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Figure 1: Earthquake magnitude visualizations: (a) locations, magnitude mag→ size; (b) boxplots for mag by region

ABSTRACT

We present a method to support high quality visualization recom-
mendations for analytic tasks. Visualization converts large datasets
into images that allow viewers to efficiently explore, discover, and
validate within their data. Visualization recommenders have been
proposed that store past sequences: an ordered collection of design
choices leading to successful task completion; then match them
against an ongoing visualization construction. Based on this match-
ing, a system recommends visualizations that better support the
analysts’ tasks. A problem of scalability occurs when many se-
quences are stored. One solution would be to index the sequence
database. However, during matching we require sequences that are
similar to the partially constructed visualization, not only those
that are identical. We implement a locality sensitive hashing algo-
rithm that converts visualizations into set representations, then uses
Jaccard similarity to store similar sequence nodes in common hash
buckets. This allows us to match partial sequences against a database
containing tens of thousands of full sequences in less than 100ms.
Experiments show that our algorithm locates 95% or more of the
sequences found in an exhaustive search, producing high-quality
visualization recommendations.

Index Terms: Information systems—Data access methods; Simi-
larity measures; Human–centered computing—Visualization theory,
concepts and paradigms

1 INTRODUCTION

With the ever increasing amount of data being captured, new meth-
ods to store, manage, and analyze this data are critical. One promis-
ing approach is to visualize the data, allowing users to apply their
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human visual system to explore a dataset through high-level tasks
like discovery, hypothesis testing, and pattern detection. Although
the area of visualization was formally proposed in 1987 [32], the line
and bar chart were first presented in the late 1700s by Playfair [34].

Visualization has proved invaluable across a range of areas in-
cluding physical science, economics, and cybersecurity [14, 15, 21].
As data sizes grow and problems become more complex, however,
it is difficult for domain experts to construct effective visualiza-
tions. Fully automatic approaches have struggled to manage context,
domain-specific knowledge, and ambiguity. Collaborations between
domain and visualization researchers have led to systems for spe-
cific domains [11, 40]. Access to visualization experts is limited,
however. Because of this, visualization recommender systems have
been proposed to allow domain experts to construct high-quality
visualizations independently.

Fig. 1 shows 1,989 earthquakes recorded from July 2–September
23, 2017 [41]. The task is to locate outliers by magnitude. An
intuitive solution is to display the earthquakes on a map with magni-
tude represented by size, then visually search for outliers (Fig. 1a).
Unfortunately, this approach works poorly. A better strategy is to
use boxplots that are designed to highlight outliers in non-normal
distributions (Fig. 1b). A recommender could match a novice user’s
initial design choices to successful visualization sequences, then
recommend a boxplot visualization.

To build a database of successful sequences, recommender sys-
tems often use crowdsourcing to combine visualizations by both
expert and novice users [13,28,38]. A standard construction method
is to choose an initial data–feature mapping: a visual representation
for some or all of the data attributes in the dataset; then evaluate
the visualization’s ability to solve an analytic task. Improvements
are added iteratively: change an aspect of the visualization, evaluate
it, and continue until a successful visualization is constructed. The
design is captured as a single-path graph (a sequence), where nodes
represent visualizations and edges represent iterative operations (e.g.,
changes to the data–feature mapping, filtering, aggregation, and so
on). Sequences that generate “successful” visualizations are stored



in a sequence database, where individual sequences are combined
into a composite graph representation of all sequences.

Our main goal in this paper is to develop a sequence database
for rapid comparison, storage, and retrieval of sequence patterns for
visualization recommender systems, specifically:

1. Sequences similar to (as opposed to identical to) a target se-
quence can be rapidly located.

2. Storage scales to thousands or tens of thousands of sequences
with a near-constant retrieval time.

An important challenge is the design and implementation of an
efficient sequence matching algorithm. During discussions with
database experts, it was stated that a query response threshold of
100ms is recommended for any interactive system such as ours. We
integrated a locality sensitive hashing (LSH) algorithm into a recom-
mendation system we are developing. Given a similarity algorithm
and a crowdsourced sequence database, we can match nodes from
an initial design accurately and in real-time to nodes in successful
sequences. These are presented to the user as recommendations to
guide them to an efficient and effective completion of their task. Our
novel contributions in this paper include:

1. A method to represent a specific visualization state in a se-
quence node using a simple data–feature mapping.

2. Transformations that convert visualization representations into
set-based notations for Jaccard similarity.

3. LSH to place similar nodes in common hash buckets for rapid
retrieval.

4. Experimental analysis showing that LSH retrieval needs only
a few tens of milliseconds, even for large hash tables.

5. Discussion of converting common visualization representa-
tions into set notation, to demonstrate generalizability.

2 BACKGROUND

We briefly review existing visualization recommender systems and
visualization representations, then present an overview of locality
sensitive hashing, Jaccard similarity, and their relationship to tradi-
tional hash tables.

2.1 Visualization Recommenders
Numerous visualization recommendation systems have been pro-
posed, using historical data to drive their recommendations, or pre-
computed knowledge models based on dataset and task.

Vartak et al. discuss requirements for visualization recommen-
dations [42]: relevance, surprise, non-obviousness, diversity, and
coverage. Koop presents VisComplete, a system that creates a
provenance database of visualization pipelines (i.e., crowdsourced
historical data), then matches this against partially created pipelines
to provide “recommendations by consensus” [27]. VisComplete uses
graph theoretic algorithms to perform partial-to-full pipeline match-
ing, making it a good candidate for our algorithms. Work in our
laboratory developed ViA [19] by combining human perception [18]
and mixed-initiative planning to rapidly locate visualizations that
“fit” a user’s analytic tasks. Wongsuphasawat et al. introduce Voy-
ager 2, a mixed-initiative system where users and a recommendation
algorithm collaborate to identify charts that: (1) provide broad cov-
erage for data overviews; and (2) support relevant recommendations
for specific question answering [48].

2.2 Interest Weights
Recommenders often depend on assigning an “interestingness” score
to different visualizations. Measuring user interest is complicated,
particularly when it must be automatic [7, 24, 25]. Users who are
asked to rank their interest in a visualization quickly resort to a
default answer (e.g., “Not interesting”), or decline to provide any

answer after a few initial responses. Moreover, interests are not
static: they can change, often dramatically, as exploration unfolds.

We have explored the idea of preference elicitation to track a
user’s interests in a dataset as they form and change [9, 17]. As the
user explores, an interest engine updates rules in real-time, deprecat-
ing those for past interests, and defining new rules or strengthening
existing ones as the user’s explorations change.

2.3 Visualization Representations

A visualization representation maps data to visual properties to
present to a viewer. Many techniques draw on Bertin’s Semiology
of Graphics [2], a classic work that describes information, graphic
systems, and relationships between the two. Examples include
MacKinlay’s work on automating visualizations of relational data
[31], and Healey et al.’s integration of psychophysics and mixed-
initiative planning to recommend perceptually optimal visualizations
[19]. Both approaches use formal descriptions of a visualization to
generate data-to-visual feature mappings.

More recently, effective visual encodings have been combined
with data transformations and graphic algebra to produce more
expressive visual representations. One example is Wilkinson’s The
Grammar of Graphics [47]. Commercial and open-source systems
have taken inspiration from Wilkinson’s work. Protovis and its
successor, D3 [3], provide ways to create flexible and expressive
visualizations using the notion of representational transparency
of the visualization representation. Vega also uses a visualization
grammar based on marks and data and view manipulation operations
to define visualizations [37]. Vega-Lite, building on Vega, combines
a grammar of graphics and a grammar of interaction to generate
interactive visualizations [36].

Although these representations differ in specific details, they all
provide formal specifications that separate a visualization from its
construction. They also share several important features.

1. The formalizations are declarative, so implementations are
independent in the choice of a visualization front-end.

2. The formalizations are concise yet expressive, supporting a
wide range of visualization designs.

3. Visualizations are defined and built from the formalizations.

These features make the formalizations suitable candidates for our
algorithms. The visualization representation we designed is based on
this work, but extended into a set notation to support similarity-based
hashing.

2.4 Indexing by Similarity

Hashing can approximate similarity search in large databases [43,44].
There are two main hashing approaches: (1) locality sensitive hash-
ing, and (2) learning to hash. LSH uses a distance metric to assign
similar items similar hash values with a certain probability. Alterna-
tively, learning to hash optimizes an objective function based on the
underlying data to produce its hash function. The advantage of learn-
ing to hash is that the hash function incorporates data information,
so it has performance gains for targeted datasets. However, the data
is not always known and there can be discrepancies between training
data and new data. LSH imposes no assumptions on the data and
has theoretical guarantees on performance. Based on this, and to
allow our method to be widely applicable, we chose LSH. We use
the min-hash family [4] to formulate a visualization as a set. Since
our focus is to investigate the feasibility of min-hash to support
scalable visualization recommendations, we chose its most basic
form. Extended min-hash algorithms exist [4,23], as well as ways to
optimize hash table search efficiency [1, 30]. These improvements
could be applied with minimum modification to our approach to
improve its performance.



3 REPRESENTATION

We represent a visualization state as a set of three objects: data
transformation T , geometry G, and data–feature mapping M. Given
a dataset D with n attributes A = (a1,a2, . . . ,an), T are operations on
D such as grouping, filtering, or computing derived values. G is the
type of visualization used (e.g., boxplot, isarithmic map, and so on).
M realizes the abstract T and G by assigning a set of visual prop-
erties V = (v1,v2, . . . ,vn) to each data attribute, (ai,vi, f (ai)) using
function f (ai). f (·) operate on a specific data attribute, while T are
applied to all elements in D. A set-based representation has two im-
portant advantages: (1) it is compatible with indexing-by-similarity
like LSH, and (2) it generalizes to other common representations in
the visualization community. Formally, the visualization representa-
tion is defined as

{ T,G,(ai,vi, f (ai) ∀ i ∈ 1, . . . ,n) } (1)

In this representation, there are zero or more T , one G, and
one or more f (ai) : ai 7→ vi. The representation is independent
of implementation, allowing for user-chosen visualization front-
ends. For example, in Fig. 1 T = { translate}, G = {circle}, and
M = {mag,size, f (mag) : mag 7→ radius = 0.1mag}.

3.1 Generalizability
Generalizability can be viewed from two perspectives: the ability to
generalize to other visualization domains, or the ability to generalize
to non-visualization problem environments. We demonstrate the
first type of generalizability by applying our approach to different
visualization formalizations. We convert a well-known representa-
tion into a set format suitable for LSH by demonstration how we can
extend Vega-Lite [36] (Sec. 2.3).

Vega-Lite builds on Wilkinson [47] and visualization systems like
Tableau [39]. A unit specifies data, transforms, geometric marks
to display the data, and visual encodings for data attributes. This
is similar to our {T,G,M} representation (Eq. 1). Vega-Lite also
supports analytic operations like sorting, aggregation, and binning.
These can be included in T , assuming the visualization front-end
understands how to preprocess the data.

Vega-Lite extends a unit visualization using layer (overplotting),
concatenation (side-by-side views), facet (multiple visualizations
of data subset), and repeat (multiple visualizations with different
unit representations). Our representation can embed unit sets and an
associated operation in a top-level set to support these hierarchies.

{op: layer,{u1,1, . . . ,u1,n}, . . . ,op: facet,{um,1, . . . ,um,n}} (2)

Vega-Lite supports nested views to construct dashboards from
visualization collections. Finally, Vega-Lite added formalisms to
describe interaction, something our representation currently does
not support.

4 LOCALITY SENSITIVE HASHING

Our goal is to identify collections of similar visualizations in a
visualization sequence. We turn to LSH to address this need [22].
LSH attempts to place elements in buckets such that similar elements
have a higher probability of being stored in a common bucket, versus
dissimilar elements. Wang et al. provide an excellent overview of
LSH and the different methods used to achieve it [43].

Our approach for sequence storage is: (1) decompose a sequence
into its constituent nodes; (2) use LSH to store nodes, where each
node references its parent sequence. For retrieval: (1) decompose an
initial exploration path into its m most recent nodes ni; (2) use LSH
to retrieve parent sequences S j of nodes similar to ni; (3) construct⋃

S j to search for recommendations. We implement a c-approximate
near neighbor solution.

Figure 2: Illustration of locality sensitive hashing [29]. Items with
distances below d1 will be hashed to the same value with probability
at least p1, while items with distances above d2 will be hashed to
the same value with probability at most p2.

Definition 4.1. c-Near Neighbors. Given a set of points P, a query
point q, and a closest neighbor point p distance R= dist(q, p) from q,
find all points X that are within distance cR of q, X = {x | dist(q,x)≤
cR,x ∈ P} for a user-chosen c.

Definition 4.2. c-Approximate Near Neighbors. Given P, q, and
0 < δ ≤ 1, report each point x that is a c-near neighbor of q with
probability 1−δ .

Locality sensitive hashing builds on these foundations by defining
a family of hash functions H such that:

Definition 4.3. H is (R,c,P1,P2)-sensitive ⇐⇒ for any q, p

• if sim(q, p)≤ R then Pr[h(q) = h(p)]≥ P1

• if sim(q, p)≥ cR then Pr[h(q) = h(p)]≤ P2

where sim(q, p) is the similarity between q and p. The expectation
is that P1 > P2. To increase the distance between P1 and P2, L
separate hash tables are constructed. The hash value g j(p) for
point p in each table is a concatenation of k hash functions hi:
g j(p) = (h1, j(p),h2, j(p), . . . ,hk, j(p)), 1 ≤ j ≤ L where each hi is
selected at random from H. This means a point p is stored L times,
once in each of the L hash tables.

To query a point q, L buckets g1(q),g2(q), . . . ,gL(q) are identified
and their points are stored in a similar node set. Recall that a bucket
g·(q) is expected to contain q and points similar to q. Two common
approaches are used to terminate the search.

1. Stop after finding the first L′ similar points, often L′ = 3L.

2. Retrieve all similar points from all L non-empty buckets.

Since similarity plays a critical role in LSH, a similarity algorithm
must be chosen. Numerous candidates exist (e.g., l-norm, cosine
similarity, or Hamming distance). We apply a specific algorithm,
min-hash. Min-hash uses Jaccard set similarity, which integrates
well with many visualization representations, since they can be
converted to set-based formats. The Jaccard coefficient J between
two sets A and B defines their similarity.

J(A,B) =
| A∩B |
| A∪B |

= sim(A,B) (3)

In this implementation, H is a family of hash functions hi that
randomly assign an integer value to each point in P. The algorithm



was originally proposed by Broder to identify similar web pages a
year prior to the use of the term LSH [4]. The goal is to estimate
J(A,B) without explicitly computing A∩B and A∪B.

Definition 4.4. Estimating J(A,B). Hash function hi ∈ H maps
set members to distinct integers. Let hmin(A) be the member in A
with the minimum hash value. If hmin(A) = hmin(B), the minimum
element in A∪B is also in A∩B. By definition, this probability is
the Jaccard coefficient J(A,B) = |A∩B|

|A∪B| = Pr[hmin(A) = hmin(B)].

To estimate Pr[mmin(A) = mmin(B)], multiple hash functions are
employed, since a single hash function will evaluate to Pr = (0 | 1),
a poor estimate. Given k hash functions hi ∈ H that represent a
random permutation of the set member-to-integer mapping (i.e., H
is the family of random permutations), J(A,B) is defined as:

J(A,B)≈ 1
k

∑
k
i=1(hi,min(A) = hi,min(B)) (4)

Broder showed that the random permutation family H satisfies
Defn. 4.3 with sim(A,B) replaced by the Jaccard coefficient sim-
ilarity [5]. Thus, as long as a visualization representation can be
converted to a set notation, it can use Jaccard-based LSH to store
similar visualization nodes in common hash buckets.

5 SEQUENCE STORAGE AND QUERY

To perform sequence matching, past sequences are stored and
queried using Jaccard-based LSH. Sequences are saved using a
graph database optimized for rapid graph operations [20, 33, 45].
Nodes are assigned a unique sequence ID that is stored in the LSH
tables together with a reference to the parent sequence.

Graph databases support rapid path traversal using index-free
adjacency [16]. Given a target node, its data description includes
the disk locations of its parent and child nodes. This means reading
a sequence of length n requires one index lookup to retrieve the
target node, followed by (up to) n disk reads to retrieve the node’s
sequence. Graph databases will also try to take advantage of any
blocking the storage device or operating system provides. Together
with LSH, this allows us to read nodes in O(1) and sequences of n
nodes in O(n).

6 LSH IMPLEMENTATION

Although the theoretical description of LSH makes it seem straight-
forward for sequence matching, in practice the LSH parameters must
be carefully selected to ensure optimal performance.

Based on the description in Section 2, a set representation Si is
hashed to a signature sig(Si) with a specific length using the min-
hash algorithm. Given sig(S1) and sig(S2) for two sets, min-hash
guarantees the probability of a digit at a common position in sig(S1)
and sig(S2) is equal to J(S1,S2). By counting how many digits
are identical, we estimate the Jaccard similarity and therefore the
probability of the similarity between S1 and S2. The longer the
signature, the better it will approximate the true probability.

Signatures are divided into b bands of r digits per band, so ‖sig‖=
br. A high-quality hash function and number of buckets is chosen
independently to hash the digits in each band, producing b separate
hash tables. For a given threshold θ , this ensures that pairs of sets
with estimated similarity below θ will have a very low probability
of hashing to the same bucket in any of the b hash tables, while pairs
of sets with similarity above θ will have a very high probability of
hashing to similar buckets. By querying all b hash tables, we can
find a set of similar candidates. Based on this, b, r, θ , and the length
of a signature are related as follows [29].

‖sig‖= br, θ =

(
1
b

) 1
r

(5)

Theoretically, as long as these equations hold we should expect
good performance from LSH. From Eq. 5, only two variables among
b, r, and θ are independent: fixing any two determines the third.
From Eq. 5, the signature length depends on b and r. Our LSH
implementation uses b and θ as free parameters, selected to calculate
the length of the signature and perform LSH. This guarantees that no
matter what values we assign to b and θ , for the chosen threshold θ

if |sim(S1)− sim(S2) | ≥ θ then the probability of S1 and S2 hashing
to common buckets is high, but if |sim(S1)− sim(S2) |< θ then the
probability is low. There are several critical caveats to this theoretical
description.

1. θ influences the uniformity of hash value distribution. If
the similarity of most pairs of sets are above θ , most items
will concentrate in a few buckets, increasing search from O(1)
to O(n). If most similarities are below θ , sets are distributed
randomly, which gives good lookup performance but poor
search results. Therefore, we need to choose θ based on the
underlying dataset. One approach is to calculate all pairs of
similarities, but this requires O

(
n2) time. Instead, we sample

several θi and perform LSH on each. The uniformity of the
resulting hash tables reflects the quality of θi. Since hash table
construction is rapid, this approach works well.

2. θ and b determine r, and r determines the total number of
possible inputs for a hash function. b and r are constrained
by θ (Eq. 5): if b increases, r must increase, and vice-versa.
Therefore, if b is not sufficiently large, r will be limited in the
number of input values inpr it can represent. If inpr is smaller
than the number of buckets in a hash table, some buckets are
guaranteed to be empty. Increasing the size of the table will
not help, since this does not change inpr. To avoid this, we
must choose a sufficiently large b.

3. A large b is necessary to maintain scalable hash functions,
but this increases the number of hash tables. If on average
each bucket holds k sequences, the total number of similar
sequences returned is ∼ kb. Since the time required to gen-
erate recommendations is proportional to kb, we want k as
small as possible. A perfect hash function with k = 1 is, in
practice, impossible to define. However, experimenting with
numerous hash functions revealed that Java’s Arrays.hashcode
module produces small k. It also has a very low false negative
rate, ensuring k does not increase due to dissimilar sequences
hashing to a common bucket.

4. min-hash is probabilistic. Using probabilistic min-hash has
two implications. First, the quality of the signature varies
between applications of min-hash. More subtly, sometimes
many pairs of signatures are similar in certain bands, meaning
many sequences hash to a common bucket in the hash tables
responsible for those bands. This is not due to the hash function
we use, but instead because (within these bands) the inputs
are seen as highly similar. We cannot guarantee this similarity
actually exists in the dataset, since min-hash is probabilistic.
To address this, we run min-hash and LSH several times and
choose the result with the best distribution and performance.

5. Total recommendation time depends on many factors
other than the quality of the LSH implementation. The
time needed to return a set of recommendations depends on
LSH, but also on θ , the query node, and the topology of the
database. For example, retrieving recommendations from a
large dataset may take longer simply because the dataset has
many more nodes that are similar to the query node, based on
the chosen threshold θ .

In summary, to produce comparable run times for different
databases, we must choose θ and b for each database such that
the hash tables for each band store sequences uniformly. We also try



to ensure that the number of similar nodes kb returned for any query
are similar. If these numbers are comparable and overall similarity
accuracy is high, the total time to return recommendations will be
nearly equal across the different databases.

7 RECOMMENDATION ALGORITHM

The performance of a recommender includes both the time for se-
quence retrieval and the time to convert similar sequences into recom-
mendations. Both operations need to be measured during simulation
experiments. Given a rapid method to retrieve similar nodes, our
current recommendation algorithm proceeds as follows.

1. For the subsequence from the current node pcur backwards
m nodes along the user’s exploration path, retrieve sequence
sets Si = {si,0, . . . ,si,ni} as parent sequences of similar nodes
in pcur−i’s LSH buckets, 0≤ i≤ m.

2. Intersect the sequence sets to find sequences S = S1 ∩ ·· · ∩
Sm that contain all m nodes from the current subsequence.
Optionally remove sequences where the position of ncur−p
comes before ncur−q, p > q, that is, where nodes do not occur
in the same order as in the current sequence.

3. Assign an interest weight w to every node in the remaining
sequences. Choose a threshold interest weight wmin to define a
node as “interesting” when w≥ wmin.

4. Identify the position pi of pcur in each sequence si. Walk
forward from pi in si until an interesting node qi is found, or
the last node qi of si is reached.

5. Once all sequences are searched, return the n top qi nodes
sorted by their interest weights wi as recommendations.

It would be possible to return the final node of each sequence
si ∈ S as a recommendation. We avoid this because: (1) this assumes
that the user is completing the task supported by si, which may not
be true, especially when visualization construction has just started;
and (2) moving to intermediate nodes allows users to choose new,
novel exploration paths, potentially enriching the sequence database
with new ways to solve the given task.

7.1 Inferential Interest Weights
We chose to automatically calculate inferential interest weights,
since this places no burden on the user. An inferential system can
also leverage the crowdsourced nature of our sequence database.

A number of properties are available that leverage the graph the
sequences form. Although experimental testing would be needed to
confirm their utility, we believe these properties may offer important
advantages over other measurements based on individual users in
isolation. Current candidates include:

• In-degree degi : out-degree dego ratio. An increase in
degi /dego

represents an increase in convergence: numerous ex-
ploratory paths meet at a common node. This suggests the node
represents an inflection point: a visualization that identifies the
steps needed to reach a final task solution.

• Average termination distance. For sequences from a rec-
ommended node prec, the average remaining sequence length
indicates how “close” a user is to a solution; recommendations
closer to a solution could be favored.

• Average termination similarity. All reachable sequence ter-
mination nodes have pairwise similarity scores. High similarity
between termination nodes means that similar solutions were
constructed from pcur, so the shortest available path will lead
most quickly to task resolution.

We chose to combine the the last three interest candidates with
equal weights of w = 1

3 , except when a user is following a new ex-
ploration path (i.e., no termination nodes exist). When this happens,

Operation Allowable Values

T translate; rotate; scale

G bar; line; pie; scatterplot; choropleth map

a year; temperature; pressure; rain; snow; radia-
tion; cloud coverage; wind speed; direction; ve-
locity

v x; y; hue; saturation; size

f (a) all pairs of a 7→ v

Table 1: Transformations T , geometry G, data attributes a, visual
features v, and data–feature mapping f (a)

we use the first two candidates with w = 1
2 . More sophisticated w

are being considered as an area of future work.

8 SIMULATION EXPERIMENTS

We constructed a collection of simulated sequence databases of vary-
ing sizes to test performance. Since our focus is on the technical side
of rapid sequence matching, the emphasis is accuracy and speed. For
this purpose, simulated databases provide a more controlled, experi-
mental and demonstrative environment to evaluate our approach. We
must evaluate the feasibility of our approach prior to instrumenting
visualization tools to construct sequence databases.

To construct the simulated databases, nodes used our visualiza-
tion representation (Section 2.3), and values for different variables
are defined in Table 1. Since our recommendation prototype does
not require real sequences to test its performance for lookup or rec-
ommendations, we built sequences with random collections of node
states to stress the scalability of our system. The one concession we
made was to define sixteen separate termination nodes from four
clusters of “similar” node states, to allow the average termination
similarity measure to return meaningful values. For all other nodes,
we randomly choose a state from the possible states defined by
Table 1.

Once a sequence construction approach was defined, we built six
separate sequence databases of sizes 100, 250, 1000, 2500, 5000,
and 10000 sequences each (producing between 1174 and 115005
unique nodes). Sequence databases of more than 10000 paths (or
100000 nodes) are rare, so this represents an appropriate range of
sizes to investigate scalability. Sequence lengths were uniformly
chosen over a range of ten to fifteen nodes, with the terminating node
uniformly selected from the sixteen possible candidates. b= 20 hash
tables with 1097 buckets were initially built for n = 100 sequences,
then increased from this starting value based on appropriate choices
for θ , b, and r (see Section 6). Table 2 shows the number of se-
quences and nodes in each database, θ , b, r, and the hash table size,
the time to retrieve similar nodes, to choose recommendations from
the resulting sequences, the total time to present recommendations,
and the recall and precision of sequences found as a percentage
of all similar sequences produced by exhaustive search. Recall
represents the fraction of all possible similar sequences returned.
Precision represents the fraction of sequences returned that are, in
fact, similar [46].

To test retrieval and recommendation times, we randomly selected
2000 unique visualization states, then requested recommendations
for m = 6 node subsequences. We recorded both the time to retrieve
similar sequences, and the time to process the sequences into rec-
ommendations, averaging to obtain a final result. For recall and
precision testing, we randomly selected 300 states, then compared
the sequences returned to the known set of similar sequences.



Sequences Nodes θ b r Table n Retrieve Recommend Total Recall Precision

100 1174 0.5 20 6 1097 0.2ms 2.7ms 2.9ms 98% 42%

250 2894 0.5 30 6 2861 0.2ms 5.4ms 5.6ms 98% 36%

1000 11577 0.5 50 7 11491 0.6ms 15.1ms 15.7ms 95% 30%

2500 28772 0.6 60 10 28771 0.7ms 11.6ms 12.3ms 99% 43%

5000 57651 0.6 80 10 57649 0.7ms 17.2ms 17.9ms 98% 38%

10000 115005 0.65 90 12 115001 1.0ms 17.3ms 18.3ms 95% 46%

Table 2: Number of sequences and unique nodes in each test database, θ , b, r, and hash table size for the databases; time for node retrieval,
building recommendations from nodes retrieved, and total recommendation time; percentage of all similar sequences returned (recall), and
percentage of sequences returned that were similar (precision)

Figure 3: Time for retrieval, recommendation, and total time for
databases of varying sequence sizes

8.1 Results

The time required to retrieve similar sequences through LSH was
dominated by the times for other actions, averaging 0.57ms (Fig. 3,
red bar). Identifying a set of recommendations within the similar
sequences was also rapid, averaging 11.6ms (Fig. 3, blue bar), for
a total average recommendation time of 12.2ms, nearly an order
of magnitude below our 100ms threshold (Fig. 3, orange bar). We
saw slight increases in retrieval and recommendation times as the
database size grew from 100 to 1000, then near-constant perfor-
mance past that point. We hypothesize that this is because smaller
databases have fewer hash tables to query (i.e., b is smaller), and
the total number of similar nodes returned is less than for databases
with 1000 or more sequences.

Recall (accuracy) ranged from 95% to 98% relative to an ex-
haustive search for similar sequences. LSH will include sequences
which are not “similar” by our definition, and exclude sequences that
are. However, we feel a lower bound on recall of 95% is sufficient
to provide high quality lists of recommended visualizations to an
analyst.

Precision percentages were lower, ranging from 30% to 46%.
This means that approximately two-thirds of the sequences retrieved
did not meet our query similarity threshold θq. Recall increases
as θq increases, but if θq > θ for the threshold θ used to build the
hash tables, nodes with similarities θ ≤ sim≤ θq will have a high
probability of hashing to a common bucket, even though they do not
satisfy sim≥ θq, producing false positives.

We accept this recall–precision tradeoff because: (1) we favor
recall over precision, since this provides the majority of similar
sequences and any non-similar sequences returned will be eliminated
during recommendation selection, and (2) when a node with sim <
θq is retrieved, we ignore it, so the only time spent is in retrieving
the node and not its visualization sequence, producing a very small

time penalty.
To determine statistical significance, we analyzed the null hypoth-

esis H0 of equality of mean recommendation times across database
sizes. An important question is whether to group individual query
times, and if so, how that should be done. Probability of equal means
p is highly affected by sample size, since (all other things constant)
a larger n produces a lower variance, and therefore a lower p value.
Our size of n= 2000 is more than large enough to skew results based
on a standard α = 0.05 significance threshold.

One option is to use tables that adjust α based on n, but our
n falls outside the range of most tables [35]. We chose to use
power analysis to compute the minimum number of samples nmin
needed to justify any significance found [8]. We collapsed individual
times into groups of size nmin, and used the group average in an
analysis of variance (ANOVA) of group times across database size.
Although many power analysis formulas are available, we chose a
simple approach based on confidence interval (margin of error) Z,
confidence level α , and standard deviation σ .

nmin =
Z2 σ (1−σ)

α2 (6)

For a confidence interval of 5% (Z = 1.96), a confidence level α =
0.05, and an estimated standard deviation σ = 0.5, the minimum
number of samples for justifying significance is nmin = 385.

Bartlett’s test for equality of variance reports p < 0.001 (un-
equal variances), so we applied Welch’s ANOVA to correct for
this, producing F(5,10) = 5576, p < 0.001. Not surprisingly,
H0 is rejected, implying mean times across database sizes are
not equal. More interesting is a corrected post-hoc analysis of
significant differences in mean times by pairs of database sizes.
Here, the pairs 1000–5000, p = 0.13, 1000–10000, p = 0.29, and
5000–10000, p = 0.99 showed no significant difference in means.
This mirrors Fig. 3, where the recommendation times and corre-
sponding query times rise as database size increases to a ceiling of
approximately 17–18ms. Interestingly, database size 2500 showed
significant differences in mean times versus the 1000, 5000, and
10000 sequence databases.

Finally, a potential issue related to the b hash tables is that nu-
merous large hash tables may not fit in main memory. This can be
addressed with a dynamic hash table method like extendible hash-
ing [10], which guarantees: (1) the hash table buckets grow and
shrink to an optimal size without the need to re-hash their entries;
and (2) any bucket can be retrieved with at most two disk seeks.

8.2 Dynamic Sequence Databases

The values of θ , b, and r are tied to a static database. In a recommen-
dation system, however, the database size grows as new approaches
are explored to solve analytic tasks. To support this, we choose the
initial parameters for a specific simulated database, then monitor



(a) (b)

Figure 4: Earthquake visualizations: (a) earthquake locations, mag→ size, outlier → color: red for mag > Q3 +1.5IQR, purple for mag
< Q1−1.5IQR, blue otherwise; (b) a cluster of earthquakes in Oklahoma and Kansas

performance to adjust the parameters as needed.

Initial θ , b, r. To choose the initial parameter values, we construct a
simulated database of n = 10000 sequences of length 10, by default
selected uniformly from the space of all possible visualizations. If
the user has a specific set of tasks to complete, we can approximate
a more specific distribution to sample when building our initial
database. Although the θ , b, and r we select will not be optimal
n < 10000, query and recommendation is rapid for small databases,
so even a non-optimal distribution of nodes across the b hash tables
should still produce acceptable performance.

Although unlikely, if n exceeds 10000, we can monitor recom-
mendation time to maintain our 100ms threshold. We expect this
to persist for a reasonable period of time, since: (1) our experience
suggests initial performance will be an order of magnitude below the
100ms threshold; (2) many nodes in new sequences will already ex-
ist in the database; and (3) for a larger database, multiple new nodes
will be needed before performance is pushed above the threshold.
If performance degrades past 100ms, we must reorganize the hash
tables used for sequence queries. The key parameter is θ , since it is
used to subdivide the database into similar and dissimilar sequence
pairs. We sample new values θ ′ to identify an appropriate replace-
ment. This will be faster than during initial database construction,
since we know whether θ is too low or too high by examining the
distribution of nodes in the current hash tables. Once a θ ′ is selected,
corresponding b′ and r′ are chosen as discussed in Section 6.

9 PRACTICAL EXAMPLE

As a practical example, consider a USGS dataset of 1,989 earth-
quakes (Fig. 1) [41]. We focus on latitude, longitude, and magnitude
mag, with a simple analytic task of identifying outlier mag in both
the strong and weak directions.

Analysis generally proceeds in one of two directions. More
novice users attempt to use a map (Fig. 4a) to visually identify
outliers. More expert users analyze mag directly, using calculations
based on interquartile range (IQR, the distance between the first
and third quartiles) to define upper and lower thresholds for outliers
(Fig. 4b). For an outlier threshold of 1.5IQR, any mag < 1.95 or
> 5.68 is an outlier. Figure 1a visualizes earthquakes as circles with
mag 7→ size and outlier 7→ color: purple for weak outliers, red for
strong outliers, and blue for non-outliers. We see a number of strong
outliers (e.g., the recent magnitude 7.1 earthquake in Mexico), but
no weak outliers.

When novices request recommendations, the system uses their
last six visualizations to locate sequences with nodes similar to the

user’s previous six nodes. We do not enforce ordering of nodes in
similar sequences, so the system can backtrack to the initial map
visualizations of mag (used by both novices and experts), then follow
alternative paths to identify visualizations used to define outlier
thresholds (e.g., Fig. 4b). Novices use the recommendations to: (1)
recognize the strategy of threshold calculation; and/or (2) determine
what boxplot visualizations represent, then use this understanding to
move to a threshold+highlighting approach.

Other interesting phenomena can be identified, for example, a
large cluster of small magnitude earthquakes occurring in Oklahoma
and Kansas. Oklahoma has seen a significant increase in earthquakes
of mag ≥ 3 over the last seven years, possibly due to wastewater
wells produced by the oil and gas industry [26].

With only a few thousand nodes stored in a few tens of sequences,
our example does not require pattern matching scalability. However,
in a real-world domain with more complex tasks and a much larger
sequence database, our experimental results show we can continue
to return recommendations in only a few tens of milliseconds.

10 CONCLUSIONS

This paper describes supporting sequence-based visualization rec-
ommenders with LSH. Jaccard-based similarity can be used to store
similar nodes in common hash buckets. This allows us to retrieve
common sequences very rapidly, then analyze them for potentially
interesting nodes (visualizations) to recommend to a user. Exper-
imental results showed that by carefully choosing the parameters
used in LSH, we can retrieve nodes in 1ms or less, and complete the
entire recommendation operation in 20ms or less.

A number of important practical findings were discovered during
our experiments, in terms of choosing effective LSH parameters θ ,
b, and r. One area of future work is how to update these parameters
dynamically. Another area of interest is how interaction can be
added to our visualization grammar, similar to Vega-Lite.

A further interesting aspect to look into is effectiveness. As a
crowdsourcing system, the quality of retrieved visualizations essen-
tially depends on the quality of the database. There is no guarantee
of the effectiveness of the recommendations. To mitigate this issue,
an effectiveness score can be considered to be assigned to the re-
trieved visualizations based on perceptual and design principles, and
let the system only recommend those with higher scores. In this
way, instead of relying on the quality of the crowdsourced database,
we have a built-in mechanism to retrieve and identify visualizations
both similar and effective.
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