction
Designing a good user interface may appear to be straight-
forward, especially with the help of a user interface builder,
but this ease is deceptive. The construction process involves
much more than adopting the surface conventions of graph-
ical user interfaces, mapping inputs to menus and type-in
boxes, outputs to icons and related graphics. Good graphi-
cal user interfaces also follow heuristic guidelines that govern
almost every aspect of design, from the manipulation proper-
ties of widgets to the decomposition and organization of tasks
to the overall visual layout of an interface[Dix et al., 1998].
Determining how a general guideline should be applied in any
given situation is notoriously difficult.1

This is a newly important issue for AI, as search-based
techniques find their way into conventional interactive ap-
plications. Interactive AI systems usually depend ondirect
manipulation in some form, by virtue of their integration
into modern software environments. Direct manipulation sys-
tems rely on continuous representation of objects of interest,

1Even commercial applications sometimes suffer from serious
usability problems; examples are found in textbooks (e.g.[Dix
et al., 1998]), popular works (e.g.[Raskin, 2000]), and on-
line (e.g. http://www.iarchitect.com/mshame.htm) ,
as well as in the technical literature (e.g.[Thimbleby, 2000]).

physical actions or labeled button presses for commands, and
rapid, incremental, reversible operations with visible feed-
back[Shneiderman, 1998].

Unfortunately, intelligent behavior sometimes makes de-
mands on the interaction process that do not naturally fit into
a direct manipulation framework[Shneiderman and Maes,
1997]. AI systems have traditionally treated interaction with
a user as a kind ofcommunication. In contrast, direct ma-
nipulation relies on what Hutchins callsmodel worldinterac-
tion [Hutchins, 1989]: the interface provides an environment
and a set of tools that the user directly applies to reach a prob-
lem solution. More concisely, the user acts through a direct
manipulation interface, rather than talks to it. The difference
between the communication and model world paradigms is
more than skin deep, in that what constitutes an effective set
of rules for interaction under one paradigm may be drastically
inappropriate under the other. For example, in a collaborative
problem-solving process, it is common for agents to negotiate
about the appropriate means to solve a problem. In contrast,
tools do not negotiate with their users; they simply perform
their assigned tasks. If the effectiveness of an interactive sys-
tem depends on simple tools that give the user predictable,
consistent behavior, then redesigning the tools so that they
can communicate and negotiate with the user about their use
is likely to degrade the overall usability of the system.

This is not to say that agents cannot behave as tools, or
that tools cannot be extended to incorporate some agent-
like behavior (e.g.[Andersonet al., 2000; Horvitz, 1999;
Lieberman, 1995; Maes, 1994]). On the contrary, we be-
lieve that the line between agents and tools will continue to
blur. A key issue in this evolution is whether we understand
the differences in user interaction that the agent-based and
tool-based approaches require. With this understanding we
can make better decisions about how conventional user inter-
face guidelines should be adapted to unconventional (from a
human-computer interaction perspective) application proper-
ties, such as a reliance on search.

This paper lays out a set of design guidelines for incorpo-
rating a search process into a conventional direct manipula-
tion interface. We describe several design principles from the
HCI literature and work out their general implications for sys-
tems that provide intelligent assistance through search. We
further discuss how these implications affect the design of a
search-based system for visualization.



Proceedings IJCAI 2001 ST. AMANT, HEALEY

hotel/airline purchase activity

"stay alive" bidstime

auction

penalty/cost tradeoff bids

Figure 1: ICMAS ’00 TAC data visualization (in grayscale), withagent ID→ color, price→ height, quantity→ width

2 A visualization domain

We begin with a example, using a problem domain that illus-
trates our motivation as well as producing results of general
interest in AI. ViA is an intelligent assistant for building sci-
entific visualizations. Scientific visualization is the conver-
sion of collections of strings and numbers, or datasets, into
images that allow viewers to perform visual exploration and
analysis. Very large datasets with millions of data elements
representing multiple independent data attributes are not un-
common. The challenge is to design methods that present
some or all of this information simultaneously in a single dis-
play, without overwhelming a viewer’s ability to make sense
of the resulting images. The choice of which visual features
to use (e.g. color, size, or contrast) to represent each data at-
tribute is called a data-feature mapping. ViA takes as input a
dataset, a short description of the dataset’s properties, and a
set of viewer-defined analysis tasks, and produces as output a
set of appropriate data-feature mappings.

One current testbed application, the Trading Agent Compe-
tition,2 illustrates the goal of ViA. The TAC is a simulated e-
commerce auction environment run on the Michigan Internet
AuctionBot platform.The AuctionBot is a TCP-based auction
server that implements numerous types of auction rules. This
allows the simulation of a wide variety of market games. In-
telligent auction agents are designed and tested within these
markets to study different buying and selling strategies.

During the TAC, each agent acts as a “travel advisor”
whose goal is to assemble a travel package for eight fictitious
customers. A travel package consists of a round-trip flight
from TACtown to Boston, a hotel reservation, and tickets to
entertainment events (a baseball game, the symphony, and the
theater). Customers specify preferences for the different as-

2http://tac.eecs.umich.edu

pects of their trip: which days they want to be in Boston, the
type of hotel they prefer (economy or luxury), and the enter-
tainment events they want to attend. Obvious dependencies
must be met; for example, customers need hotel rooms for
the duration of their trip, and can only attend entertainment
events during that interval. The goal of the agent is to max-
imize the total satisfaction of its customers (i.e., the sum of
their utility functions).

ViA was used to identify effective real-time visualizations
for agent activity in a TAC run during the ICMAS ’00 con-
ference. Five separate attributes were selected by hand for
visualization: thetime, auction ID, agent ID, price, andquan-
tity for every bid made during the simulation.timeandauc-
tion ID were used to define a bid’sx and y-position on a
two-dimensional grid. Perceptual texture elements (or pex-
els [Healey and Enns, 1999]) that vary in their color (com-
bined hue and luminance), height, density, and regularity of
placement were used to represent the remaining attributes:
agent ID, price, andquantity.

TAC competitors, acting as domain experts, assigned nor-
malized importance weights of 1 (very important) toagent
ID, and 0.5 (somewhat important) toquantityandprice. They
also defined the analysis tasks (searching for specific agents,
identifying price boundaries, and estimating the relative fre-
quency of particular quantities) they wanted to perform. ViA
automatically identified additional properties like the spatial
frequency and value range of each attribute in the dataset.
This application-independent information is used together
with a collection of perceptual guidelines to select the map-
pings that are most appropriate for TAC visualizations.

Based on dataset properties and viewer-imposed restric-
tions, ViA produced several perceptually salient visualiza-
tions. Figure 1 shows a modified version of a ViA-generated
mapping, withagent ID→ color, price→ height, andquan-

2



Proceedings IJCAI 2001 ST. AMANT, HEALEY

tity → width. Rectangular towers are used to represent each
bid made during the game.time and auction ID define a
tower’s location on the underlying grid. Time increases from
left to right along the horizontal axis. Each row corresponds
to a separate auction. A tower’s color, height, and width show
the bid’sagent ID, price, andquantity, respectively. Differ-
ent colors identify bids by different agents. Buy bids lie above
the grid, while sell bids lie below the grid; a higher buy (or
sell) price increases the height of the tower. Bids for larger
quantities produce wider towers. Simultaneous bids made by
an agent in a particular auction are displayed as a horizontal
row of towers in the appropriate grid cell (each with its height
and width defined by the particular bid’sprice andquantity).
Bids made by different agents at the same time in the same
auction are shown as rows of towers drawn on above another
in a common cell. This arrangement uses spatial density to
represent the level of bid activity at different locations in the
game.

Many aspects of the agents’ strategies and game play can
quickly be identified using such visualizations. For example:

1. Some agents periodically made very low buy bids for ho-
tel rooms to ensure the hotel auctions “stay alive” (hotel
auctions automatically close after a period of inactivity).

2. Most agents deferred purchasing hotel rooms and airline
tickets until just before the simulation ended, judging
there was no advantage to early purchase (particularly
for hotel rooms, where attempts at early purchase can
drive up the final price).

3. If hotel rooms for a given customer cannot be found, the
customer’s entire trip is canceled, and the agent is penal-
ized the cost of any airline and entertainment tickets they
may have purchased on the customer’s behalf. Some
agents estimated the marginal costc of this penalty, then
made late bids for hotel rooms at a buy price ofc. These
agents decided that payingc for a hotel room was no
worse than paying a penalty ofc for unused airline and
entertainment tickets. More importantly, there is a good
chance that the hotel rooms will sell for less thanc. If
this happens, the agent will make a profit relative to the
scenario of not securing the hotel room.

ViA casts scientific visualization as a straightforward
search problem: finding a mapping between dataset attributes
and visualization features that respects dataset and user con-
straints. ViA’s exploration, at its core, is an incremental best-
first search. The evaluation function is composed from the
results of a set of critics. A critic exists for each visual fea-
ture available for use in a mapping (e.g. a hue critic, a height
critic, and so on). The critic examines the data attribute as-
sociated with its visual feature, and reports on its perceptual
correctness[Healey and Enns, 1999]. Critics also generate
search operators for improving particular associations. ViA
uses the critics’ results to compute an overall evaluation of its
current mapping, and to extend the search in the direction of
modifications that should produce better mappings.

Our discussion up to this point has skirted the issue of user
interaction. Even for the TAC domain, which poses a very
small problem in computational terms, the design of an inter-
face for ViA must address a number of nontrivial questions.

How can user preferences be taken into account to guide the
search process? What kind of incremental feedback should
the system provide, for lengthy processing times? Should the
user see all of the solutions ViA generates, or only the best?
Answers are provided in the HCI literature, but require inter-
pretation to be applied correctly.

3 Interaction design for an AI system

The HCI literature contains dozens of general principles for
user interface design, leading to thousands of detailed guide-
lines. For example, Smith and Mosier produced an early set
of over 900 guidelines for text-based interfaces[Smith and
Mosier, 1986]. The sophisticated user interfaces of Mac-
intosh and Windows systems are driven by a small set of
high level principles, including metaphor, direct manipula-
tion, user control, and consistency, that expand to much more
detailed guidelines. We draw on a recent concise summary
of concepts due to Dix et al[1998]. The category oflearn-
ability in an interface includes predictability, synthesizabil-
ity, familiarity, generalizability, and consistency.Flexibility
includes dialog initiative, multi-threading, task migratability
(i.e., from the user to the system, and vice versa), substitutiv-
ity of input and output forms, and customizability.Robust-
ness includes observability, recoverability, responsiveness,
and task conformance. Some of these concepts are applica-
ble to all user interfaces. Those we consider in this section
pose some novel requirements that we have not seen explic-
itly compiled and discussed in the AI or HCI literature.

Let’s consider a hypothetical interactive AI system, a gen-
eralization of the ViA system, to see how these guidelines
should be interpreted. The system is given a problem that it
must solve through search. Its evaluation function, while ac-
curate to an approximation, is incomplete; the search process
requires input from the user to reach the best results (e.g., pre-
fer this data-feature mapping tothat, due to domain-specific
interpretations of color.) This means that the system must
show the user some representation of the state space, in order
to elicit feedback and guidance. This interaction requirement
in turn means that a significant part of the system’s design
must be devoted to managing interaction with the user. Un-
like conventional applications, an AI system takes actions that
are determined as much by the properties of the state space as
by the actions of the user. The interaction is thus more likely
to be opportunistic, less likely to be predictable with respect
to the type of information exchanged, the duration of the en-
tire task, how control of initiative shifts between the system
and the user, and related properties.

Given this broad description, we now turn to an interpreta-
tion of the usability concepts listed above, organized into four
broad areas. Following these guidelines generally improves
conventional interfaces; we show how they can be applied to
interactive AI systems.

Incremental processingis an important property for an in-
teractive AI system, if for no other reason than that the user
must be given some opportunity to contribute to the problem
solving process. This general point has several related com-
ponents.

3



Proceedings IJCAI 2001 ST. AMANT, HEALEY

Responsiveness.An interface is responsive when the re-
sponse times of its operators match the user’s expecta-
tion. Some (though not all) usability studies have found
that consistency in response time is preferable to raw
speed[Myers, 1985]. For example, users will gener-
ally prefer a constant response time (i.e. search duration)
of, say, five seconds, to responses with a mean time of
four seconds but varying between zero and eight sec-
onds. For a search-based system, this suggests a design
that combines anytime processing with continuous com-
puting concerns[Horvitz, 1997].

Task migratability. Task migratability is supported when
problem solving responsibility can be handed off from
the user to the system, and vice versa. This suggests that
the system and the user should have access to a com-
mon set of search operators (though user operators will
often be abstractions or compositions of system opera-
tors.) This kind of facility is supported, for example,
by scripting and end-user programming in conventional
software, and by some systems for programming by ex-
ample (PBE)[Lieberman, 2001]. Migratability is im-
paired if a search-based system can reach states that the
user cannot reasonably evaluate, or if the user would like
to override specific system behavior but cannot.

Observabilityimplies that the user is able to infer internal
properties of the system’s state from its external repre-
sentation. An important aspect of observability in an AI
system is making clear the “maturity” of a solution. The
pitfall to avoid is the system prematurely focusing the
user’s attention on an early solution that is likely to be
superseded by a later incompatible solution. This can be
viewed from the system side as a search horizon issue,
from the user side as a potential anchoring problem.

Dialog initiative. An interface respects dialog initiative
when problem-solving initiative can shift between the
system and the user to follow the task. As with task mi-
gratability, mixed dialog initiative should be supported
by presentation of information at an appropriate level of
detail for the user to make a meaningful contribution.

Adaptation refers to the dynamic adjustment of the system’s
behavior to the user’s actions. This adaptation can occur at
the direction of the user or automatically.
Customizabilityentails that an interface be adaptable to

the abilities and needs of the user. This kind of cus-
tomization, for a search-based system, can be thought
of as modification of preferences that influence the sys-
tem’s operational characteristics. Candidates for cus-
tomization include the number of states incrementally
searched, and the number of potential solution states re-
tained and presented.

Search adaptationis a more important point. Suppose that
the system presents the user with the current best state
si, as determined by its evaluation functionf . The user
reviews this information and decides that a modification
is appropriate, leading to a statesi+1 that the system has
already considered internally and given a lower value.
When the system resumes its search, it must modifyf

or some state property to avoid again indicating thatsi

is a better solution. A further useful capability is gener-
alization of the differences betweensi andsi+1 to sup-
port comparisons of other states that have not yet been
evaluated or presented; some PBE systems have this ca-
pability.

Coherence. Although direct manipulation systems tend to
support a style of interaction in which operator sequences are
short and goals interact as little as possible, an incremental
search process necessarily involves maintenance of context
between exchanges with the user.

Predictability and consistencyare two important aspects
of coherence. An interface is predictable when a user
can determine, ¿from a specific operation in a given
state, what the consequences will be. Consistency pro-
motes predictability. Direct manipulation systems tend
to present a comprehensive visual environment to the
user, with the assumption that the user can judge rele-
vance better than the system. In an incremental search,
a system might reserve some information that is simul-
taneously less likely to change and less likely to be im-
mediately relevant. Instead of giving the user a complete
representation of the bestn states, for example, the sys-
tem might limit its display to a few selected properties,
leaving itself “wiggle room,” space to maneuver.
A related issue deals with predictability in response to
user actions. To continue the search adaptation example,
suppose that the user has selected a specific operatorp
to improve statesi, and thatp has been effective in the
past, but this time it is not. If the reason for this is not ap-
parent (an observability issue), the user’s confidence in
the effectiveness ofp or the system’s evaluation function
may suffer. Additional explanation may be warranted to
improve predictability.

Support for user orientation. One of the difficulties implied
in the foregoing discussion is that of managing interaction
between the system and the user, such that each party can
make real contributions. Many of these difficulties can be
understood in terms of user orientation during a navigation
process[Kim and Hirtle, 1995].

Reachabilitybetween states in an interface generalizes the
idea of recoverability; it implies that from any state, any
other state can be reached, in particular non-error states
from error states. For an intelligent interactive system
this goes beyond the completeness of a search algorithm.
In addition it means that the user can recall and re-visit
past states, to review and re-evaluate earlier decisions.
Navigational support (e.g. generation of landmarks) can
improve orientation for this task.

Synthesizabilitycan be understood as the ease with which
the user can form a conceptual model of the problem-
solving process. In an interactive AI system, part of syn-
thesizability means that the system partitions the state
space so that the user can grasp individual portions more
easily. In navigation terms, this kind of synthesizability
is supported by region differentiation.

4



Proceedings IJCAI 2001 ST. AMANT, HEALEY

Property ViA mechanism
Responsiveness Response time tailored to platform
Dialog initiative User controlled incremental search
Task migratability External availability of operators,

executable between search epochs
Customizability User-editable preferences for search

step size and filtering of results

Table 1: Usability properties in ViA search

Property ViA mechanism
Predictability Clustering and filtering of best

states; presentation of partial state
information

Synthesizability Allowing user to explore “nearby”
and “distant” solutions of compara-
ble value, with region partitioning
by windows

Observability Progress messages and navigation
support

Reachability Navigation support

Table 2: Usability properties in ViA presentation

4 Interaction with ViA
In the user interface to ViA we are exploring the implications
of these guidelines. A functional prototype is shown in Fig-
ure 2, with an intermediate step in the search for data-feature
mappings visible. (This section describes a weather dataset
rather than the TAC dataset, which is too small to exercise
some of the capabilities of the interactive system.) ViA’s in-
terface design accounts for most of the concerns identified
in Section 3, although not with complete generality. Rele-
vant design features can be divided into those that affect the
search directly, as summarized in Table 1, and those that af-
fect presentation and user interaction, as shown in Table 2.
These design features will appear to be straightforward, even
obvious, for the most part, but it is surprising how often they
are neglected in interactive AI systems; hence the need for
guidelines.

ViA’s search is incremental, with a default but editable re-
sponse time of about a second. The search step size is com-
puted automatically when the user loads an initial dataset de-
scription, by running the critics on the dataset to gain timing
estimates for the current platform. The user can incrementally
modify the mappings that the system returns; these editing
capabilities provide most of the functionality of ViA’s search
operators.

In ViA’s domain, a search usually produces several candi-
date solutions with essentially equal evaluation results. The
system maintains a list of the best (n = 20) solutions it has
encountered in its search, and performs a simple clustering
on the contents of the list at the end of each search epoch. If
a cluster is found among the top-ranked solutions in which
the majority of attributes are assigned to the same features,
then the remaining, differing assignments are stripped out and
only the common assignments of the solutions are presented.
This capability is intended to focus the user’s attention on the

Figure 2: ViA user interface

more influential assignments; whether the filtering occurs at
all, however, is under user control.

ViA’s search can be directed toward solutions that are near
the currently displayed mapping, or those that are distant.
When the user chooses to search nearby solutions, the sys-
tem selects the best solution it finds that is nearest to the so-
lution most recently presented. Distant solutions are handled
by selecting farthest solution among the top candidates. This
organization of search results is a compromise between show-
ing all promising solutions at once and showing them one at
a time in an arbitrary order. The nearby/distant distinction al-
lows the user to conceptually organize the space of mappings
into distinct regions during its traversal. Toward this end, a
distant solution operation generates results in a new window,
to create a new visual “context” for the search. As another
navigational aid, the user can bookmark or discard individual
solutions to impose further structure on the space.

A global search overview shows all of the presented solu-
tions, across all nearby and distant searches. Currently the
overview information is presented as text in outline form, but
the intention is to build an annotated graphical representation
of the search space, to show the non-linear paths that the user
may have taken through it. Other areas of incomplete or miss-
ing functionality include the adequacy of explanations pro-
vided to the user (explanations currently only describe critic
results and the number of states searched), the completeness
of the set of search operators available to the user (discretiza-
tion and task removal operators are missing), and functional-
ity related to search adaptation.

The interface that has resulted from our work supports a
more flexible, less burdensome interaction with the search
component of ViA than is provided by conventional means
(e.g., interaction through a command line, within a text edi-
tor, or through a simpler graphical interface dialog.) As with
many systems in the intelligent user interfaces and HCI liter-
ature, however, the interactive aspects of ViA outlined above
have not been evaluated in a formal sense. The application
discussed here should not be treated as validation of ViA’s in-
terface design. Rather, our examples act as illustrations and

5



Proceedings IJCAI 2001 ST. AMANT, HEALEY

an early means of formative evaluation. Evaluating a user
interface of any complexity is an extensive undertaking and
remains yet to be done for ViA.

5 Discussion
Our work is partly inspired by earlier work on interface soft-
bots, which operate through the user interface of an appli-
cation, rather than a programmatic interface[St. Amant and
Zettlemoyer, 2000]. Interface softbots are motivated by a
claim that characteristic properties and behaviors of a graphi-
cal user interface can be exploited by planning agents, due to
a similarity between planning assumptions and user interface
guidelines[St. Amant, 1999]. In this paper we take a more
conventional route in showing how such interface guidelines
can be applied to improve interactive AI systems.

Otherwise, usability for interactive AI systems has been a
small but active area of research[Hendler and Lewis, 1988;
Höök, 2000; Kaasinen, 1998]. Horvitz provides a represen-
tative study, presenting a set of principles for mixed-initiative
user interfaces[Horvitz, 1999]. As is commonly the case,
these extend beyond conventional guidelines for direct ma-
nipulation systems, encompassing such issues as social be-
havior and the explicit use of dialog. Our intention is not
to describe new guidelines for new technology, but rather to
clarify how new techniques can be fit into an existing interac-
tion paradigm, and to explain how existing guidelines apply.

Acknowledgments
Thanks to Peter Wurman for his contribution of TAC mate-
rial and to three anonymous reviewers for helpful comments
on the draft of this paper. This research was partially sup-
ported by the National Science Foundation, award numbers
IIS-9988507 and IIS-0083281. The U.S. Government is au-
thorized to reproduce and distribute reprints for governmental
purposes not withstanding any copyright notation hereon.

References
[Andersonet al., 2000] David Anderson, Emily Anderson,

Neal Lesh, Joe Marks, Brian Mirtich, David Ratajczak,
and Kathy Ryall. Human-guided simple search. InPro-
ceedings of AAAI, pages 209–216. AAAI Press, 2000.

[Dix et al., 1998] Alan J. Dix, Janet E. Finlay, Gregory D.
Abowd, and Russell Beale.Human-Computer Interaction.
Prentice Hall, 2nd edition, 1998.

[Healey and Enns, 1999] Christopher G. Healey and
James T. Enns. Large datasets at a glance: Combining
textures and colors in scientific visualization.IEEE
Transactions on Visualization and Computer Graphics,
5(2), 1999.

[Hendler and Lewis, 1988] James Hendler and Clayton
Lewis. Introduction: Designing interfaces for expert
systems. In James Hendler, editor,Expert Systems: The
User Interface, pages 1–14. Ablex, 1988.

[Höök, 2000] Kristina Höök. Steps to take before intelligent
user interfaces become real.Interacting with Computers,
12(4):409–426, 2000.

[Horvitz, 1997] Eric Horvitz. Models of continual computa-
tion. In Proceedings of AAAI, 1997.

[Horvitz, 1999] Eric Horvitz. Principles of mixed-initiative
user interfaces. InProceedings of CHI’99, pages 159–166,
1999.

[Hutchins, 1989] Edwin Hutchins. Metaphors for interface
design. In M. M. Taylor, F. Neel, and D. G. Bouwhuis, ed-
itors,The Structure of Multimodal Dialogue, pages 11–28.
North-Holland, Elsevier Science Publishers, Amsterdam,
1989.

[Kaasinen, 1998] Eija Kaasinen. Usability issues in agent
applications: What should the designer be aware of. Tech-
nical report, USINACTS, 1998.

[Kim and Hirtle, 1995] Hanhwe Kim and Stephen C. Hirtle.
Spatial metaphors and disorientation in hypertext brows-
ing. Behaviour and Information Technology, 14(4):239–
250, 1995.

[Lieberman, 1995] Henry Lieberman. Letizia: An agent that
assists web browsing. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 924–
929, 1995.

[Lieberman, 2001] Henry Lieberman, editor.Your Wish Is
My Command: Programming by Example. Morgan Kauf-
mann, San Francisco, CA, 2001.

[Maes, 1994] Pattie Maes. Agents that reduce work and
information overload. Communications of the ACM,
37(7):31–40, July 1994.

[Myers, 1985] Brad A. Myers. The importance of percent-
done progress indicators for computer-human interfaces.
In Proceedings of CHI’85, pages 11–17, 1985.

[Raskin, 2000] Jef Raskin.The Humane Interface: New Di-
rections for Designing Interactive Systems. Addison Wes-
ley, Reading, MA, 2000.

[Shneiderman and Maes, 1997] Ben Shneiderman and Pattie
Maes. Debate: Direct manipulation vs. interface agents.
Interactions, 4(6):42–61, November/December 1997.

[Shneiderman, 1998] Ben Shneiderman.Designing the user
interface: strategies for effective human-computer inter-
action. Addison-Wesley, 1998.

[Smith and Mosier, 1986] Sidney L. Smith and Jane N.
Mosier. Guidelines for designing user interface software.
Technical Report ESD-TR-86-278, The MITRE Corpora-
tion, Bedford, MA, 1986.

[St. Amant and Zettlemoyer, 2000] Robert St. Amant and
Luke S. Zettlemoyer. The user interface as an agent envi-
ronment. InProceedings of the Fourth International Con-
ference on Autonomous Agents, pages 483–490, 2000.

[St. Amant, 1999] Robert St. Amant. User interface affor-
dances in a planning representation.Human Computer In-
teraction, 14(3):317–354, 1999.

[Thimbleby, 2000] Harold Thimbleby. Calculators are need-
lessly bad. International Journal of Human-Computer
Studies, 52(6):1031–1069, 2000.

6


