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1 Introduction

The challenges of CSA discussed in previous chapters call for ways to provide assis-

tance to analysts and decision-makers. In many fields, analyses of complex systems

and activities benefit from visualization of data and analytical products. Analysts

use images in order to engage their visual perception in identifying features in the

data, and to apply the analysts. domain knowledge. One would expect the same to

be true in the practice of cyber analysts as they try to form situational awareness

of complex networks. Earlier, the Cognition and Technology chapter introduced the

topic of visualization: its criticality to the users, e.g., cyber analysts, as well as its pit-

falls and limitations. Now, this chapter takes a close look at visualization for Cyber

Situational Awareness. We begin with a basic overview of scientific and informa-

tion visualization, and of recent visualization systems for cyber situation awareness.

Then, we outline a set of requirements, derived largely from discussions with expert

cyber analysts, for a candidate visualization system.

We conclude with a case study of a web-based tool that supports our require-

ments through the use of charts as a core representation framework. A JavaScript

charting library is extended to provide interface flexibility and correlation capabili-

ties to the analysts as they explore different hypotheses about potential cyber attacks.

We describe key elements of the design, explain how an analyst.s intent is used to

generate different visualizations that provide situation assessment to improve the

analyst.s situation awareness, and show how the system allows an analyst to quickly

produce a sequence of visualizations to explore specific details about a potential

attack as they arise.

Data visualization converts raw data into images that allow a viewer to “see” data

values and the relationships they form. The motivation is that images allow viewers
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to use their visual perception to identify features in the data, to manage ambiguity,

and to apply domain knowledge in ways that would be difficult to do algorithmically.

Visualization has a long and rich history, starting with the use of maps and graphs

to represent information. In one famous example, John Snow constructed a dot

map to identify clusters of victims during a cholera outbreak in central London in

1854. Based on the location of the clusters, Snow hypothesized that contaminated

drinking water was the cause of the disease. Disabling a public water pump in the

area confirmed this conclusion. Another example occurred during the Crimean War

(1853–1856). Florence Nightingale, volunteering as a nurse, observed very poor liv-

ing conditions for wounded soldiers. This led her to create a multidimensional pie

chart, known a Rose or a Coxcomb chart, to document the causes of deaths during

the war. She used her charts to highlight that deaths from preventable disease far

outnumbered deaths from injury and other non-preventable causes.

Work in visualization continued to expand on these earlier uses. In the area of

statistics Jacques Bertin presented a theory of graphical symbols used to visually

represent information [1]. Herman Chernoff proposed the use of facial expression

properties (Chernoff faces) to visualize multivariate data [3]. In 1987 the National

Science Foundation sponsored a Workshop on Visualization in Scientific Comput-

ing. Results were presented to the research community as a foundation for computer-

based visualization [6]. The initial focus was on scientific visualization techniques

for data with known spatial embeddings: volume visualization of reconstructed CT

or MRI data, terrain visualization of geospatial data, or flow visualization of vec-

tor fields representing flow data. Later, the field expanded to include information

visualization approaches for more abstract data: text visualization for documents

or web pages, level-of-detail visualization for data with hierarchical structures, or

multivariate visualizations made up of glyphs that vary their visual appearance to

represent multi-valued datasets.

Although scientific and information visualization are seen as two sub-areas, sig-

nificant overlap exists between them. For example, issues of human perception—

how our visual system perceives basic properties of colour, texture, and motion,

and how we can use this knowledge to build effective visual representations—apply

to both areas. Multivariate data—data elements that encode multiple data attribute

values—must be considered in both scientific and information visualization.

The field of visualization has matured significantly since the original NSF work-

shop. The area of visual analytics was proposed in 2005 to explicitly combine data

analytics and visualization for iterative data exploration and hypothesis testing [19].

New research continues in many different directions. Christopher Johnson, director

of the Scientific Computing and Imaging (SCI) Institute at the University of Utah,

published a list of “Top Scientific Visualization Research Problems” [9]. Examples

include integrating science into visualization, representing error and uncertainty,

integrating perception into visualization, taking advantage of novel hardware, and

improving human-computer interaction in visualization systems. A more recent re-

port sponsored by the NIH and the NSF on visualization research challenges echoed

these suggestions [10]. Although nearly 10 years have passed since Johnson’s orig-

inal list, many of these areas continue to generate new research results.
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2 Formalizing Visualization Design

Numerous researchers have proposed ways to structure or describe a visualization

design, for example, by the data being visualized, by the visual properties being

used, or by the tasks the visualization supports.

We present a formalization that describes how data is mapped to visual properties

like luminance, hue, size, orientation, and so on. Data passed through this data–

feature mapping generates a visual representation—a visualization—that displays

individual data values and the patterns they form.

An input dataset D is made up of one or more data attributes A = {A1, . . . ,An}.

Each data element ei stored in D contains a value for each data attribute, ei =

{ai,1, . . .ai,n}. In order to visualize D, a set of n visual features V = {V1, . . . ,Vn}
are selected, one for every data attribute in A. Finally, mappings M = {M1, . . . ,Mn}
are defined to map the domain of Ai to the range of Vi.

As a simple example, we return to the well-known technique of visualizing data

on a map. Consider a temperature map similar to those shown on any weather

site. Here, D is made up of three attribute: A = {A1 : longitude, A2 : latitude, A3 :

temperature}. The visual features V = {V1 : x,V2 : y,V3 : colour} are used to con-

vert temperature readings throughout the world, stored as data elements ei ∈ D, into

a visual representation. M1 and M2 map ei’s longitude and latitude to an absolute

x and y location. These can be used to position the map within the visualization

window, and to change its size and aspect ratio. M3 maps temperature values to dif-

ferent colours, often over a discretized rainbow colour scale that mirrors the range

of colours seen in a rainbow: violet–indigo–blue–green–yellow–orange–red. This

represents cold temperatures with purple and blue, hot temperatures with orange

and red, and moderate temperatures with green and yellow, exactly as seen in many

temperature maps.

More complicated datasets have more data attributes. For example, suppose we

expanded the weather dataset to include not only temperature, but also pressure,

humidity, radiation, and precipitation. This requires a visualization design that uses

more visual features and data–feature mappings. It quickly becomes difficulty to

choose features and mappings in ways that work effectively together. We could also

increase the number of weather readings we collect. Even on a high definition dis-

play, once the number of data elements exceeds 2.2 million, there are not enough

pixels in the display to visualize each element. Introducing additional positional

attributes like elevation and time further complicates the visualization’s design re-

quirements. Non-numeric data attributes may also exist. Suppose D included an

attribute “A4 : forecast” that provides a text description of the current weather con-

ditions, in the context of average and extreme conditions for the given location and

time of year. Choosing a visual feature and a mapping to convert text forecasts into

visual representations is itself a challenging problem. Researchers in visualization

are studying new techniques that are designed to address exactly these types of is-

sues.

Based on this overview, it seems clear that visualization offers the potential for

important contributions to cyber situation awareness. Indeed, many existing situ-
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ation awareness tools use visualization techniques like charts, maps, and flow di-

agrams to present information to an analyst. It is critical, however, to study how

best to integrate visualization techniques into a cyber situation awareness domain.

For example, which techniques are best suited to the data and tasks common to this

domain? What is the best way to integrate these techniques into an analyst’s exist-

ing workflow and mental models? How can problems in cyber situation awareness

motivate new and novel research in visualization?

3 Visualization for Cyber Situation Awareness

The visualization community has focused recent attention on the areas of cyber se-

curity and cyber situation awareness. Early visual analysis of cyber security data

often relied on text-based approaches that present data in text tables or lists. Un-

fortunately, these approaches do not scale well, and they cannot fully represent im-

portant patterns and relationships in complex network or security data. Follow-on

work applied more sophisticated visualization approaches like node-link graphs,

parallel coordinates, and treemaps to highlight different security properties, patterns

in network traffic, and hierarchical data relationships. Because the amount of data

generated can be overwhelming, many tools adopt a well-known information visu-

alization approach: overview, zoom and filter, and details on demand. This approach

starts by presenting an overview of the data. This allows an analyst to filter and zoom

to focus on a subset of the data, then request additional details about the subset as

needed. Current security visualization systems often consist of multiple visualiza-

tions, each designed to investigate different aspects of a system’s security state from

different perspectives and at different levels of detail.

3.1 Security Visualization Surveys

Visualization for cyber environments has matured to a point where survey papers

on the area are available. These papers provide useful overviews, and also propose

ways to organize or categorize techniques along different dimensions.

Shiravi et al presented a survey of visualization techniques for network security

[18]. In addition to providing a useful overview of current visualization systems,

they define a number of broad categories for data sources and visualization tech-

niques. One axis subdivides techniques by data source: network traces, security

events, user and asset context (e.g., vulnerability scans or identity management),

network activity, network events, and logs. A second axis considers use cases:

host/server monitoring, internal/external monitoring, port activity, attack patterns,

and routing behaviour. Numerous techniques are described as examples of different

data sources and use cases. The authors specifically address the issue of situation

awareness in their future work, noting that many visualization systems try to prior-
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itize important situations and project critical events as ways to summarize the mas-

sive amounts of data generated within a network. They distinguish between situation

awareness, which they define as “a state of knowledge”, and situation assessment,

defined as “the process of attaining situation awareness.” Converting raw data into

visual forms is one method of situation assessment, meant to present information to

an analyst to enhance their situation awareness.

Dang and Dang also surveyed security visualization techniques, focusing on

web-based environments [5]. Dang chose to classify systems based on where they

run: client-side, server-side, or web application. Client-side systems are normally

simple, focusing on defending web users from attacks like phising. Server-side vi-

sualizations are designed for system administrators or cyber security analysts with

an assumed level of technical knowledge. These visualizations are usually larger

and more complex, focusing on multivariate displays that present multiple proper-

ties of a network to the analyst. Most network security visualization tools fall into

the server-side category. A final class of system is security for web applications.

This is a complicated problem, since it can involve web developers, administrators,

security analysts, and end users. Dang also subdivided server-side visualizations by

main goal: network management, monitoring, analysis, and intrusion detection; by

visualization algorithm: pixel, chart, graph, and 3D; and by data source: network

packet, NetFlows, and application-generated data. Various techniques exist at the

intersection of each category.

New security and cyber situation visualization systems are constantly being pro-

posed. We present a number of recent techniques, subdivided by visualization type.

This offers an introduction to different visualization methods, in the context of the

security and situation awareness domains.

3.2 Charts and Maps

As discussed in the overview, charts and maps are two of the most common vi-

sualization techniques. Well-known approaches improve a tool’s accessibility by

reducing the effort needed for analysts to “learn” the visualizations. It is common to

present summarizes of data as bar charts, pie charts, scatterplots, or maps. Abstract

data like network traffic or intrusion alerts need to be spatially positioned as part of

the visualization design. Embedding the data using a chart’s axes—for example, a

scatterplot that maps IP addresses, A = {A1 : source IP, A2 : destination IP}, to the

horizontal and vertical axes, V = {V1 : x,V2 : y}—or assigning a geographic location

to each data element—for example, estimating an IP address’s longitude and lati-

tude, then converting A = {A1 : longitude, A2 : latitude} to V = {V1 : x,V2 : y}—are

common approaches to positioning data elements.

Roberts et al proposed the StatVis system, built on stacked bar graphs and ge-

ographic heatmaps, to visualize network health over time [17]. The graphs and

heatmaps are used to present overviews of machine status in different geographic

regions. A separate reticle visualization is used to present details about individual
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machines. The result is a combination of overview and details-on-demand for ob-

taining real-time situation awareness of a computer network’s status.

A similar system called VIAssist visualizes network security data by linking be-

tween different charts to present the data from multiple perspectives [7]. When data

elements are selected (or brushed) in one visualization, the same elements are high-

lighted (or linked) in the others. This identifies how data elements correlate be-

tween the visualizations. An overview uses bar and pie charts to visualize the most

frequent elements for any data attribute. Coordinated views use various charts and

maps present visualizations that are correlated with one another. This allows an-

alysts to assess different parts of a computer system using different visualization

techniques.

3.3 Node-Link Graphs

Another common visualization technique is a node-link graph, where nodes and

links correspond to data elements and relationships between the elements. For exam-

ple, nodes can represent machine clusters and edges network connections between

the clusters. Node-link graphs also support the application of graph algorithms to

analyze the structure of a network, or the pattern of traffic within the network.

The NetFlow Visualizer uses node-link graphs to display communication as ori-

ented edges between network devices, represented by graph nodes, at different lev-

els of aggregation [15]. This allows analysts to build up a situation awareness of the

ongoing state of their networks, and to focus on individual flows of interest. The

graph visualization is correlated with a spreadsheet containing specific values for

individual network properties. Analysts can assign different attributes to control the

size and color of the nodes and edges.

3.4 Timelines

Since changes over time are often critical to understanding a dataset, timelines are

another common method of visualization for cyber situation awareness. Although

timelines are similar to charts—for example, a line chart with A = {A1 : time, A2 :

frequency} mapped to V = {V1 : x,V2 : y}—their specific function is to highlight

temporal patterns and relationships in a dataset.

Isis, a system designed by Phan et. al., provides two visualizations—timelines

and event plots—that are linked together to support iterative investigation of net-

work intrusions [16]. Isis’s timeline presents an overview of temporal sequences of

network flows in a histogram chart. The event plot allows an analyst to drill down

over a subset of data to reveal patterns in individual events, using a scatterplot with

A = {A1 : time, A2 : IP address} mapped to V = {V1 : x,V2 : y}. Markers in the scat-
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Fig. 1: A parallel coordinates visualization of data from Fisher’s Iris dataset

terplot represent individual NetFlows. The markers can vary their shape, size, and

colour to visualize NetFlow properties.

PortVis also uses a timeline to visualize port-based security events [14]. The

timeline is ideal for summarizing events over a wide time window (e.g., hundreds of

hours). It uses a scatterplot to visualize A = {A1 : port number, A2 : time} mapped

to the horizontal and vertical axes, V = {V1 : x,V2 : y}. More detailed visualizations

are also available for situation assessment over shorter time windows: a main visu-

alization to investigate activity on individual ports, and a detailed visualization that

uses a bar chart to present values for different port attributes.

3.5 Parallel Coordinates

Parallel coordinates (PCs) are a technique for visualizing multivariate data using

a set of n vertical axes, one per data attribute in a dataset. Each axis covers the

domain of its attribute, from the smallest value at the bottom to the largest value

at the top. A data element is represented as positions on each axis defined by the

element’s attribute values. Positions on neighbouring axes are connected with line

segments, visualizing the element as a polyline. An important advantage of PCs is

their flexibility in the number and type of data attributes they can represent.

As an example, consider Fisher’s Iris dataset, which contains 450 measurements

for three species of irises, A = {A1 : type, A2 : petal width, A3 : petal length, A4 :

sepal width, A5 : sepal length}. Plotting the data using V = {V1 : colour, V2−5 :

PC axis} produces the visualization in Fig. 1. Numerous relationships are visible,

for example petal length and width are correlated across all three species, as are

sepal length and width. Virginica and versicolor irises have similar length and width

patterns, but virginica irises have larger petals. Both species have petals that are

about the same size as their sepals. Setosa irises, on the other hand, have sepals that

are larger than their petals.



8 Christopher G. Healey, Lihua Hao and Steve E. Hutchinson

Parallel coordinates are used in PicViz to visualize network data [20]. PCs are

useful for this type of data, since they can accommodate numbers, times, strings,

enumerations, IP addresses, and so on. PicViz is built to investigate correlations

across multiple properties of Snort log data. The effectiveness and readability of

PCs is often influenced by the ordering of its axes. PicViz supports rapid axis reor-

ganization to determine the best axis sequence for a given investigation. As in Fig.

1, colour is overlaid on an element’s polyline to represent an additional user-chosen

attribute. This allows for a closer examination of properties of anomalies as they are

identified.

A second system, Sol, also uses parallel coordinates, but with horizontal axes

[2]. Sol’s Flow Capacitor visualizes NetFlows between two PC axes that represent

a flow’s source at the top and its destination at the bottom. Common data attributes

assigned to the source and destination axes include IP address or geographic loca-

tion. Small “darts” are shown flowing from the source plane to the destination plane,

to visualize the amount of NetFlow activity over a user-defined time window. Users

can also insert intermediate axes to visualize additional data properties. This causes

the NetFlow darts to pass through multiple states, one per additional data attribute,

on their way from source to destination.

3.6 Treemaps

Data with hierarchical structures can be visualized as a treemap, a visualization that

recursively subdivides rectangular regions based on the frequency of different data

attribute values. Intuitively, a treemap visualizes a multi-level tree as a 2D “map” by

embedding leaf nodes within their parent node region.

Consider Fig. 2, which subdivides a dataset with A= {A1 : region, A2 : parent, A3 :

revenue, A4 : profit}. The parent Global rectangle is subdivided into three conti-

nents: North America, Europe, and Africa, with the size of each continent sub-

region defined by its global profit. The continents are further divided by states

and countries, producing a hierarchical decomposition by geography. Visually,

V = {V1 : text label, V2 : spatial location, V3 : size, V4 : chromaticity}. The size of

each subregion visualizes its revenue, and its combined colour and saturation—or

chromaticity—visualize its profit using a double-ended colour scale: green for pos-

itive, red for negative, and a stronger hue for more extreme values.

Kan et al use treemaps in NetVis, a tool for monitoring network security [11].

A network within a company is subdivided, first by department, and then by host

within department. Colour is used to identify whether a host has experienced Snort

alerts during an analyst-defined time window. For nodes with alerts, brightness vi-

sualizes the number of alerts: brighter for more alerts.

Mansmann et al compared treemaps to node-link graphs for network monitor-

ing and intrusion detection [13]. Mansmann’s treemap consists of a set of analyst-

selected local hosts currently under attack, organized hierarchically by IP address.

Attacking hosts are arrayed around the boundary of the treemap, with links from at-
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Fig. 2: A treemap of revenue for states and counties in three continents

tacker to target identifying where attacks are occurring. The size and colour of each

treemap node can be assigned to different variables, including flow counts, packet

counts, or bytes transferred. The authors identified numerous advantages and disad-

vantages of treemaps versus standard node-link graphs, for example, treemaps better

emphasize the relationships between external attackers and internal hosts by sub-

net structure, but edges between attackers and local hosts can obscure the treemap

nodes, hiding the information they visualize.

3.7 Hierarchical Visualization

In many cases a dataset can be structured into multiple levels of detail. For example,

IPv4 addresses can be represented as an overview by aggregating individual ad-

dresses based on their network identifier, and within this as a detail view by includ-

ing the host identifier. Other common examples include summaries by geographic

location, by type of attack, and so on. The ability to visualize this type of contextual

structure is useful for a number of reasons. First, overviews can be used to present

an intuitive summary of a dataset. Second, a hierarchical visualization helps an an-

alyst to choose subsets of the data that are logically related based on the hierarchy.

This fits well with the approach in information visualization of overview, zoom and

filter, then details on demand.

Information visualization has studied two related approaches to visualizing large

hierarchies: overview+detail and focus+context [4]. Overview+detail combines an

overview of a dataset with internal details. Treemaps are an example of this tech-

nique. Focus+context presents an overview of a dataset—the context—and allows

a user to request additional details at specific locations—the focus. A well-known

focus+context approach initially presents an overview of a dataset, then allows an
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analyst to position a zoom lens within the overview. Data underneath the lens is

“zoomed in” to show internal detail.

NVisionIP visualizes NetFlow data at three different levels of detail: an overview

of the network state, summaries of groups of suspicious machines, and details on an

individual machine [12]. A galaxy view provides an overview of the current network

state as a scatterplot, with A = {A1 : subnet, A2 : host} mapped to V = {V1 : x,V2 :

y}. Each marker in the scatterplot identifies an IP address participating in a flow.

Analysts can select a set of hosts that show signs of abnormal traffic patterns and

zoom in to compare traffic across hosts with two histograms: one representing traffic

on a number of well-known ports, and the other representing traffic on all other

ports. Finally, a detailed machine view visualizes a machine’s byte and flow counts

for different protocols and different ports for all network traffic over an analyst-

chosen time window.

Although these security visualization systems aim to support more flexible user

interactivity and to correlate various data sources, many of them still force an analyst

to choose from a fairly limited set of static representations. For example, Phan et al

use charts, but with fixed attributes on the x and y-axes. General purpose commercial

visualization systems like Tableau or ArcSight offer a more flexible collection of vi-

sualizations, but they do not include visualization and human perception guidelines,

however, so representing data effectively requires visualization expertise on the part

of the analyst. Finally, many systems lack a scalable data management architecture.

This means an entire dataset must be loaded into memory prior to filtering, project-

ing, and visualizing, increasing data transfer cost and limiting dataset size.

4 Visualization Design Philosophy

Our design philosophy is based on discussions with cyber security analysts at var-

ious research institutions and government agencies. The analysts overwhelming

agreed that, intuitively, visualizations should be very useful. In practice, however,

they had rarely realized significant improvements by integrating visualizations into

their workflow. A common comment was: “Researchers come to us and say, Here’s

a visualization tool, let’s fit your problem to this tool. But what we really need is

a tool built to fit our problem.” This is not unique to the security domain, but it

suggests that security analysts may be more sensitive to deviations from their cur-

rent analysis strategies, and therefore less receptive to general-purpose visualization

tools and techniques.

This is not to say, however, that visualization researchers should simply provide

what the security analysts ask for. Our analysts have high-level suggestions about

how they want to visualize their data, but they do not have the visualization expe-

rience or expertise to design and evaluate specific solutions to meet their needs. To

address these, we initiated a collaboration with colleagues at a major government

research laboratory to build visualizations that: (1) meet the needs of the analysts,
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but also (2) harness the knowledge and best practices that exist in the visualization

community.

Again, this approach is not unique, but it offers an opportunity to study its

strengths and weaknesses in the context of a cyber security domain. In particular, we

were curious to see which general techniques (if any) we could start with, and how

significantly these techniques needed to be modified before they would be useful for

an analyst. Seen this way, our approach does not focus explicitly on network security

data, but rather on network security analysts. By supporting the analysts’ situation

awareness needs, we are implicitly addressing a goal of effectively visualizing their

data.

From our discussions, we defined an initial set of requirements for a successful

visualization tool. Interestingly, these do not inform explicit design decisions. For

example, they do not define which data attributes we should visualize and how those

attributes should be represented. Instead, they implicitly constrain a visualization’s

design through a high-level set of suggestions about what a real analyst is (and is

not) likely to use. We summarized these comments into six general categories:

• Mental Models. A visualization must “fit” the mental models the analysts use to

investigate problems. Analysts are unlikely to change how they attack a problem

in order to use a visualization tool.

• Working Environment. The visualization must integrate into the analyst’s cur-

rent working environment. For example, many analysts use a web browser to

view data stored in formats defined by their network monitoring tools.

• Configurability. Static, pre-defined presentations of the data are typically not

useful. Analysts need to look at the data from different perspectives that are

driven by the data they are currently investigating.

• Accessibility. The visualizations should be familiar to an analyst. Complex rep-

resentations with a steep learning curve are unlikely to be used, except in very

specific situations where a significant cost-benefit advantage can be found.

• Scalability. The visualizations must support query and retrieval from multiple

data sources, each of which may contain very large numbers of records.

• Integration. Analysts will not replace their current problem-solving strategies

with new visualization tools. Instead, the visualizations must augment these

strategies with useful support.

5 Case Study: Managing Network Alerts

A common task for network security analysts is active monitoring for network

alerts within a system. Normally, sets of alerts are categorized by severity—low,

medium, and high—annotated with a short text summaries (e.g., a Snort rule), and

presented within a web browser every few minutes. The analysts are responsible for

quickly deciding which alerts, if any, require additional investigation. When suspi-

cious alerts are identified, additional data sources are queried to search for context
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and supporting evidence to decide whether the alert should be escalated. Normally,

each data source is managed independently. This means results must be correlated

manually by the analysts, usually by coordinating multiple findings in their working

memory. We were asked to design a system that would support the analysts by: (1)

allowing them to identify context more effectively and more efficiently; (2) integrat-

ing results from multiple data sources into a single, unified summary; (3) choosing

visualization techniques that are best suited to the analysts’ data and tasks; but also

(4) providing an analyst the ability to control exactly which data to display, and how

to present it, as needed.

The analysts’ requirements meant that we could not follow a common strategy

of defining the analysts’ data and tasks, designing a visualization to best represent

this data, then modifying the design based on analyst feedback. Working environ-

ment, accessibility, and integration constraints, as well as comments from analysts,

suggested that a novel visualization with unfamiliar visual representations would

not be appropriate. Since no existing tools satisfied all of the analysts’ needs, we

decided to design a framework of basic, familiar visualizations—charts—that runs

in the analysts’ web-based environment. We applied a series of modifications to this

framework to meet each of the analysts’ requirements. Viewed in isolation, each

improvement often seemed moderate in scope. However, we felt, and the analysts

agreed, that the modifications were the difference between the system possibly being

used by the analysts versus never being used. In the end, the modifications afforded

a surprising level of expressiveness and flexibility, suggesting that some parts of the

design could be useful outside the network security domain.

The configurability, accessibility, scalability, and integration requirements of our

design demand flexible user interaction that combines and visualizes multiple large

data sources. The working environment requirement further dictates that this hap-

pen within the analyst’s current workflow. To achieve this, the system combines

MySQL, PHP, HTML5, and JavaScript to produce a web-based network security

visualization system that uses combinations of user-configurable charts to analyze

suspicious network activity.

We adopt Shiravi’s definition of situation awareness, “a state of knowledge”, and

situation assessment, “the process of attaining situation awareness.” In this context,

the visualization tool is designed to support situation assessment. The expectation

is that providing effective situation assessment will lead to an enhanced situation

awareness.

5.1 Web-Based Visualization

The visualizations run as a web application using HTML5’s canvas element. This

works well, since it requires no external plugins and runs in any modern web

browser. Network data is visualized using 2D charts [8]. Basic charts are one of

the most well known and widely used visualization techniques. This supports the

accessibility requirement, because: (1) charts are common in other security visual-
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ization systems that analysts have seen, and (2) charts are an effective visualization

method for presenting the values, trends, patterns, and relationships that analysts

want to explore.

5.2 Interactive Visualization

To realize analyst-driven charts, the system provides a user interface with event

handling on the canvas element and the jQueryUI JavaScript library for higher-level

UI widgets and operations. This design allows for full control over the data attributes

assigned to a chart’s axes. This capability turns out to be fairly expressive, and can

be used by an analyst to generate an interesting range of charts and chart types.

Analysts can also attach additional data attributes to control the appearance of the

glyphs representing data elements within a chart. For example, a glyph’s colour,

size, and shape can all be used to visualize secondary attribute values.

5.3 Analyst-Driven Charts

In a general information visualization tool, the viewer normally defines exactly the

visualization they want. The current visualization system automatically chooses an

initial chart type based on: (1) knowledge about the strengths, limitations, and uses

of different types of charts, and (2) the data the analyst asks to visualize. For exam-

ple, if the analyst asks to see the distribution of a single data attribute, the system

recommends a pie chart or bar chart. If the analyst asks to see the relationship across

two data attributes, the system recommends a scatterplot or a Gantt chart.

The axes of the charts are initialized based on properties of the data attributes, for

example, a categorical attribute on a bar chart’s x-axis and an aggregated count on

the y-axis. If two categorical attributes like A = {A1 : source IP, A2 : destination IP }
are selected, the attributes are mapped to a scatterplot’s axes as V = {V1 : x,V2 : y},

with markers shown for flows between pairs of addresses (Fig. 3c).

If the attributes were A = {A1 : time, A2 : destination IP}, a scatterplot with V =

{V1 : x,V2 : y} would again be used (Fig. 4a). Visualizing netflow properties like

A = {A1 : time, A2 : destination IP, A3 : duration} initially produces a Gantt chart

with rectangular range glyphs mapped to V = {V1 : x,V2 : y,V3 : width}, representing

different flows (Fig. 4b). Data elements sharing the same x and y values are grouped

together and displayed as a count using additional visual properties. For example,

in a scatterplot of traffic between source and destination IPs, the size of each marker

indicates the number of connections between two addresses. In a Gantt chart, the

opacity of each range bar indicates the number of flows that occurred over the time

range for a particular destination IP.

More importantly, the analyst is free to change any of these initial choices. The

system will interpret their modifications similar to the processing we perform for
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(a)

(b)

(c)

Fig. 3: Charts classified by use case: (a) pie and bar chart, analysis of proportion;

(b) bar chart, value comparison along one dimension; (c) scatterplot, correlation

analysis



Visualizations and Analysts 15

(a)

(b)

Fig. 4: Scatterplot and Gantt charts: (a) connection counts over time by destination

IP; (b) time ranges for flows by source IP

automatically chosen attributes. This allows the analyst to automatically start with

the most appropriate chart type (pie, bar, scatterplot, or Gantt) based on their anal-

ysis task, the properties of the attributes they assign to a chart’s axes, and on any

secondary information they ask to visualize at each data point.

5.4 Overview+Detail

The visualization system allows an analyst to focus on a subset of the data, either

by filtering the input, or by interactively selecting a subregion in an existing chart to

zoom in on. In either case the chart is redrawn to include only the selected elements.

For example, consider a scatterplot created by an analyst, where the size of each

tick mark encodes the number of flows for a corresponding source and destination

IP (plotted on the chart’s x and y-axes). Fig. 5b is the result of zooming in on the

sub-region selected in Fig. 5a. In the original scatterplot the difference between the

flow counts for the selected region cannot be easily distinguished. After zooming,

the size of the tick marks is re-scaled for the currently visible elements, highlighting

differences in the number of flows, particularly for destination IP 172.16.79.132 in

the bottom row. The same type of zooming can be applied to Gantt charts (Fig. 5c,

d). After zooming into a selected area, the flows that occlude one another in the

original chart are separated, helping the analyst differentiate timestamps.
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(a)

(b)

(c)

(d)

Fig. 5: Chart zooming: (a) original scatterplot with zoom region selected; (b) zoom

result; (c) original Gantt chart with zoom region selected; (d) zoom results

5.5 Correlated Views

Analysts normally conduct a sequence of investigations, pursuing new findings by

correlating multiple data sources and exploring the data at multiple levels of detail.

This necessitates visualizations with multiple views and flexible user interaction.

The system correlates multiple data sources by generating correlated SQL queries

and extending the RGraph library to support dependencies between different charts.
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As an analyst examines a chart, their situation awareness may change, produc-

ing new hypothesis about the cause or effect of activity in the network. Correlated

charts allow the analyst to immediately generate new visualizations from the cur-

rent view to explore these hypotheses. In this way, the system allows an analyst to

conduct a series of analysis steps, each one building on previous findings, with new

visualizations being generated on demand to support the current investigations.

Similar to zooming, analysts can create correlated charts for regions of interest by

selecting the region and requesting a sub-canvas. The system generates a constraint

to extract the data of interest in a separate window. The analyst can then select new

attributes to include or new tables and constraints to add to the new chart.

5.6 Example Analysis Session

To demonstrate the system, we describe a scenario where it is used to explore trap

data being captured by network security colleagues at NCSU. The data was de-

signed to act as input for automated intrusion detection algorithms. This provided

a real-world test environment, and also offered the possibility of comparing results

from an automated system to a human analyst’s performance, both with and with-

out visualization support. Four different datasets were available for visualization: a

Netflow dataset, an alert dataset, an IP header dataset, and a TCP header dataset.

An NCSU security expert served as the analyst in this example scenario. Visual-

ization starts at an abstract level with an overview that the analyst uses to form an

initial situation awareness. This is followed by explorations of different hypotheses

that highlight and zoom into subregions of interest. The analyst generates correlated

charts to drill down and analyze data at a more detailed level, and imports additional

supporting data into the visualization, all with the goal of improving their situation

awareness of specific subsets of the network. Including a new flow dataset extends

the analysis of a subset of interest to a larger set of data sources. The visualiza-

tion system supports the analyst by generating different types of charts on demand,

based on the analyst’s current interest and needs. This leads the analyst to identify a

specific NetFlow that contains numerous alerts. This NetFlow is flagged for further

investigation.

The analyst starts by building an overview visualization of the number of alerts

for each destination IP, A= {A1 : destination IP, A2 : alert count} and using A1 as the

“aggregate for” attribute. Choosing “Draw Charts” displays the aggregated results

as pie and bar charts (i.e., using V = {V1 : start angle, V2 : arc length} for the pie

chart or V = {V1 : x,V2 : y-height} for the bar chart, Fig. 6). This provides an initial

situation awareness of how many alerts are occurring within the network, and how

those alerts are distributed among different hosts. Pie charts highlight the relative

number of alerts for different destination IPs, while bar charts facilitate a more ef-

fective comparison of the absolute number of alerts by destination IP. The charts are

linked: highlighting a bar in the bar chart will highlight the corresponding section

in the pie chart, and vice-versa.
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Fig. 6: Aggregated results visualized as a pie chart and horizontal and vertical bar

charts

The pie and bar charts indicate that the majority of the alerts (910) happen for

destination IP 172.16.79.134. To further analyze alerts associated with this destina-

tion IP, the analyst chooses “Sub Canvas” to open a new window with the initial

query information (the datasets, data attributes, and constraints) predefined. The fil-

ter destination IP = 172.16.79.134 is added to restrict the query for further analysis

over this target address. This demonstrates how an analyst can continue to add new

constraints or data sources to the query as he requests follow-on visualizations to

continue his analysis.
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(a)

(b)

(c)

Fig. 7: Gantt chart with alerts for network flows at the destination IP and port of

interest: (a) two flows; (b) zoom on the left flow, showing numerous alerts; (c) zoom

on the right flow, showing one alert

Next, the analyst chooses to visualize alerts from different source IPs attached to

the target destination IP. He uses destination port to analyze the correlation between

source and destination through the use of a scatterplot with A = {A1 : source IP, A2 :

port number, A3 : alert count} and V = {V1 : x,V2 : y,V3 : size}. The scatterplot shows

there is only one source IP with alerts related to the target destination IP, and that

most alerts are sent to port 21. This provides more detailed situation awareness about

a specific (source IP, destination IP) pair and port number that the analyst considers

suspicious.

The analyst looks more closely at all traffic related to the target destination IP

on port 21 by visualizing NetFlows and their associated alerts in a Gantt chart.

Here, A = {A1 : start time, A2 : duration, A3 : [ alert times ]} and V = {V1 : x,V2 :

size, V3 : texture hashes}. Collections of flows are drawn in red with endpoints at

the flow set’s start and end times. Alerts appear as black vertical bars overlaid on

top of the flows at the time the alert was detected. Fig. 7a shows most of the flows

are distributed over two time ranges. This further augments the analyst’s situation

awareness, by point to potential times when attacks may have occurred. By zooming

in on each flow separately (Fig. 7b, c), the analyst realizes that the vast majority of

the alerts occur in the left flow (Fig. 7b). The alerts in this flow are considered

suspicious, and are flagged for more detailed investigation. Later discussion with

the author of the datasets confirmed that this set of alerts were meant to simulate an

unknown intrusion into the system.

This example demonstrates how the system allows an analyst to follow a se-

quence of steps based on their own strategies and preferences to investigate alerts.

The system supports situation assessment based on the analyst’s hypotheses about

potential attacks within a system. Effective assessment leads to more and more de-
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tailed situation awareness, allowing the analyst to confirm or refute the possibility

of an intrusion into the system.

6 Summary

Data visualization converts raw data into images that allow a viewer to “see” data

values and the relationships they form. The images allow viewers to use their visual

perception to identify features in the data, to manage ambiguity, and to apply domain

knowledge in ways that would be difficult to do algorithmically. Visualization can

be formalized as mapping: data passed through a data–feature mapping generates a

visual representation—a visualization—that displays individual data values and the

patterns they form. Many existing situation awareness tools use visualization tech-

niques like charts, maps, and flow diagrams to present information to an analyst.

The challenge is to determine how best to integrate visualization techniques into a

cyber situation awareness domain. Many tools adopt a well-known information vi-

sualization approach: overview, zoom and filter, and details on demand. Techniques

utilized recently for the security and situation awareness domains include: Charts

and Maps, Node-Link Graphs, Timelines, Parallel Coordinates, Treemaps and Hier-

archical Visualization. We identified an initial set of requirements for a successful

visualization tool. These do not define which data attributes we should visualize

and how those attributes should be represented. Instead, they implicitly constrain

a visualizations design through a high-level set of suggestions about what a real

analyst is (and is not) likely to use: a visualization must “fit” the mental models

the analysts use to investigate problems; must integrate into the analysts current

working environment; pre-defined presentations of the data are typically not use-

ful; visualizations should be familiar to an analyst; must support query and retrieval

from multiple data sources; the visualizations must integrate into existing strategies

with useful support.We demonstrate a prototype system for analyzing network alerts

based on these guidelines.
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