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Abstract

This paper describes the integration of perceptual guidelines from
human vision with an AI-based mixed-initiative search technique.
The result is avisualization assistant,a system that identifies per-
ceptually salient visualizations for large, multidimensional collec-
tions of data. Understanding how the low-level human visual sys-
tem “sees” visual information in an image allows us to: (1) evaluate
a particular visualization, and (2) direct the search algorithm to-
wards new visualizations that may be better than those seen to date.
In this way we can limit search to locations that have the highest po-
tential to contain effective visualizations. One testbed application
for this work is the visualization of intelligent e-commerce auction
agents participating in a simulated online auction environment. We
describe how the visualization assistant was used to choose meth-
ods to effectively visualize this data.

Keywords:agents, artificial intelligence, colour, e-commerce, per-
ception, scientific visualization, texture.

1 Introduction

Scientific visualization is the conversion of collections of strings
and numbers (or datasets, as they are often called) into images that
allow viewers to perform visual exploration and analysis. Normally,
a datasetD = {e1, . . . , en} containsn samples points or data ele-
mentsei. A multidimensional dataset represents two or more data
attributesA = {A1, . . . , Am}, m > 1; data elements encode val-
ues for each attribute, that is,ei = {ai,1, . . . , ai,m}, ai,j ∈ Aj . Vi-
sualization begins with the construction of a data-feature mapping
M(V, φ) that converts the raw data into images that are presented to
the viewer.V = {V1, . . . , Vm} identifies a visual featureVj to use
to display data attributeAj . φj : Aj → Vj maps the domain ofAj

to the range of displayable values inVj . Based on these definitions,
visualization is the selection ofM and a viewer’s interpretation of
the images produced byM . An effective visualization choosesM
to support the exploration and analysis tasks the viewer wants to
perform.

Increasing the information content during visualization is an im-
portant area of research; it was explicitly cited by the DOE/NSF
during their recent panel on open problems in visualization [9].
Multidimensional techniques must address both the sizen and the
dimensionalitym of a dataset. Datasets with many millions of ele-
ments are not uncommon. Moreover, these datasets can often store
information about tens or hundreds of individual attributes. The
challenge is to design methods to represent even some of this infor-
mation simultaneously in a single display, without overwhelming a
viewer’s ability to make sense of the resulting images.

Consider an example weather dataset of monthly averages for
m = 4 attributesA = { temperature, windspeed, precipitation,
pressure}. Rectangular strokes that vary in colour (or luminance
for the printed image), size, density, and orientation are used to rep-
resent eachei (Fig. 1). V1 = luminance, φ1 : dark → light maps
temperature from dark (cold) to light (hot).V2 = coverage, φ2 :
low → high maps windspeed from low coverage (a small percent-
age of the spatial area represented byei is covered by its stroke
for low windspeeds) to high coverage (strong windspeeds).V3 =
orientation, φ3 : 0◦ → 90◦ maps precipitation from upright or 0◦

rotation (no rainfall) to flat or 90◦ rotation (high rainfall). Finally,
V4 = density, φ4 : sparse→ densemaps pressure from low density
(i.e.,a single stroke for low pressure) to high density (i.e.,a 2 × 2
or 3 × 3 array of strokes for high pressure). Our choice of visual
features was guided by results from cognitive vision that describe
how the low-level human visual system “sees” information in an
image. The result is a visualization that effectively represents four
separate attributes together in a single display.

New techniques like perceptual and painterly visualization [5, 6,
7] (Fig. 1), line integral convolution [3], and spot noise [10] rep-
resent significant advances in the area of multidimensional display.
Unfortunately, these techniques are not always simple to understand
or apply. Practitioners are now faced with visualization tools that
offer an extensive set of options to present information, but no as-
sistance on how to harness or control the use of these options to
produce an effective result.

Some previous work has studied ways to automate the selection
of M in certain cases. Rule-based systems [1] suggest a singleM
based on properties of a dataset. Although promising, this tech-
nique suffers from a number of limitations: (1) only oneM is rec-
ommended for each type of dataset, (2) the parameters used to cat-
egorize a dataset are relatively coarse, so many differentD will
map to the sameM , and (3) there is no simple way to automat-
ically modify M to support context or user preferences. Design
galleries [8] are used to convert input parameters to images via a
mapping function; a set of images maximally dispersed from one
another can be automatically identified, arranged, and displayed to
provide an overview of how different inputs affect the resulting im-
age. Although expressive, this technique does not help a user pick
the “best”M for their data. Perceptual knowledge and visualiza-
tion expertise are still needed to select anM that is appropriate to a
user’s visualization and exploration needs.

This paper describes avisualization assistant, a combination of
perceptual guidelines and an intelligent search engine designed to
identify the data-feature mappingsM that are most appropriate for
a particular dataset and associated analysis tasks. Our visualiza-
tion assistant, called ViA, was specifically engineered to satisfy a
number of important goals:

• visually effective:eachM suggested by ViA should produce
displays that allow a viewer to rapidly, accurately, and effec-
tively conduct their exploration and analysis,

• domain independent:ViA should not be constrained to a par-
ticular type of environment, rather, it should generalize to a
wide range of real-world applications,

• allow context: ViA should allow a viewer to add domain-
specific context as necessary to a mappingM , and

• computationally efficient:ViA should not perform an exhaus-
tive search of all possible mappings, rather, it should concen-
trate on locations (i.e.,specificM ) that are most likely to pro-
duce effective visualizations.

The result is a semi-automated system that can identify perceptually
salient visualizations for a broad collection of application environ-
ments. Viewers can describe their requirements, ask ViA to locate
candidate mappings, and refine those mappings as needed to pro-
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Figure 1: A weather dataset withn = 72, 384 elements representing monthly average conditions across the continental United States form = 4 attributes
A = { temperature, windspeed, precipitation, pressure} visualized usingV = { luminance, coverage, orientation, density}; attribute values are mapped to
individual feature values usingφ1 = light → dark, φ2 = low coverage→ high coverage, φ3 = 0◦ (upright)→ 90◦ (flat), andφ4 = sparse→ dense

duce a small collection ofM that are best suited to a given dataset
and analysis task.

2 Perceptual Visualization

One area that has demonstrated significant promise is the use of
properties of low-level human vision to guide the display of com-
plex datasets. The DOE/NSF joint panel on visualization empha-
sized the need to harness perception to increase our ability to rep-
resent information [9]. Researchers in cognitive vision have identi-
fied a collection of visual features that are detected “preattentively”
by the low-level visual system1. They include many of the visual
cues we apply during visualization (e.g.,hue, luminance, size, con-
trast, orientation, and direction of motion). When combined prop-
erly, these features can be used to support high-level exploration
and analysis. Examples include searching for elements with a spe-
cific visual feature, identifying spatial boundaries between groups
of elements with common features, tracking elements as they move
in time and space, and estimating the number of elements with a
particular target feature. Preattentive features and tasks offer three
important advantages:

1. Speed:preattentive tasks are performed very rapidly and ac-
curately, often in 100 msec or less.

1Although we now know that these visual features are influenced by the
goals and expectations of the observer, the term preattentive is still useful
because it conveys the relative ease with which these processes are com-
pleted.

2. Display size:the time needed to perform a preattentive task is
independent of the number of elements being displayed.

3. Interference: an ad-hoc assignment of data attributes to vi-
sual features can produce interference patterns that mask in-
formation in a display; psychophysical experiments are used
to identify and avoid these situations.

Guidelines from preattentive vision allow us to buildM that har-
ness the strengths and avoid the limitations of the low-level visual
system.

Recent work in the literature discussed the use of perceptual
colour and texture properties to represent multidimensional data
[6, 12]. Experiments were conducted to study the combined use
of luminance, hue, size, density, regularity, and orientation during
visualization. Results from these experiments can be roughly di-
vided into the following categories:

• absolute performance:a visual feature’s ability to represent
information in isolation; for example, fine-grained differences
in colour are relatively easy to detect (for viewers with normal
or corrected acuity), but differences in regularity require con-
siderable time and effort to distinguish [6].

• interference:certain “high importance” features can mask or
hide differences in less important features; for example, vari-
ations in luminance can mask colour differences; similarly,
variations in colour mask underlying texture patterns [6].

• just-noticeable difference:multiple values of a visual feature
need a minimum difference to be perceptually distinguishable
from one another [12]; for example, up to seven isoluminant
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hues can be rapidly identified when shown simultaneously in
a single display [6].

• task and domain applicability:certain features are best suited
for particular analysis tasks or attribute domains; for example,
both colour and orientation can be used to perform high-speed
estimation [5]; luminance is most often used to display high
spatial frequency data [6].

Taken together, these results form a foundation to support the con-
struction of perceptually salient visualizations. Unfortunately, bal-
ancing the various constraints can be difficult and time consum-
ing. Special care is needed to manage the interdependent nature of
the different guidelines. A viewer must repeat this process when-
ever the dataset properties or analysis tasks are changed. A system
that automated even some of this work would free viewers to con-
centrate on their original goal: to gain new insights into their data
through visual exploration and analysis. Semi-automated construc-
tion of M would allow viewers to consider multiple scenarios for
a particular dataset, to visualize it in numerous ways, and to inves-
tigate different groups of analyses, without having to worry about
the effort needed to construct each newM .

ViA was designed to perform exactly this type of assisted visu-
alization. Perceptual guidelines are encapsulated into a set ofeval-
uation enginesthat: (1) rank a particularM based on a dataset’s
properties and a viewer’s analysis needs, and (2) offer suggestions
(or hints) on howM might be improved. These engines are com-
bined with an AI-based search algorithm designed to identify and
evaluate small collections ofM with the highest potential to pro-
duce effective visualizations.

3 Mixed-Initiative Search

ViA’s goal is to build a one-to-one mapping ofm data attributes to
m visual features. This may require choosing fromq > m available
features. One solution to this problem is to perform an exhaustive
search across all possibleM , visiting them in lexicographical order
and selecting the topk. This simple approach has two problems.
First, an exhaustive search, even for smallm andq, quickly grows
intractable. Second, and more significantly, the search process itself
is inflexible. For example, if the viewer finds flaws in all of the top
k mappings, the system has little recourse but to return to the next
k, even though these are ranked lower in its evaluation.

To avoid these problems, the algorithms within ViA are based
on recent advances in interactive and mixed-initiative search [2].
Some forms of planning [13] bear a strong resemblance to the con-
struction of good visualizations, in that both processes rely on the
concepts of “flaws” in a partially complete structure or process, to-
tal and partial ordering of elements, and incremental construction
and evaluation. Mixed-initiative algorithms were modified and ex-
tended to support external advice during search. This allows the
evaluation engines to guide the search towards perceptually optimal
data-feature mappings. It also allows viewers to direct the selection
of M to respect context in a dataset, or to include features that they
deem important.

The evaluation engines analyze eachM based on the dataset’s
properties and a viewer’s analysis needs. ViA begins by asking
viewers a set of domain-independent questions about the dataset.
The particular properties we identified come from previous work on
automated visualization (e.g.,in [1, 4]), and from the psychophys-
ical experiments used to study the perceptual properties of colour
and texture. Specifically, the viewer must define:

• importance ordering: the relative importance of each at-
tribute,

• task: the analysis task(s), if any, to be performed on each at-
tribute,

• spatial frequency:the spatial frequency of each attribute, and

• domain type:whether an attribute’s domain is continuous or
discrete.

Although ViA will try to infer some of the dataset’s properties (e.g.,
spatial frequency and domain type), viewers can override any of
these decisions.

4 ViA

ViA’s architecture combines a multidimensional dataset, domain-
independent information about its properties and the viewer’s anal-
ysis tasks, a mixed-initiative search algorithm, and the evaluation
engines to rank candidate visualizations for the dataset (Fig. 2). An
initial M is selected by the search algorithm to begin the evalu-
ation. The use of mixed-initiative techniques allow ViA to move
intelligently through the space of all possibleM . The evaluation
engines weight individualM , and offer advice on howM might
be improved. If any of the guidelines in an evaluation engine are
violated, the engine tries to provide “hints” to fix the problem. For
example, supposeAj → colour. The colour evaluation engine
would check to see ifAk → luminance ∈ M . If so, and if
Aj > Ak in terms of attribute importance, there may exist a lumi-
nance interference effect (i.e.,background luminance patterns used
to displayAk may mask colour patterns attached to the more im-
portant attributeAj ). The engine would also check to see ifAj

had a high spatial frequency, since colour (particularly isoluminant
colour) is not well-suited for representing fine spatial detail. Ei-
ther case would cause the colour evaluation engine to return a low
weight for Aj → colour. In both cases it would also “hint” to
use luminance rather than colour to representAj . The search al-
gorithm collects allm evaluation weights and corresponding hints,
then uses the hints to direct its search to a new set of mappings. If
the hints are valid, these new mappings should produce better eval-
uation weights. In this way, we can restrict search to small groups
of M with a strong potential for improvement.

Although a completely automated assistant might seem to be
an appropriate goal, we do not believe this is feasible. The eval-
uation engines cannot be perfect, and specific datasets may have
unique properties that cannot be addressed in a general way by ViA.
The strength of ViA is its ability to produce a collection of map-
pings that satisfy the rules of human perception. Any one of these
mappings can then be extended to include context or to highlight
dataset-specific properties. For example, a viewer can require that
attributeAj be displayed using a specific visual featureVj . ViA
will ensure that its candidate mappings include this request. ViA
will also report any penalty this choice incurs by telling the viewer:
“The best mapping with your constraints isMj , which evaluates to
wj ; the best mapping with no constraints isMk, which evaluates to
a higher valuewk.” This allows viewers to balance the importance
of constraints against any reduction in the quality of theM they
produce. Similarly, viewers could modify a candidate mappingMj

to generateM ′
j , then ask ViA to evaluateM ′

j . The effect of their
changes on the perceptual salience ofMj is shown by comparing
weightswj andw′

j

4.1 Viewer Interaction

The mixed-initiative nature of the search allows ViA to query view-
ers about choices that they are best equipped to answer. For exam-
ple, discretizing a continuous attributeAj can allow for improved
M (this is particularly true in situations where viewers want to
search for or estimate the relative number of a specific value of
Aj). If ViA identifies this opportunity, it may ask the viewer: “Will
you allow me to discretize attributeAj into x equal-width ranges?”
Other situations can cause ViA to ask to rearranging the relative im-
portance of closely ordered attributes, or to ignore certain analysis

3
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Figure 2: The ViA architecture, showing: a dataset from an external source, along with its viewer-defined properties (importance ordering, task, spatial
frequency, domain type); the mixed-initiative search engine, used to construct, evaluate, and improve candidateM ; the evaluation engines, used to weight and
offer hints on how to improveM ; the topk candidates returned to the viewer

tasks for low-importance attributes. This is not only a chance for
ViA to generate better candidate mappings; it also allows viewers
to refocus their priorities based on results-to-date, and to examine
in more detail specific aspects of the application environment. In-
deed, certain initial choices for the dataset properties and analysis
tasks may receive little consideration until ViA asks for particular
changes or modifications. Since a viewer’s time and attention are
scare resources, ViA restricts its queries to only those situations
where obvious improvements may result. ViA caches viewer re-
sponses, to ensure that the same (or similar) questions are not asked
again.

The current implementation of ViA includes five evaluation en-
gines: luminance and hue (which can be combined into a single
“colour” feature), size, density, and regularity. ViA’s design makes
it easy to add new visual features as their perceptual properties are
identified. For example, an orientation engine (based on results in
[12]) is now being tested. Future experiments on motion perception
will allow us to evaluate the use of flicker, direction of motion, and
velocity during visualization.

Two different mixed-initiative search strategies are also being
compared: a simple priority queue that orders hints based on the es-
timated evaluation improvement they will provide, and a modified
real-time A∗ (RTA∗) algorithm. Both techniques have successfully
identified effective visualizations for a number of practical applica-
tions testbeds. The main difference between the two algorithms lies
in their flexibility. The priority queue applies hints one after an-
other based on estimated weight improvements, without consider-
ing other criteria that may be important to the viewer. The RTA∗ al-
gorithm models search using a tree structure; both the nodes (which
correspond to a particularM ) and the edges (which correspond to
the modification of a parent nodeMj to produce a childM ′

j) can
carry weights. Node weights represent the result of evaluating the
node’sM . Edge weights allow us to associate costs with the mod-
ifications (i.e., the application of hints) needed to produceM . For
example, a viewer might specify an initial mappingM1, then ask
for a collection of perceptually salientM that are similar toM1.
The edges between the root node’sM1 and a candidate childMj

can be used to encode the number and type of hints used to de-
rive Mj . Low-cost paths represent mappings similar toM1, while
high-cost paths denote a mapping with significant modifications.

5 Trading Agent Competition

The Trading Agent Competition2 (TAC) is a simulated e-commerce
auction environment run on the Michigan Internet AuctionBot plat-
form3. The AuctionBot is a TCP-based auction server that imple-
ments numerous types of auction rules. This allows the simulation
of a wide variety of market games. Intelligent auction agents are
designed and tested within these markets to study different buying
and selling strategies.

During the TAC, each agent acts as a “travel advisor” whose goal
is to assemble a travel package for eight fictitious customers. A
travel package consists of:

• a round-trip flight from TACtown to Boston,

• a hotel reservation, and

• tickets to certain entertainment events (a baseball game, the
symphony, and the theatre).

Each customer specifies preferences for the different aspects of his
or her trip. For example, customers will tell the agent which days
they want to be in Boston, the type of hotel they prefer (economy
or luxury), and the entertainment events they want to attend. There
are obvious dependencies that must be met, for example, customers
need hotel rooms for the duration of their trip, and can only attend
entertainment events during that interval. The goal of the agent is
to maximize the total satisfaction of its customers (i.e., the sum of
their utility functions).

All three products (flights, hotels, and entertainment) are traded
in separate markets with different auction rules. For example, the
auction for airline tickets runs as follows:

2http://tac.eecs.umich.edu
3http://tac.eecs.umich.edu/auction
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1. A single airline (TACAIR) operates a single flight every day
between TACtown and Boston; from the point of view of an
agent, the supply of available seats is unlimited.

2. TACAIR runs a separate auction for each flight (i.e., for each
day flights are being sold), with prices ranging from $150 to
$600 dollars; a stochastic function with a uniform distribution
permutes the price by±$10 every 20 to 30 seconds,

3. The auctions run continuously until the simulation ends.

4. A buy bid by an agent is held within an auction until: (1) a
sell price at or below the agent’s bid is issued for the given
auction, or (2) the auction ends.

5. Agents can withdraw or revise their bids at any time prior to
a bid being accepted.

6. Agentscannotsell their own (previously purchased) tickets
within the auction; only TACAIR can sell tickets.

Other auctions run with slightly different rules. For example, two
hotels are available during the TAC: an economy hotel (Le FleaBag
Inn) and a luxury hotel (Boston Grand Hotel). Both hotels offer
sixteen rooms for each evening, with every hotel-evening pair run
as a separate auction. The sixteen highest bids for an auction de-
termine who receives rooms. An agent bids for one or more rooms
at a chosen price (obviously, this price must exceed a minimum bid
price, which is the sixteenth highest bid seen to date). Bids can-
not be withdrawn, and only the hotel can offer to sell rooms. An
auction ends when: (1) the simulation ends, or (2) a randomly cho-
sen period of inactivity with no new bids passes (this was intended
to penalize agents that try to wait until the end of the simulation,
check the minimum bid price, then bid slightly above that price to
secure the rooms they want). All the rooms are sold at the price of
the sixteenth bid (i.e., agents with the highest bids will often pay
less than they offered for their rooms).

Finally, every agent receives an initial allotment of tickets for
each entertainment event. They can then buy and sell these tickets
with other agents. As with hotels, a separate auction is held for each
evening-event combination. The auctions run in a manner similar to
the stock market: buy or sell requests that match an existing bid are
executed immediately; otherwise they are held within the auction
until an appropriate bid is received, or until the auction ends.

Although certain aspects of the TAC are simplified, it still pro-
vides an excellent simulation of a real-world e-commerce auction
environment. Products are bought and sold in real-time, both by
external suppliers and by the agents themselves. Careful planning
is needed to manage the cost of certain items versus their potential
unavailability (e.g.,hotel rooms). Different auctions are run using
different rules, requiring an agent to implement a variety of tactics
to guarantee overall success.

The TAC has been used to study different auction strategies
through head-to-head competitions. For example, teams of stu-
dents in our undergraduate e-commerce course design and imple-
ment TAC agents, then compete against one another at the end of
the term. In July 2000, twelve teams participated in a TAC run at the
Fourth International Conference on Multiagent Systems (ICMAS-
00). The agents at ICMAS were selected from an initial group of
twenty teams from six countries that competed in a set of qualifying
rounds conducted prior to the conference.

6 TAC Visualizations

As plans were being finalized for the ICMAS competition, it was
suggested that a method of visualizing the simulations might be
useful. This would allow both participants and observers to follow
the progress of each agent as the simulation unfolded. It was also
hoped that the strategies of the different agents would be visible
within the displays. We decided to ask ViA to try to identify an

Attribute Domain Freq. Task Impt.
agent ID discrete (8

unique values)
high search 1.0

price continuous low boundary 0.5
quantity discrete (10

unique values)
high estimate 0.5

Table 1: A table showing the attributes to visualize during a TAC simula-
tion, along with each attribute’s domain (and number of unique values if
it is discrete), spatial frequency, the tasks viewers want to perform on the
attribute, and the attribute’s relative importance

effective real-time visualization for the TAC. Datasets from a TAC
run in our undergraduate e-commerce course were used to select
the candidateM .

Five separate attributes were selected for visualization: thetime,
auction ID, agent ID, price, andquantityfor every bid made during
the simulation. Although the TAC is relatively simple in its number
of attributes, it provides a demonstration of ViA’s abilities that is
both insightful and manageable.timeandauction IDwere used to
define a bid’sx andy-position on a two-dimensional grid. Percep-
tual texture elements (pexels) that can vary in their hue, luminance,
height, density, and regularity of placement were used to represent
the remaining attributes:agent ID, price,andquantity. The dataset
properties and tasks defined by the TAC designers are summarized
in Table 1.

Since the dimensionality of the TAC is relatively small, we de-
cided to bind luminance and hue into a single visual feature, colour.
This allowed us to assign colours from a perceptually balanced path
that spirals up around the luminance pole (this type of path also al-
lows us to control colour surround errors, as described in [11]). Af-
ter consultation with the TAC designers, we decided to allowquan-
tity to be re-discretized into (as few as) three equal-width ranges.
agent IDwas not changed, since viewers need to identify specific
agents during the simulation. Finally, ViA was not allowed to dis-
card any of the analysis tasks.

Based on these restrictions, a total of nineteenM were evaluated.
The smaller number of attributes and visual features, together with
the constraints on how mappings could be modified, kept this num-
ber low (without these constraints, ViA would have evaluated 189
separateM ). We also decided to ignore anyM that used regular-
ity; this allowed viewers to avoid the difficulties inherent in trying
to detect differences in this visual feature. A number of promising
M remained, including:

• M1: agent ID→ colour, price → height, quantity→ den-
sitywith quantityre-discretized into four equal-width ranges;
evaluation weight= 0.862

• M2: agent ID→ colour, price→ density, quantity→ height;
evaluation weight= 0.787

• M3: agent ID→ height, price→ density, quantity→ colour;
evaluation weight= 0.693

EachM ’s evaluation weight can be explained by identifying the
strength and weaknesses of individualAj → Vj pairs. Consider
M1, which contains three “weaknesses” that cause reductions in its
overall weight:

1. agent ID → colour: the search task requires identifiable
colours, but the number of uniqueagent ID(eight) exceeds the
maximum number of equally distinguishable colours (seven);
penalty= −0.013.

2. agent ID→ colour: colour is not the best visual feature for
high spatial frequency data; penalty= −0.083.

3. quantity→ density:density is not the best visual feature for
high spatial frequency data; penalty= −0.063.

5
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bidding war for hotels

high price/high quantity buy bids 
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Figure 3: Student TAC data visualized with four differentM : (a) M1: agent ID→ colour, price→ height, quantity→ density; (b) M2: agent ID→ colour,
price → density, quantity→ height; (c) M3: agent ID→ height, price → density, quantity→ colour; (d) Mfinal: agent ID→ colour, price → height,
quantity→ width
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Note that if we did not re-discretizequantity, its number of unique
values (ten) would exceed the maximum number of usable densities
(seven), reducingM1’s evaluation weight to0.779.

Fig. 3a shows data from the student TAC visualized withM1.
Time increases from left to right along the horizontal axis. Each
row corresponds to a specific auction. Viewers can clearly identify
bids by different agents (via colour), bids with higher prices (taller
pexels), and buy versus sell bids (buy bids lie above the plane, while
sell bids lie below the plane). Other properties of the simulation are
also visible. Consider the line of bids with steadily increasing prices
in the upper-right corner. This represents a group of agents engaged
in a bidding war over hotel rooms. Each agent is repeatedly raising
its bid price in an effort to secure rooms for the days its customers
want to travel. This is one example ofM1’s ability to represent
the strategies (or the possible lack of any strategy) employed by an
agent.

The otherM contain slightly different (and according to ViA,
slightly more serious) problems. For example,M2 receives the
same penalties foragent ID→ colour. In addition:

1. price → density: cannot map a continuous attribute to a
discrete visual feature without some type of discretization;
penalty= −0.083.

2. quantity → height: the estimate task requires identifiable
heights, but the number of uniquequantity(ten) exceeds the
maximum number of equally distinguishable heights (five);
penalty= −0.033.

As with M1, re-discretizingquantityto five or fewer ranges would
remove the second penalty, increasingM2’s weight to0.820.

Fig. 3b shows the dataset being visualized withM2. Although
the data values are the same in Figs. 3a and 3b, the resulting im-
ages are clearly different. For example, increases inprice (e.g.,in
the bidding war area of the dataset) in Fig. 3b are more difficult to
detect. Density can only be used to represent a small collection of
unique values, soprice must be ranged (and must cross one of the
range boundaries) to produce changes in the visualization. In fact,
ViA identified this pairing as problematic, and penalizedM2 for
using it.M2 also contains potential advantages. Within the bidding
war, bids for a given agent appear to have a fixed height. This shows
that different agents are bidding for a different (but constant) num-
ber of hotel rooms. This makes sense, since each agent has specific
needs based on the requests of its customers. This demonstrates
why visualizing the same data in different ways can be beneficial:
it will often highlight important aspects of a dataset that no single
M can capture completely.

ForM3, ViA identified the following flaws:

1. agent ID → height: the search task requires identifiable
heights, but the number of uniqueagent ID(eight) exceeds the
maximum number of equally distinguishable heights (five);
penalty= −0.027.

2. agent ID→ height: a less important attribute (quantity) is
displayed with a visual feature (colour) that can mask height
patterns; penalty= −0.083.

3. price → density: cannot map a continuous attribute to a
discrete visual feature without some type of discretization;
penalty= −0.083.

4. quantity → colour: the estimate task requires identifiable
colours, but the number of uniquequantity(ten) exceeds the
maximum number of equally distinguishable colours (seven);
penalty= −0.030.

5. quantity→ colour: colour is not the best visual feature for
high spatial frequency data; penalty= −0.083.

Fig. 3c shows the dataset being visualized withM3. As noted dur-
ing ViA’s analysis, identifyingagent IDwith height is more diffi-
cult than with the colours used byM1 andM2. Visualizingprice
with density requires continuous prices to be discretized into price
ranges. On the other hand, the use of fixedquantityduring the hotel
bidding war is easily seen, in this case as a constant colour for each
participating agent.

After studying these mappings, we chose a modified version of
M1 for the final visualizations. Instead of using density to repre-
sentquantity, we varied the width of each pexel. This allowed us to
handle a wider range ofquantityvalues without having to combine
them into a very small number of densities. It also allowed us to
uncouplequantity from our implicit use of vertical density. Bids
with a commontimeandauction IDare shown as pexels rendered
one above another at a single grid location. Vertical density cap-
tures the level of activity occurring at various locations within the
simulation.

An example of ourMfinal is shown in Fig. 3d. Visualizations
are constructed and rendered together with a running TAC. This
allows viewers to track agent activity in real-time as the simulation
unfolds, and to see the different strategies the agents employ to try
to achieve their auction goals.

Fig. 4 shows a dataset from one of the ICMAS TAC simulations.
The sameMfinal is used to visualize the data. Finalists at ICMAS
used much more sophisticated agent strategies, some of which are
clearly visible in our visualizations. For example:

1. Some agents would periodically make very low buy bids for
hotel rooms to ensure the hotel auctions did not close prema-
turely.

2. Most agents deferred purchasing hotel rooms and airline tick-
ets until just before the simulation ended, since they felt there
was no advantage to early purchase (particularly for hotel
rooms, where attempts at early purchase can drive up the final
price).

3. If hotel rooms for a given customer cannot be found, the cus-
tomer’s entire trip is cancelled, and the agent is penalized the
cost of any airline and entertainment tickets they may have
purchased on the customer’s behalf. Some agents estimated
the costc of this penalty, then made late bids for hotel rooms
at a buy price ofc. These agents decided that payingc for a
hotel room was no worse than paying a penalty ofc for unused
airline and entertainment tickets. More importantly, there is a
good chance that the hotel rooms will sell for less thanc (that
is, the sixteenth winning bid for a room is made by some other
agent with a buy price less thanc). If this happens, the agent
will make a profit relative to the scenario of not securing the
hotel room.

7 Conclusions

This paper describes ViA, a semi-automated visualization assis-
tant designed to help viewers construct perceptually sound visu-
alizations for large, multidimensional datasets. Viewers begin by
providing domain-independent information about their dataset and
analysis requirements. ViA uses perceptual evaluation engines and
mixed-initiative search techniques to identify candidate visualiza-
tions that are best suited to the given data and tasks. Viewers can
constrain ViA to respect their preferences, or to include contextual
cues that should appear in the final visualizations. The result is a
system that can rapidly identify effective visualizations for a wide
range of real-world environments.

We discuss in detail how ViA was used to design visualiza-
tions for datasets from an e-commerce auction (TAC) simulation.

7



Proceedings Graphics Interface 2001 HEALEY, ST. AMANT, CHANG

hotel/airline purchase activity

"stay alive" bidstime

auction

penalty/cost tradeoff bids

Figure 4: ICMAS TAC data visualized withMfinal (agent ID→ colour, price→ height, quantity→ width); more sophisticated agent strategies are visible
in these displays

Candidate mappingsM were selected based on a number of re-
strictions specified by the TAC designers. ViA correctly identi-
fied the strengths and weaknesses of each of theseM , producing a
high-weight result that led directly to our final visualization design.
This Mfinal allows observers to track the progress of different e-
commerce agents as a simulated auction unfolds. It also highlights
different strategies used by the agents to try to meet their auction
goals.

Although we chose e-commerce data to demonstrate the prac-
tical uses of ViA, we are not limited to only this type of envi-
ronment. For example, ViA selected theM used to visualize the
weather data shown in Fig. 1. Plans to include additional visual
features (e.g.,orientation and motion) during evaluation will fur-
ther improve ViA’s expressiveness and flexibility.
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