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ABSTRACT

A new method for designing multivariate data visualization
tools is presented. These tools allow users to perform sim-
ple tasks such as estimation, target detection, and detection
of data boundaries rapidly and accurately. Our design tech-
nique is based on principles arising from an area of cog-
nitive psychology called preattentive processing. Preatten-
tive processing involves visual features that can be detected
by the human visual system without focusing attention on
particular regions in an image. Examples of preattentive
features include colour, orientation, intensity, size, shape,
curvature, and line length. Detection is performed very
rapidly by the visual system, almost certainly using a large
degree of parallelism. We studied two known preattentive
features, hue and orientation. The particular question in-
vestigated is whether rapid and accurate estimation is pos-
sible using these preattentive features. Experiments that
simulated displays using our preattentive visualization tool
were run. Analysis of the results of the experiments showed
that rapid and accurate estimation is possible with both hue
and orientation. A second question, whether interaction oc-
curs between the two features, was answered negatively.
This suggests that these and perhaps other preattentive fea-
tures can be used to create visualization tools which allow
high-speed multivariate data analysis.

RÉSUMÉ

Une nouvelle m´ethode pour le design d’outils pour la visu-
alization de donn´ees multivariées est pr´esentée. Ces outils
permettent `a l’usager de r´ealiser rapidement et pr´ecisément
des tâches simples comme l’estimation, la d´etection d’une
cible et la détection des limites de donn´ees. Notre tech-
nique de design est fond´ee sur des principles de traite-
ment préattentif en provenance du domaine de la psy-
chologie des connaissances. Le traitement pr´eattentif
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comprend des caract´eristiques visuelles qui peuvent ˆetre
détectées par le syst`eme visuel humain sans porter atten-
tion sur des r´egions particuli`eres d’une image. La couleur,
l’orientation, l’intensité, la grosseur, la forme, la courbure
et la longueur de lignes sont autant d’exemples de car-
actéristiques pr´eattentives. La d´etection est r´ealisée très
rapidement par le syst`eme visuel, presque certainement
utilisant un haut niveau de parall´elisme. Nous avons choisi
deux caract´eristiques pr´eattentives connues: la teinte et
l’orientation. La question particuli`ere investigu´ee est s’il
est possible d’obtenir des estimations rapides et pr´ecises
en utilisant ces caract´eristiques. Nous avons conduits des
expériences qui utilisaient nos outils bas´es sur ces deux
caractéristiques pr´eattentives. L’analyse des resultats des
expériences d´emontre qu’une estimation rapide et pr´ecise
est possible avec la teinte et l’orientation. Une seconde
question ayant trait `a l’intéraction entre ces deux car-
actéristiques fut r´epondue n´egativement. Ceci sugg`ere que
les caract´eristiques pr´eattentives peuvent ˆetre utilisées pour
créer des outils de visualization qui permettent une analyse
rapide de donn´ees multivariées.

OVERVIEW

The field of scientific visualization draws on research from
a wide spectrum of traditional disciplines. These include
computer science, psychology, and the visual arts. The
“domain of visualization”, as defined by a National Science
Foundation panel on scientific computing, includes the de-
velopment of specific applications, the development of gen-
eral purpose tools, and the study of research problems that
arise in the process [McC87]. To date, most research ef-
forts have focused on visualization applications for specific
problems and environments. Relatively few efforts have
formulated general guidelines for the design of visualiza-
tion tools.

In this paper, we utilize an area of cognitive psychology
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known as preattentive processing in an attempt to develop
such general guidelines. First, we review a set of visual-
ization requirements that are common to applications rang-
ing from visual interactive simulation, to volume visualiza-
tion, to multivariate data analysis. Second, we summarize
the area of preattentive processing in order to reveal abil-
ities and limitations of human cognition that are relevant
to these requirements. Third, we describe a specific visual-
ization tool we have developed, based on these general con-
siderations, to assist oceanographers in numeric estimation
problems involving salmon migration simulations. Finally,
we discuss the implications of our approach, both for the
specific application of numeric estimation, and for the de-
velopment of general guidelines in scientific visualization.

SCIENTIFIC VISUALIZATION

Many different disciplines such as physics, chemistry,
oceanography, and management science use computer sim-
ulations to model real-world phenomena. Visual interactive
simulation (VIS) is a type of computer simulation system
which provides immediate visual feedback and user inter-
action [Bel87]. A key requirement of VIS is a visualiza-
tion technique which provides an informative display of re-
sults in real-time. The technique must be computationally
simple, yet must allow the user to rapidly analyse the data
being displayed. Researchers use VIS tools to view their
results as they are being produced. This allows them to
“steer” the simulation and direct its path to follow interest-
ing trends as the data is generated. A number of researchers
who built VIS tools provide various empirical and anecdo-
tal results that show VIS to be an improvement over exist-
ing simulation models [Mel85][Set88].

The requirements for VIS are similar to another important
class of problems, the visualization of output from real-
time applications. Systems like air traffic control require
rapid and informative visualization of multivariate data.
These displays are often shared by different operators, who
visually acquire different data from different parts of the
display at the same time. The visualization technique must
allow a variety of tasks to be performed rapidly and ac-
curately on dynamically changing subsets of the overall
display. Medical imaging systems such as CT, MRI, and
ultrasound are another type of application that could ben-
efit from real-time visualization techniques directed by the
user, who analyses the data and decides how to proceed. An
informative visualization technique that allows rapid and
accurate visual analysis of more than one aspect of the data
would decrease the amount of time needed to complete the
diagnostic task. This is important, because these types of
systems often cannot be time-shared and thus any improve-
ment in visualization would increase the throughput for the
system.

One explicit goal of visualization is to present data to hu-
man observers in a way that is informative and meaning-
ful, on the one hand, and yet intuitive and effortless on the
other. This goal is often pursued by attaching “features”
such as colour, spatial location, and size to each data ele-
ment. Features are chosen to show properties within and re-
lationships among data elements. This technique is used to
represent high-dimensional data in a low-dimensional en-
vironment. Multivariate data visualization addresses the
question “How can we display the information in a low-
dimensional environment, such as a computer screen or
printed media?” An ad hoc assignment of features to in-
dividual data dimensions may not result in a useful visual-
ization tool. Indeed, too often the tool itself interferes with
the user’s ability to extract the desired information.

Researchers have approached the multivariate data visual-
ization problem in different ways. Enns discusses using
the human visual system to efficiently process large mul-
tivariate datasets [Enn90a]; he describes geometric icons
which combine the power of the computer and the hu-
man visual system [Enn90b]. Ware and Beatty designed
a method that uses colour to represent multivariate data
elements [War88]; subsets of the data with similar values
appear as a spatial “cloud” of similarly coloured squares.
Pickett and Grinstein have been using results from cogni-
tive psychology as a basis for design of their visualization
tools [Pic88][Gri89]; they display structure in the data as a
set of textures and boundaries, so that groups of data ele-
ments with similar values appear as a spatial group with a
unique texture in the display.

We approached multivariate visualization by defining a set
of requirements which we feel are inherent to this class of
problem. Specifically, we wanted to design a visualization
technique which supported:

• shared data, the technique should be able to display
independent data values simultaneously. A single
user could choose to examine various relationships,
or multiple users could simultaneously examine inde-
pendent data values

• speed, users should be able to obtain information
about any of the data values quickly

• accuracy, information obtained by the users should
accurately represent the relationship being investi-
gated

Using an approach similar to Pickett and Grinstein, we de-
cided to use the built-in processing of the human visual
system to assist with visualization. Preattentive processing
describes a set of simple visual features that are detected
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(a) (b)

Figure 1: Examples of target detection: (a) target can be preattentively detected because it has the unique feature “filled”; (b) filled circle target cannot be
preattentively detected because it has no preattentive feature unique from its distractors

in parallel by the low-level human visual system. We hy-
pothesized that the use of preattentive features in a visual-
ization tool would allow users to perform rapid and accu-
rate visual tasks such as grouping of similar data elements,
detection of elements with a unique characteristic, and es-
timation of the number of elements with a given value or
range of values. We tested this hypothesis using controlled
psychological experiments that simulated a preattentive vi-
sualization tool. Analysis of the experiment results showed
our hypothesis was true for the class of data we used. Be-
fore describing our experiments and results, we provide an
introduction to preattentive processing.

PREATTENTIVE PROCESSING

Researchers in psychology and vision attempt to under-
stand how the human visual system analyses images. One
interesting result has been the discovery of visual proper-
ties that are “preattentively” processed. These properties
are detected immediately, such that viewers do not have to
focus their attention to determine whether elements with
the given property are present or absent.

An example of preattentive processing is detecting a filled
circle in a group of empty circles (Figure 1a). The target
object has a preattentive feature “filled” that the distractor
objects do not (all non-target objects are considered dis-
tractor objects). A viewer can quickly glance at the image
to determine whether the target is present or absent. A con-
junction occurs when the target object is made up of two
or more features, each of which is contained in the distrac-
tor objects. Objects that are made up of a conjunction of
unique features cannot be detected preattentively [Tri85].
Figure 1b shows an example of a conjunction target. The
target is made up of two features, filled and circular. Both
these features occur in the distractor objects (filled squares
and empty circles). Thus, the target cannot be preatten-
tively detected.

Properties that are preattentively processed can be used
to highlight important image characteristics. Experiments
in psychology by Triesman, Jul´esz, and others have used
preattentive properties to assist in performing the follow-
ing visual tasks:

• target detection, where users attempt to rapidly and
accurately detect the presence or absence of a “target”
element that uses a unique preattentive feature within
a field of distractor elements (Figure 1)

• boundary detection, where users attempt to rapidly
and accurately detect a texture boundary between two
groups of elements, where all the elements in each
group have a common preattentive feature (Figure 2)

• counting/estimation, where users attempt to count or
estimate the number of elements in a display that have
a unique preattentive feature

In general, tasks which can be performed in less than 250
milliseconds are considered preattentive. Within this time
frame the human visual system cannot decide to change its
focus of attention. This means preattentive tasks require
only “a single glance” at the image being displayed.

In addition to the tasks listed above, scientists have been
examining the interaction between features within a dis-
play. Callaghan found that varying certain irrelevant fea-
tures within a group can interfere with boundary detection
[Cal89]. Results showed that a non-uniform hue interfered
with form segregation (Figure 2b). It took subjects longer
to determine where a horizontal or vertical form boundary
occurred, relative to a control array where hue was held
constant. However, a non-uniform form did not interfere
with hue segregation (Figure 2a); a hue boundary could be
detected in a fixed amount of time, regardless of whether
form varied or not. Callaghan found a similar asymme-
try between brightness and hue [Cal84]. Results showed
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(a) (b)

Figure 2: Form and hue segregation: (a) hue boundary is preattentively detected, even though form varies in both groups; (b) hue interferes with detection of
form boundary

that variation of brightness interfered with hue segregation.
However, variation of hue did not interfere with brightness
segregation.

A number of scientists have proposed competing theories
to explain how preattentive processing occurs, in particular
Triesman’s feature integration theory [Tri85], Jul´esz’ tex-
ton theory [Jul83], and Quinlan and Humphreys’ similarity
theory [Qui87]. Our interest is in the use of features which
have been shown to be preattentive. We examined two such
features, hue and orientation, and investigated their use for
a common visualization task, estimation.

PREATTENTIVE ESTIMATION

Through experimentation, we sought to determine whether
or not research in preattentive processing can help design
more useful and intuitive scientific visualization tools. We
addressed two specific sets of questions about preattentive
features and their use in visualization tools:

• Is it possible for subjects to provide a reasonable esti-
mation of the relative number of elements in a display
with a given preattentive feature? What features allow
this and under what conditions?

• How does encoding an “irrelevant” data dimension
with a secondary preattentive feature interfere with a
subject’s estimation ability? Which features interfere
with one another and which do not?

Both of these questions address the visualization require-
ments discussed in the previous section. Estimation is of-
ten needed for rapid and accurate analysis of visual dis-
plays. If preattentive features can be used, VIS and real-
time applications could employ this technique for effective

real-time visualization. Similarly, the ability to efficiently
encode multiple unrelated data values in a single display
would allow users to “share” the display, but only if no in-
terference occurs. This corresponds our requirements for a
potential visualization technique.

The experiments used data similar to that which occurred
in a set of salmon migration simulations being run by the
Department of Oceanography at the University of British
Columbia [Tho92a][Tho92b]. Salmon are a well-known
and economically important type of fish that live, among
other areas, on the western Canadian coast. After a pe-
riod of feeding and growth in the open ocean, salmon begin
their migration run. This consists of an open ocean stage
back to the British Columbia coast and a coastal stage back
to a freshwater stream to spawn. Salmon almost always
spawn in the stream where they were born. Scientists now
know salmon find their stream of birth using smell when
they reach the coast. The direction finding methods used to
navigate from the open ocean habitat to the coast are still
being researched. The simulations are studying the causal
effects of ocean currents on sockeye salmon migration pat-
terns. Results such as ocean current patterns and latitudes
where each salmon arrived at the B.C. coast (latitude of
landfall) were generated during the simulation. We chose
to use this data to investigate the likelihood of our tech-
niques being relevant to real-world problems and data.

We decided to examine two preattentive features, hue and
orientation. This was done by running experiments which
displayed data using coloured, rotated rectangles. The fea-
tures hue and orientation have been shown to be preatten-
tive in various experiments by Jul´esz [Jul83] and Triesman
[Tri85]. Two unique rotations were used: 0◦ rotation and
60◦ rotation. Two different hues, H1 and H2, were chosen
from the Munsell colour space.
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The Munsell colour space was originally proposed by Al-
bert H. Munsell in 1898 [Bir69]. It was later revised by
the Optical Society of America in 1943 to more closely ap-
proximate Munsell’s desire for a functional and perceptu-
ally balanced colour system. A colour from the Munsell
colour space is specified using the three “dimensions” hue,
chroma, and value. Hue refers to a uniquely identifiable
colour such as red, blue, or blue-green. Individual hues are
further subdivided into subsections. A number before the
hue specifies its subsection (e.g., 5R, 2B, or 9BG). Chroma
defines a colour’s strength or weakness. Greys are colours
with a chroma of zero. Value refers to a colour’s light-
ness or darkness. A Munsell colour is specified by “hue
value/chroma”. For example, 5R 6/6 would be a relatively
strong red, while 5BG 9/2 would be a weak cyan. We chose
hues which satisfied the following two properties:

• Property 1: the perceived brightness of both rectan-
gles coloured using hues H1 and H2 was equal (isolu-
minence)

• Property 2: the perceived difference between hues H1

and H2 was equal to the perceived difference between
a rectangle rotated 0◦ and one rotated 60◦ (where per-
ceived difference is explained below)

A feature of the Munsell colour space is that Munsell
colours with the same value are isoluminent. Property 1
was satisfied by ensuring both hues had the same value in
Munsell space. We chose Munsell value 7, because that
slice through Munsell space provided a large number of
displayable colours for a variety of different hues.

Property 2 was satisfied by running a set of preliminary
experiments. We started with a simple target detection
task. Subjects were asked to detect the presence or ab-
sence of a rectangle rotated 60◦ in a field of distractor rect-
angles rotated 0◦. Both the target and distractor rectan-
gles were coloured 5R 7/8. The average reaction time for
detection was computed from the trials in which the sub-
jects responded correctly. After the first experiment, the
target and distractors were changed. The target was a rect-
angle coloured 10RP 7/8. The distractors were rectangles
coloured 5R 7/8. The target was a single “hue step” from
the distractors in Munsell space. Both the target and dis-
tractor rectangles were rotated 0◦. The average reaction
time for detection was computed from the trials in which
the subjects responded correctly.

The hues used for the target and distractors during the sec-
ond experiment were very similar. Because of this, the av-
erage reaction time for the second experiment was higher
than the average reaction time for the first experiment. Ad-
ditional experiments were run as follows.

• the target was moved another “hue step” away from
the distractors (i.e., 5RP 7/8, 10P 7/8, and so on)

• the second experiment was re-run, and average reac-
tion time was computed

• this process continued until an average reaction time
equal to or below the average reaction time of the first
experiment was obtained

This process provided two isoluminent hues H1 and H2

with a perceived difference equal to that of a 60◦ rotation,
where perceived difference is measured by reaction time
in the target detection experiment. Analysis of the prelimi-
nary experiment results led us to choose a red hue (Munsell
5R 7/8) and a blue hue (Munsell 5PB 7/8).

Figure 3: Example of a display from block B1, data valuev1 (latitude of
landfall) represented by hue, data valuev2 (ocean current) represented by
orientation. Hue is represented by grey scale

Our design allowed us to use oriented, coloured rectangles
to represent data elements with two associated data values
v1 andv2. The experiment was divided into four subsec-
tions or “blocks” of experiment trials B1, B2, B3, and B4.
The primary and secondary data value varied within each
block, as did the primary and secondary preattentive fea-
ture. This gave us the following:

1. Primary data value wasv1, represented by hue; sec-
ondary data value wasv2, represented by orientation
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(Figure 3)

2. Primary data value wasv1, represented by orientation;
secondary data value wasv2, represented by hue

3. Primary data value wasv2, represented by hue; sec-
ondary data value wasv1, represented by orientation

4. Primary data value wasv2, represented by orientation;
secondary data value wasv1, represented by hue

During the experiment, subjects were shown a display sim-
ilar to Figure 3 for 450 milliseconds. The screen was
cleared, and subjects were asked to estimate the number of
elements in the display with a given preattentive feature, to
the nearest 10%. For example, in blocks B1 and B3 subjects
were asked to estimate the number of rectangles coloured
blue, to the nearest 10%. In blocks B2 and B4 they were
asked to estimate the number of rectangles oriented 60◦.

The two data valuesv1 andv2 represented latitude of land-
fall values and ocean current patterns from Oceanography’s
salmon migration simulations. Latitude of landfall had two
possible values: “north” or “south”. Ocean current had two
possible values: “low” or “high”. The primary data values
for some trials were modified to meet statistical require-
ments for the data used in the experiment. For example,
in blocks B1 and B2 the data valuev1 (latitude of landfall)
was modified to ensure that:

1. An equal number of trials had a given percentage of
data elements with av1 value of “north” (i.e., 4 trials
where 5-15% of the data elements had av1 value of
“north”, 4 trials where 15-25% of the data elements
had av1 value of “north”, and so on up to 85-95%).
This allowed us to compare estimation ability across a
uniform range of percentages

2. Any dependence which might have existed between
v1 (latitude of landfall) andv2 (ocean current) was re-
moved. This ensured subjects could not infer infor-
mation about the primary data value by examining the
secondary data value

Trials were divided equally between control trials, where
the secondary feature was fixed to a specific constant value,
and experimental trials, where the secondary feature was
used to represent the secondary data value which varied
from element to element. This allowed us to test for feature
interference. Better performance in control trials versus
experimental trials would suggest that using a secondary
feature to encode an “irrelevant” data value interfered with
a subject’s estimation ability for the primary feature. We
tested both for orientation interfering with hue estimation
and for hue interfering with orientation estimation.

Twelve subjects with normal or corrected acuity and nor-
mal colour vision were tested. The experiments were con-
ducted in the Department of Psychology’s vision labora-
tory, using a Macintosh II microcomputer equipped with a
13-inch RGB monitor and video hardware capable of dis-
playing 256 colours simultaneously. The software used was
designed and written by Rensink and Enns to run preatten-
tive psychology experiments [Enn91]. Each subject com-
pleted either blocks B1 and B3 (blocks using hue as the
primary feature) or blocks B2 and B4 (blocks using orien-
tation as the primary feature).

At the beginning of the experiment, subjects were shown
a sample display frame. The experiment procedure and
task were explained to the subjects. Subjects were then
shown how to enter their estimation. This was done by
typing a digit on the keyboard between 1 and 9, which cor-
responded to the interval (percentage of rectangles) they
estimated contained the target feature: interval 1 (5-15%),
interval 2 (15-25%), and so on up to interval 9 (85-95%).
Subjects were told no trial would contain less than 5% or
more than 95% of the target rectangles.

Subjects began the experiment with a set of practice tri-
als. This consisted of nine trials, one for each of the nine
possible intervals. In one trial 10% of the rectangles were
targets, in another 20% were targets, and so on up to 90%.
The practice trials were designed to calibrate the subjects’
responses and to give them an idea of the speed of the trials
and the experiment. Trials were displayed one after another
to the subjects. If subjects estimated correctly, they moved
immediately to the next trial. If they estimated incorrectly,
the trial was redisplayed, and they were told the correct an-
swer.

Next, subjects completed a second set of practice trials.
This phase consisted of 18 trials, two for each of the nine
possible intervals. Trials were displayed in a random or-
der to the subjects. This phase was designed to run more
like a real experiment block. Trials in which the sub-
jects estimated incorrectly were not redisplayed and sub-
jects were not told the correct answer, although they did
know whether their estimation was right or wrong.

Finally, subjects completed two experiment blocks, B1 and
B3 or B2 and B4. Each block consisted of 72 control trials
and 72 experimental trials. The 144 trials from each block
were presented to the subjects in a random order. Subjects
were provided with an opportunity to rest after every 48 tri-
als. Data from all four phases were saved for later analysis.
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Interval Control 1 Control 2 Experimental

V σ(V ) e σ(e) V σ(V ) e σ(e) V σ(V ) e σ(e)

1 1.25 0.53 0.25 0.53 1.33 0.70 0.33 0.70 1.29 0.68 0.29 0.68

2 1.83 0.82 0.58 0.58 2.04 0.86 0.62 0.58 2.17 0.83 0.46 0.71

3 2.71 0.75 0.46 0.66 2.75 0.85 0.67 0.56 2.79 0.71 0.54 0.50

4 4.17 1.13 0.75 0.85 3.75 1.11 0.83 0.76 3.83 1.49 1.08 1.03

5 5.50 1.32 1.00 0.98 5.08 1.67 1.42 0.83 5.54 1.41 1.25 0.84

6 5.96 1.27 0.96 0.81 6.71 1.23 1.21 0.72 6.31 1.17 0.94 0.76

7 6.83 1.01 0.75 0.68 7.42 0.78 0.67 0.56 7.19 0.73 0.52 0.55

8 8.13 0.80 0.46 0.66 8.33 0.56 0.42 0.50 8.15 0.62 0.40 0.49

9 8.71 0.55 0.29 0.55 8.96 0.20 0.04 0.20 8.65 0.53 0.35 0.53

Total 5.01 2.71 0.61 0.75 5.15 2.84 0.69 0.74 5.10 2.72 0.65 0.77

Table 1: Summary of block B1 experiment results, showing average subject responseV , standard deviation of subject
responseσ(V ), average subject estimation errore, and standard deviation of subject estimation errorσ(e) for each interval

RESULTS

The primary dependent variable examined was estimation
error, defined as the absolute difference between the sub-
ject’s estimate and the percentage of target elements for the
display. Statistical analyses usingt-tests and analysis of
variance (ANOVA)F -tests revealed the following findings:

• rapid and accurate estimation can be performed using
either hue or orientation

• there is no evidence of a subject preference for either
hue or orientation during the estimation task for the
particular hue and orientation values used

• there is evidence of a subject preference for the spatial
arrangement of data being displayed during the esti-
mation task

• there is no evidence that orientation interferes with a
subject’s ability to perform hue estimation

• there is no evidence that hue interferes with a subject’s
ability to perform orientation estimation

The first question we asked was whether subjects were able
to perform accurate estimation in a 450 millisecond expo-
sure duration. Table 1 shows results of combined subject
data for the control and experimental subsections of block
B1 as an example of the data calculated for each block. The
results showed that accurate estimation was possible during
the experiment for all four blocks. In the experimental sub-
sections the total estimation errore ranged from a low of
0.54 in block B2 to a high of 0.65 in block B1. The stan-
dard deviationσ(e) was below 1.0 in all four blocks. This

indicates that subject responses were clustered close to the
correct estimate. Results from the two control subsections
show similar trends.

Subsection n1 n2 v t

Control 1 432 432 862 0.36

Control 2 432 432 862 1.43

Experimental 864 864 1726 0.45

Table 2:t-test results for estimation error rates from hue
and orientation trials, showing the subsection, the num-
ber of hue trialsn1, the number of orientation trialsn2,
the degrees of freedomv, and thet-valuet

A point of interest was whether a subject’s estimation abil-
ity differed depending on the feature being estimated. At-
test was computed to see if mean estimation error was equal
across primary features for both the control and experimen-
tal subsections. Trials were combined into two groups: tri-
als where orientation was the primary preattentive feature
and trials where hue was the primary preattentive feature.

There appears to be no feature preference for the estima-
tion task, since the controlt-values (Table 2) are less than
0.975t862 = 1.962 and the experimentalt-value is less than
0.975t1726 = 1.960. We did not expect to observe a feature
preference, because we calibrated the perceived difference
between our two hues and our two orientations to be equal
before the experiment.

It is possible that the spatial distribution of the data affects a
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subject’s estimation ability. It may be easy to perform esti-
mation if the data elements cluster into two distinct groups.
Similarly, if the data elements are distributed randomly
throughout the display, estimation may be difficult. We
used two different data sources during the experiment,v1

andv2, which corresponded to results from the salmon mi-
gration simulations. Both data types tended towards their
own distinctive spatial distribution. A difference in mean
estimation error across data types would indicate estima-
tion ability depends, at least in part, on the spatial distri-
bution of data being displayed. Trials were combined into
two groups: trials wherev1 was the primary data value and
trials wherev2 was the primary data value.

Subsection n1 n2 v t

Control 1 432 432 862 2.06

Control 2 432 432 862 1.73

Experimental 864 864 1726 1.84

Table 3: t-test results for estimation error rates fromv1

andv2 trials, showing the subsection, the number ofv1

trialsn1, the number ofv2 trialsn2, the degrees of free-
domv, and thet-valuest.

Control subsection 1’st-value (Table 3) is greater than
0.975t862 = 1.962. This suggests data type did have an
effect on estimation error in control subsection 1. Con-
trol subsection 2’st-value is less than 1.962, but it does
fall between0.95t862 = 1.647 < p < 0.975t862. Sim-
ilarly, the experimental subsection’st-value falls between
0.95t1726 = 1.645 < p < 0.975t1726 = 1.960. The t-
test results indicate the possibility of data type influence on
estimation error. Withα = 0.10, we would conclude data
type may affect estimation error in all three subsections.
Additional experiments which explicitly control the change
in spatial distribution are needed before we can state specif-
ically its effect on the estimation task.

One question of interest was whether encoding an irrele-
vant data value with a secondary preattentive feature af-
fected a subject’s estimation ability. We began by checking
to see if orientation interfered with a subject’s ability to
estimate using hue.t-tests were computed to compare es-
timation error mean across control and experimental sub-
sections for blocks B1 and B3, the blocks that used hue as
their primary preattentive feature.

The t-values for both blocks (Table 4) are less than
0.975t862 = 1.962. Therefore, there appears to be no in-
terference due to encoding of an irrelevant data value using

Subsection n1 n2 v t

B1 432 432 862 0.03

B3 432 432 862 0.21

Table 4:t-test results for estimation error rates from con-
trol and experimental hue trials, showing the block, the
number of control trialsn1, the number of experimental
trials n2, the degrees of freedomv, and thet-valuet

orientation. Any difference in means is probably due to
sampling error.

We continued to investigate interference by checking to see
if hue interfered with a subject’s ability to estimate using
orientation. t-tests were computed to compare mean esti-
mation error across control and experimental subsections
for blocks B2 and B4, the blocks that used orientation as
their primary preattentive feature.

Subsection n1 n2 v t

B2 432 432 862 0.23

B4 432 432 862 1.15

Table 5: t-test results for estimation error rates from
control and experimental orientation trials, showing the
block, the number of control trialsn1, the number of ex-
perimental trialsn2, the degrees of freedomv, and the
t-valuet

The t-values for both blocks (Table 5) are less than
0.975t862 = 1.962. Therefore, the appears to be no in-
terference due to encoding of an irrelevant data value using
hue. Any difference in means is probably due to sampling
error.

EXPOSURE DURATION EXPERIMENTS

Our conclusions in the first experiment apply to data dis-
played for an exposure duration of 450 milliseconds. This
leaves two important questions unanswered. First, at what
exposure duration are subjects no longer able to perform
robust estimation? Second, do any interference effects be-
gin to appear at lower exposure durations? For example,
we found that orientation did not interfere with estimation
of hue at a 450 millisecond exposure duration. It may be
that an interference effect does exist, but 450 milliseconds
gives subjects enough time to overcome this effect. Feature
preference may also be dependent on exposure duration.

We conducted a second experiment in which exposure du-
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ration for each trial varied among five possible values: 15,
50, 100, 200, and 450 milliseconds. Trials were presented
to subjects in the following way:

• a blank screen was displayed for 200 milliseconds

• a focus circle was displayed for 100 milliseconds

• the trial was displayed for its exposure duration (one
of 15, 50, 100, 200, or 450 milliseconds)

• a “mask” of randomly oriented grey rectangles was
displayed for 100 milliseconds

• the screen blanked, and subjects were allowed to enter
their estimation

Because trials came from block B1, our primary data value
wasv1 (latitude of landfall), represented by hue, and our
secondary data value wasv2 (current pattern), represented
by orientation. Subjects estimated the number of blue rect-
angles in each trial. As before, an equal number of tri-
als (10 control and 10 experimental) for each interval were
used. Trials at each interval were split evenly among the
five exposure durations, and were presented to the subjects
in a random order so the various exposure durations were
intermixed.

Control 1
Control 2
Experiment

Average Error

Exposure (ms)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

15 50 100 200 450

Figure 4: Graph of average error across exposure duration for combined
results from exposure duration experiment

Analysis of data from the previous experiment showed es-
timation was accurate at every interval. Because of this, we
combined trials with a given exposure duration into a single
block of data. For example, trials that were displayed for

100 milliseconds formed a single group of 2 control and
2 experimental trials from each interval for a total of 18
control and 18 experimental trials. We plotted average es-
timation error versus exposure duration to see if estimation
ability was affected by display time. Figure 4 shows the
graph of average estimation error versus exposure duration
for experimental trials.

Average estimation error and standard deviation of error
seemed to be reasonably stable, even down to 100 millisec-
onds. Below that duration error values increased rapidly.
This indicates the minimum exposure duration for robust
hue estimation lies somewhere between 50 and 100 mil-
liseconds. We concluded our analysis by checking to see if
orientation interfered with hue estimation at any of the ex-
posure durations.t-tests were computed to compare mean
estimation error across control and experimental subsec-
tions for all five exposure durations. Thet-values for all
durations were less than0.975t178 = 1.972. Only the 15
millisecond exposure duration had at-value which might
be considered significant,0.90t178 = 1.286 < p <

0.95t178 = 1.653. This suggests orientation is not inter-
fering with hue estimation at any of the exposure durations
tested.

FUTURE WORK

Our experiments and related analysis leave open a number
of interesting avenues for future work. We could exam-
ine in more detail numeric estimation and its relationship
to specific visualization applications. We explicitly chose
two hues whose perceived difference from one another was
equal to the perceived difference between two rectangles
oriented 0◦ and 60◦. A choice of features perceptually dif-
ferent from one another might cause a subject feature pref-
erence during the estimation task. We could also test dif-
ferent features, such as intensity and size, to see how they
perform during the estimation task.

Work which provides general guidelines for the use of
preattentive features in the design of visualization tools
should be pursued. Many visualization tasks require more
than two data values to be encoded at each spatial location.
Future experiments could examine how to encode higher-
dimensional elements in a low-dimensional environment.
This type of visualization tool could exhibit new and unex-
pected types of interference. There may also be a limit to
the amount of information a subject can extract and process
at one time.

The data values used in our experiment were derived from
salmon migration studies in Oceanography. More com-
prehensive studies based on actual tasks performed by re-
searchers are needed before conclusive evidence will ex-
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ist for using preattentive features in real-world multivari-
ate data analysis such as salmon migration simulations, air
traffic control, and medical imaging. Other types of data
should be investigated as well if general visualization tools
are to be based on preattentive processing.
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