
Summarization Techniques for Visualization of
Large Multidimensional Datasets

Technical Report TR-2005-35
Sarat M. Kocherlakota, Christopher G. Healey

Knowledge Discovery Lab
Department of Computer Science, North Carolina State University

Raleigh, NC 27695-8207

Email: smkocher@unity.ncsu.edu

Abstract

One of the main issues confronting visualization, is how to effectively display large, high di-
mensional datasets within a limited display area, without overwhelming the user. In this report,
we discuss a data summarization approach to tackle this problem. Summarization is the pro-
cess by which data is reduced in a meaningful and intelligent fashion, to its important and
relevant features. We survey several different techniques from within computer science, which
can be used to extract various characteristics from raw data. Using summarization techniques
intelligently within visualization systems, could potentially reduce the size and dimensionality
of large, high dimensional data, highlight relevant and important features, and enhance com-
prehension.



1 Introduction

The area of visualization is primarily focused on representing raw data in the form of images,
thereby providing users with the ability to visually analyze and explore large, complex datasets
[16, 35]. Visualization techniques assist users in managing and displaying data in an intelligent
and intuitive fashion. Visualization can be a great asset in the discovery of relationships and
dependencies that may exist within the data.

Faced with the problem of handling larger and larger datasets, recent studies in visualiza-
tion have emphasized increasing the information content of the displayed images. Datasets
comprising millions (if not billions) of data elements, with each data element possibly having
hundreds of attributes, have become commonplace across a variety of domains and applica-
tions. Issues related to dataset size and dimensionality were outlined, by the original NSF
panel on visualization [28]. Current visualization techniques that deal with large multidimen-
sional datasets have been effective in visualizing data containing up to at most a few million
data values. Moreover, as we approach these limits, the images produced by current visualiza-
tion techniques become cluttered, and visually difficult, even impossible to interpret [13, 17].
This diminishes the user’s ability to visually analyze the data and recognize trends, clusters,
outliers or gaps within the data [13]. The problem of effectively representing these large, mul-
tidimensional datasets without overwhelming the user’s ability to comprehend the resulting
images continues to pose a serious challenge to the area of visualization [16].

To face this challenge, recent studies have proposed a tighter coupling between visual and
non-visual methods for data analysis and exploration [25, 33, 34]. In particular, incorporating
data summarization techniques within visualization systems may enhance our ability to man-
age and visualize very large datasets of high dimensionality. Data summarization techniques
can reduce the size and complexity of large multidimensional datasets to more manageable
proportions. They can also highlight the relevant aspects of the data more clearly, leading to
more coherent visualizations, and also facilitating more accurate and efficient visual analysis.

Summarization is performed using various techniques. These techniques are designed for
the automated and unsupervised analysis and exploration of raw data, followed by the gen-
eration of effective summaries based on the analysis [2, 3, 22, 24]. Unfortunately, many of
these techniques are more suited to univariate (or low dimensional) data, and may not be effec-
tive in dealing with datasets of high dimensionality [1]. Also, many data mining and machine
learning techniques are complicated. Both their intermediate as well as their final results may
not be easily understood by non-expert users. In this scenario, directly visualizing the results
produced by these automated methods would provide neither any insight into the data, nor any
understanding of the summarization process itself. For data summarization to be effective dur-
ing visualization, a system should support the user in understanding as well as participating in
the process.

In this report, we will focus on methods that could be enhanced and applied to summarize
data within the context of visualization. The techniques we discuss include association rule
mining [3, 4], outlier detection [1, 23, 34], clustering [22, 24], data classification [18, 27], data
aggregation [8, 13], and the principal component analysis (PCA) technique, among others.

1



The remainder of the paper is organized as follows. In Section 2, we discuss techniques
for association rule mining. Section 3 is devoted to outlier detection algorithms. In Section
4, we describe clustering and clustering techniques. In Section 5, we investigate classification
techniques. Section 6 focuses on data aggregation. In Section 7, we discuss dimensionality
reduction, and, in Section 8, we end with summarization techniques designed for spatial data.
Finally, some conclusions are drawn in Section 9.

2 Association rule mining

Association rule mining techniques are primarily focused on the discovery of patterns and
dependencies in datasets. Anassociation ruleis an expression of the formX ⇒ Y , where
X andY are sets of items. In a multidimensional dataset, an item could denote a particular
attribute value, andX andY could denote combinations of individual attribute values. For
a multidimensional datasetD representingn data attributesA = {A1, ..., An}, where each
data elementei ∈ D is a combination ofn individual data values, one for each attribute, the
expressionX ⇒ Y signifies that, ifei containsX thenei probably also containsY .

Association rule mining makes use of two measures:supportandconfidence. The support
of a set of itemsX, denoted bysupp(X), is the fraction of data elements inD that contain
X. The support of an association ruleX ⇒ Y , denoted bysupp(X ⇒ Y ), is the fraction
of the data elements inD that contain the conjunctionX ∪ Y . The confidence of such a
rule, denoted byconf(X ⇒ Y ), is the fraction of the data elements inD containingX, that
also containY [3]. Mathematically,supp(X ⇒ Y ) = supp(X ∪ Y ), andconf(X ⇒ Y )
= supp(X ∪ Y )/supp(X) [19].

Based on these measures, the task of association rule mining is to find all association rules
within a datasetD that satisfy certain user-defined thresholds for minimum support and mini-
mum confidence, denoted bymin-supandmin-confrespectively [4]. The approach to finding
such rules generally involves two major steps. In the first step, all sets of attribute values that
satisfymin-supwithin D are found. Next, these sets are used to generate rules of the form
X ⇒ Y that satisfymin-conf[3].

Hipp, Guntzer and Nahaeizadeh present a general survey for association rule mining algo-
rithms in [19]. They note that the most popular among association rule mining techniques are
Apriori [4] and Apriori-based algorithms.

2.1 Apriori

Apriori, first introduced by Agrawal et al., is an algorithm that is used to find sets of items
within a dataset that satisfy a user-defined minimum support threshold [4]. We begin with a
discussion of the terminologies relevant to the algorithm [4]. A set ofk items is referred to as a
k-itemset. Ak-itemsetX that hassupp(X) ≥ min-supis referred to as alargek-itemset. The
set of all largek-itemsets is denoted byLk. A candidatek-itemset or ak-candidate itemset
is used to denote a potentially largek-itemset, and the set of all suchk-candidate itemsets is

2



denoted byCk.
Apriori works in the following manner. It first counts the number of occurrences of each

individual item inD to find all large1-itemsetsL1. Each subsequent passk involves two
phases. In the first phaseLk−1, the set of(k − 1)-itemsets found large in the previous pass,
is used to generate a set ofk-candidate itemsetsCk. In the second phase,D is scanned to
compute the support of each of thek-candidate itemsets inCk. Those that are found large (i.e.
those that have support greater than or equal tomin-sup) are used to formLk, the set of large
k-itemsets.

Thek-candidate itemsets inCk are generated fromLk−1 through two steps. In the first step,
referred to as thejoin step,k-candidate itemsets are generated by merging all(k − 1)-itemsets
X, Y ∈ Lk−1, which share their first(k − 2) items, i.e. X.item1 = Y.item1, X.item2 =
Y.item2, ..., X.itemk−2 = Y.itemk−2, X.itemk−1 6= Y.itemk−1 [4]. In the second step,
referred to as theprunestep, all itemsetsc ∈ Ck for which some(k − 1) subset ofc is not in
Lk−1 are deleted.

To illustrate the algorithm let us consider an example [4]. LetL1, the set of all large1-
itemsets in a datasetD generated during the first phase of the algorithm, contain the individual
items{ {1}, {2}, {3}, {5} }. To constructC2 from L1, all 2-itemset combinations of items
from L1 are generated, producingC2 = { {1 2}, {1 3}, {1 5}, {2 3}, {2 5}, {3 5}, }. In the
second phase of the algorithm, suppose the itemsets{1 5} and{3 5}, are removed fromC2 as
they were found to have low support inD. The remaining itemsets defineL2 = { {1 2}, {1 3},
{2 3}, {2 5} }. In the first phase of the passk = 3 L2 is used to generatedC3. During thejoin
step,{1 2} is merged with{1 3} to generate the itemset{1 2 3}. Likewise,{2 3} is merged
with {2 5}to generate{2 3 5}. C3 now contains{ {1 2 3}, {2 3 5} }. During theprunestep,
there are threek− 1 = 2-itemsets for candidate{ 2 3 5}: {2 3}, {2 5} and{3 5}. Although{2
3} and{2 5} are contained inLk−1, {3 5} is not. So the candidate itemset{2 3 5} is removed
from C3. The candidate itemset{ {1 2 3} } is accepted since{1 2}, {2 3} and{1 3} are all
in Lk−1. C3 now contains only{ {1 2 3} }. The remaining itemset inC3, if found large in the
second phase of the current pass, becomesL3.

Once combinations of items that satisfymin-supin D are identified, they are used to gen-
erate association rules. For each large itemsetZ, all rules having the formX ⇒ (Z − X)
are generated, whereX is any subset ofZ, andsupp(Z)/supp(X) ≥ min-conf. Initially, for
every large itemsetZ, all rules having only one item on the right hand side of the expression
X ⇒ (Z − X) are generated and tested. Rules that satisfy the minimum confidence require-
ment are further expanded to build additional rules.

Another algorithm introduced in [4] called AprioriTID extends the Apriori-based approach.
In this algorithm the entire datasetD is not used for counting support at the end of each pass.
Instead, AprioriTID uses only those items that were found large from the previous pass in an
effort to improve the efficiency.

Research on association rule mining was initially targeted at transaction databases. Sub-
sequent work has revealed that association rules can also be effective over a wider range of
applications and datasets. Visualizing the patterns, rules and dependencies discovered using as-
sociation rule mining could simultaneously highlight the important characteristics of the data,

3



as well as help reduce the amount of information to be displayed.

2.2 Drawbacks

Association rule mining algorithms do have certain drawbacks, such as:

1. Algorithmic complexity: Increase in size and dimensionality of the data reduces the ef-
ficiency of the algorithm. This means that the algorithm may be unsuited to very large
multidimensional datasets [19].

2. Determining usefulness of generated rules: Association rule mining of large multidimen-
sional datasets could result in the generation of thousands of association rules. Evaluat-
ing the relevance and utility of these rules can be a complex task by itself.

3. Counting infrequent items: Association rule mining algorithms scan the entire dataset to
discover itemsets that satisfy minimum (user-specified) support and confidence thresh-
olds. This process also includes counting support for itemsets that have low support
within the dataset. This can also limit the efficiency of association rule mining tech-
niques [4].

4. Handling spatial datasets: Techniques for association rule mining were designed to dis-
cover relationships in transaction data, in which attributes assume binary values i.e. ei-
ther 0 or 1. In general however, data attributes assume values that cover a broad, contin-
uous range of real numbers [36]. Counting the support of each individual attribute value
can pose serious problems to association rule mining algorithms.

In the next section we deal with the problem of outlier detection in large multidimensional
datasets.

3 Outlier Detection

Outliers can be defined as “data elements which are very different from the rest of the data
based on some measure” [1]. Outliers can also be described as data elements that deviate from
other observations by so much that they arouse the suspicion of being produced by a mechanism
different than that which generated the other observations [15]. The detection and visualization
of outliers within large multidimensional datasets could provide insight into abnormalities in
the underlying data.

There are many different approaches to outlier detection. The distance-based approach by
Knorr and Ng discovers outliers using a full-dimensional distance metric between any two data
elements in a high dimensional information space [23]. A data elementei is considered an
outlier with respect to parametersk andλ, if at least a fractionk of the elements in a dataset
D lie at a distance greater thanλ from ei [23, 1]. Unfortunately, this technique is sensitive to
the parameterλ: a large value ofλ could result in few outliers, while a small value ofλ could

4



result in a large number of outliers. Also, the technique may not be effective for datasets that
exhibit a complex structure, for instance, clusters of varying densities [6].

Breunig et al. suggest identifying outliers based on the densities of local neighborhoods.
The basic idea is simple: if some elementei is farther away from its surrounding elements,
when compared to the neighborsej that lie around it, thenei is marked as a local outlier. In
this technique, outliers are found by comparing densities of different sets of data elements.
Elements which are “outlying” relative to their local neighborhoods are calledlocal outliers
[6]. For each elementei, its k nearest neighbors are identified, denoted byNk(ei). If an
elementej ∈ Nk(ei) is within a user-defined distanceλ from ei, thenej is said to lie in the
local neighborhood ofei, and the reachability distance ofei with respect toej, denoted by
d(ei, ej), is set toλ. If ej lies at a distance greater thanλ, thend(ei, ej) is set to the actual
distance betweenei andej. The local reachability density ofei, denoted byδlocal(ei), is then
calculated as the inverse of the average ofd(ei, ej) for all ej ∈ Nk(ei), that is:

δlocal(ei) =
1

k

∑

∀ej∈Nk(ei)

1

d(ei, ej)
(1)

Finally, the local outlier factor ofei with respect toNk(ei), denoted byLOF (ei), is computed
as the average of the ratios of the local reachability densityδlocal(ej) of everyej ∈ Nk(ei) to
δlocal(ei), that is:

LOF (ei) =
1

k

∑

∀ej∈Nk(ei)

δlocal(ej)

δlocal(ei)
(2)

The outlier factor denotes the degree to whichei is considered to be a local outlier. If the outlier
factor exceeds a user-chosen threshold,ei is marked as a local outlier.

Both the distance-based approach [23] and the density-based approach [6] are more suited
to low dimensional datasets. The sparse nature of high dimensional data makes it difficult to de-
termine the locality of a data element [1]. Also, to determine local densities of elements in high
dimensional data, a meaningful concept of distance is necessary. Calculating full-dimensional
distances between data elements in high dimensional space can also be computationally expen-
sive.

3.1 Evolutionary Algorithm Technique

One approach to finding outliers in high dimensional data is by examining data under different
low dimensional projections of the data attributes. This approach is based on the observation
that the density of data varies when examined under different attribute subsets, and that the
attributes may contribute differently to the behavior of each data element [1]. In most cases,
a data element is dependent only on a small subset of relevant data attributes. Meaningful
distances in high-dimensional information space can be determined more effectively by using
fewer, more relevant data attributes [18].

The approach adopted by Aggarwal and Yu is based on the principle that outliers are pat-
terns that have a very low presence within the data. Such patterns could be found efficiently,

5



by examining low dimensional projections of the data which are abnormally sparse, i.e. that
have extremely low density [1]. The density measure of an attribute subset is referred to as
its sparsity coefficient. Examining every lower-dimensional attribute subset to determine its
sparsity can be done using a brute force approach. Unfortunately, as the dimensionality of the
data increases, the search space of the attribute subsets also grows exponentially, making brute
force exploration inefficient.

To avoid this, Aggarwal and Yu suggest using an evolutionary algorithm technique. Ac-
cording to this theory, the limited amount of resources available in nature to all species creates
competition among the species, and only the fittest of them survive. Fitter individuals mate
with each other more often, producing still better individuals. In a similar fashion, the evolu-
tionary algorithm technique combines promising sparse low dimensional attribute projections,
and also allows sparser subsets to combine with each other more frequently, to produce highly
sparse lower dimensional attribute projections.

Let m be the total number of elements inD. For the purpose of calculating the sparsity
coefficient, each of then attributes ofD is divided intoφ ranges, each of which contain an
equal number of elementsfm, wheref = 1

φ
. Next, consider selecting a subset ofd attributes,

d < n, then choosing one subrange for each of thesed attributes. If the data inD is uniformly
distributed across each attribute, we may compute the expected fraction of elementsf d that
will have attribute values that fall within the selected ranges of thed-attribute subset we have
constructed.

The total number of elements fromD expected to lie within thed-attribute subset is there-
fore m · fd, and the standard deviation of this number is

√
m · fd · (1 − fd). In practice how-

ever, attribute values are rarely uniformly distributed and independent. This means that the
actual number of elementsk in D that lie within the attribute subset is notm · f d. This differ-
ence is used to calculate the sparsity coefficient [1]:

S(D) =
k − m · fd

√
m · fd · (1 − fd)

(3)

Eachd-attribute subset is encoded as a string recording the combination of attributes present in
the subset. Each position in the encoding represents a particular data attribute, and each value
at the attribute’s position represents the specific subrange selected for that attribute. These
encodings are also known assolutions.

The evolutionary algorithm starts with a user-selectedd andφ, which are used to select an
initial set ofp solutionsS. During theselectionstep, the sparsity coefficient of each solution
in S is calculated. The more negative the sparsity coefficient, the higher a solution’s rank.
Next, acrossoverstep selects pairs of solutions fromS, with higher ranked solutions having
a higher probability of being chosen.l-attribute subsets from each solution pair (l < d) are
identified. Thosel-attribute subsets that are sparser are recombined, to produce a new pair of
d-attribute projections. The new solutions replace the old pair that generated them. Finally, a
mutationstep picks random positions in the solution strings inS and replaces the value with a
number between1 andφ, with a certain probability. These three steps of selection, crossover
and mutation are repeated until the sparsity coefficients of the solutions stabilize.

6



Each of the final solutions inS represents a pattern of data elements with an abnormally
sparse projection of the high dimensional dataset. Data elements that match these attribute
patterns are designated as outliers.

Although this technique can find high dimensional outliers efficiently, it is dependent on
the parametersd andφ. Also, in order to make use of evolutionary search methods, a good
understanding of the problem is important. Designing specific algorithms for selection, recom-
bination and mutation which work effectively for a given problem is often a non-trivial task
[1].

4 Clustering

Given a datasetD of m data elements, a clustering algorithm dividesD into groups or clusters
where the data elements in the same cluster are similar to one another relative to data elements
in different clusters [12]. Clustering can also be described as a method for classifying data in
an exclusive manner, where each data element belongs to exactly one subset or cluster [20].
Clustering algorithms are useful in detecting underlying structure within the data.

In this section we describe two methods for clustering, namely,k-means and self organizing
maps.

4.1 k-means Clustering

One of the most widely used clustering methods is thek-means clustering algorithm (KMC).k-
means can be formally described as follows: “Given a set ofm data elements inD comprising
of n attributes, and an integerk, determine a set ofk elements inD called centers, so as to
minimize the distance from every element to its nearest center [21].” Each element is attached
to its nearest center, thereby subdividing elements inD into k clusters. This approach of
decomposing a dataset into disjoint clusters is also known as “partitional clustering” [22].

KMC first initializes a set ofk cluster centersG ∈ D, i = 1, ..., k. Cluster centers can
be assigned, for instance, in a random fashion. Once the centers are initialized, the clustering
algorithm assigns each of the remaining, unselected data elements to the center that it is most
similar to, i.e. the center that is closest in value. Ifc(ei) denotes the index of the center closet to
a data elementei, then the goal ofk-means clustering is to minimize the mean-squared distance
between eachei and its nearest cluster centergc(ei). This distance ordistortion error [21] is
given by[22]:

Ek =
∑
i∈D

‖ei − gc(ei)‖2

When all the data elements have been grouped, the positions of each cluster center is recom-
puted based on the distances between the data elements within each cluster. Theei which is
closest to all the elements within the cluster is assigned as the new cluster center. Once all
cluster centers have been recomputed in this fashion, the remainingei are reassigned to the
new centers.

7



This process is repeated several times. At the end of each iteration, the recomputed cluster
centers start to resemble the actual cluster centers more closely. The algorithm terminates when
convergence is achieved, i.e. the distortion error does not improve significantly.

KMC has some drawbacks [22]. The initial assignment of the cluster centers can affect the
efficiency of convergence to the true cluster centers. Choosing an appropriate value fork is also
significant to the performance of the algorithm. Ideally,k should be as close as possible to the
actual number of clusters present within the dataset. Recomputing centers during each iteration
of the algorithm affects the efficiency of the technique, especially for large datasets of high
dimensionality. Also, before clustering algorithms can be applied to large multidimensional
data, analyzing whether the data exhibits a tendency to cluster is important.

4.2 Self Organizing Maps

Self organizing maps (SOM), first introduced by Kohonen, are used to organize unstructured
data much like thek-means clustering approach [24]. SOM-based algorithms can generate
clusters from raw data. They can also produce lower dimensional projections of high dimen-
sional data.

The SOM algorithm works on the principle of competitive learning, an adaptive process
by which neurons in a neural network become more and more sensitive to different input cat-
egories. A self organizing map generally consists of a two dimensional network of neurons
arranged in a grid. Initially, each cell is assigned a reference vector (or reference value) in a
random fashion. Every data elementei from the input dataset is assigned to the neuron with
reference vector that best representsei. Locating the closest reference vector in the SOM ap-
proach, is very similar to searching for the closest center in thek-means clustering approach.
The closest reference vector is called thewinning vector, since the the neurons on the grid com-
pete to learn (adapt to) the input data element. The winning vector is then updated to represent
ei more closely. The reference vectors around the winning vector are also adjusted, with the
amount a reference vector learns from the new data element dependent on how close its vector
is to that of the new element. This process is repeated several times over the entire dataset until
the reference vectors represent the data elements ofD as accurately as possible.

Once the neurons arrange themselves so that further iterations do not produce any signifi-
cant changes to their positions, the algorithm is terminated. At this stage, the reference vectors
in the grid tend to topologically arrange themselves such that adjacent cells on the grid rep-
resent similar data elements in the information space [25]. This property of a SOM wherein
similar data elements are grouped to nearby reference vectors on the grid, is also referred to as
topology preservation[9]. A SOM can be used to identify similarities and differences within
an information space, and can hence serve as a clustering tool [25]. It also has the capability to
generalize, and “learns” the data in an unsupervised fashion [9]. As with clustering techniques
in general, it does not require any prior knowledge about the data.

However, SOM techniques are often computationally intensive. Efficiency of this technique
also depends on the initial arrangement of reference vectors. Since the reference vectors are
assigned in a random fashion initially, SOM based techniques produce different results each

8



time the technique is applied. Generating multiple maps may be necessary to choose the most
effective map. Finally, SOM based techniques are susceptible to missing data values within the
input data, which is a problem that both clustering and projection based algorithms also suffer
from [22].

5 Data Classification

Classification techniques (also referred to as classifiers) generally require a training datasetT
for which the attribute values and data classes of each element are known in advance. Based on
this information, classification techniques predict the class of unclassified data elementsei ∈ D
[5]. The performance measure of the classifier, referred to as itsclassification accuracy, is the
percentage of elements for which the classifier makes correct class predictions [5].

5.1 Rule Set Based Classification

Rule set based classification algorithms apply a set of classification rules generated from a
training dataset to predict the class of an unclassified data element. Classification rules are of
the formX ⇒ c, whereX (the antecedent) contains a combination of attribute value pairs, and
c (the consequent) denotes a corresponding class.

Traditionally, machine learning algorithms such as ID3 and C4.5 are used for class predic-
tion [31]. In these methods,T is partitioned into smaller and smaller disjoint subsets using
distinct values of the data attributes. During the partitioning process, the attribute with the
highest probability of distributingT evenly is selected from among the set of all attributes.T
is then subdivided into disjoint subsets based on ranges of values from the selected attribute.
Each of these subsets is then recursively subdivided in a similar fashion. The partitioning is
represented using a decision tree, where each node represents an attribute or an attribute sub-
range. The process ends when all attributes have been used and the leaves of the tree contain
only individual classes. The class assigned to each leaf is the one with the highest probability
among the elements belonging to the attribute subrange represented by the parent of the leaf. In
cases, where each of the classes is equally probable, a class is chosen at random and assigned
to the leaf. The decision tree constructed fromT is then used to classify a new dataset. Each
path from the root of the tree to a leaf represents a classification rule. New unclassified data
elementsei ∈ D are then matched against these classification rules.

Rule-based classification has certain drawbacks, however. The way the data is subdivided
may not reflect its actual distribution [30]. Classifiers select a single attribute at a time to parti-
tion the subset of data, and do not examine attribute combinations for possible relevance. This
can lead to a sub-optimal partitioning, especially in high dimensional data space, where not all
attributes are of equal importance. Also, constructing decision trees for large multidimensional
datasets can be computationally intensive. Decision tree classifiers will fail to classify data el-
ements with missing attribute values, especially if the missing values involve the attribute that
forms the root of the decision tree.

9



Another approach to generating classification rules is association rule mining [3]. Associa-
tion rules that derive predefined classes are known asclass association rules. Association rule
mining algorithms such as Apriori [4] and Apriori-based techniques can be used to generate a
complete set of class association rules from training data. Since association rules are generated
at each stage of the mining process, they can contain any number of attribute value pairs. Be-
cause of this, a complete class association rule set containing all class association rules is more
adept at classifying data containing missing attribute values than traditional classifiers.

Unfortunately, association rule mining algorithms generate a large number of rules when
applied to large multidimensional data. Trying to match each unclassifiedei ∈ D against each
rule from the complete rule set can be inefficient. In many cases, rules are redundant, and not
all rules that are used to derive the same class are equally powerful [26, 27]. For two rulesr1

andr2, r1 is stronger thanr2 if r1 is as accurate asr2 and has fewer attribute-value pairs in its
antecedent.

To address this problem, Li et al. suggest pruning weak rules at each stage of the associa-
tion rule mining algorithm [27]. At each stepk, only strong rules are considered for the rule
generation at stepk+1. This results in an optimal set of rules with the same predictive power as
a complete class association rule set and with far fewer rules, making the classification process
both efficient and robust at handling missing data.

5.2 Nearest Neighbor Classification

Nearest neighbor techniques for data classification involve finding the nearest neighboreNN ∈
T of an unclassified data elementei ∈ D, and assigning the class ofeNN to ei [5]. In the k
nearest neighbor classification technique, thek nearest neighbors ofei are used to determine
its class.

To determine the nearest neighbors ofei, the distances betweenei and all ej ∈ T are
usually determined using aL1 (Manhattan distance) orL2 (Euclidean distance) metric, where
all dimensions or attributes contribute equally. As the dimensionality of the data increases
however, the data tends to become sparse causing most elementsej to appear to be relatively
equidistant fromei. This makes it difficult to find a meaningfuleNN .

One way to address this problem is to take advantage of the fact that all attributes in a
high dimensional dataset, are not equally relevant in describing the behavior ofei [1, 18].
Meaningful nearest neighbors can be determined by first finding a relevant lower dimensional
projectionPbest, then finding the nearest neighbor from among the data elements that are iden-
tified by Pbest. The relevance of a particular projection is determined by the density of the
cluster of data elements aroundei.

The projected nearest neighbor techniqueproposed by Hinneburg et al. adopts this ap-
proach. The relevance of each projectionPk depends on the distribution of distances of allej

identified byPk, from ei. The distancedk(ei, ej) is measured using aLp metric. A user-defined
minimum thresholddmin is used to identify a meaningful neighborhood aroundei. The higher
the number of points that lie in the neighborhood, the more relevant the projection.

To findPbest, a brute force approach that examines every possible projection is not efficient.

10



Hinneburg et al. use a combination of a genetic search method (similar to the evolutionary
approach in [1]), and a greedy search algorithm. The genetic search algorithm is initially
used to find the best set of relevant three to five dimensional projections. These projections
are then refined using a greedy search algorithm. The greedy search algorithm, according to
[18], is efficient at finding the best 1-dimensional projections. Here, it is used to find the
best 1-dimensional projection from among the set of attributes not present in a projectionPk

generated by the genetic search algorithm.Pk is then extended by this new, best 1-dimensional
result. The combined search strategy provides an efficient solution to the problem of finding
the relevant combination of attributes for the purpose of nearest neighbor search.

6 Aggregation

Data aggregation is the process by which a collection of several data elements or objects is
reduced to a single element or object that is representative of the collection. This single object
is called anaggregate. For instance, an aggregatefaggr of a group of 1-dimensional data
elementse1, ..., em, can be computed as the average of their corresponding valuesa1,1, ..., a1,m.
Besides averages, aggregates could also represent totals, variances, or highest or lowest values
[14, 29].

Aggregation reduces large volumes of data into smaller and more manageable sizes. In
visualization systems, they are used to summarize datasets and simplify the visualization [14].
In the Aggregate Manipulator (AM) system devised by Goldstein and Roth [14], users can
create and control the range (scope) of values for each attribute, as well as select the aggregate
type (average, sum, variance, highest or lowest value). Based on the user selections, the data
elements are aggregated and the aggregates are visualized as points. The drawback of this
system however, is that only a single aggregate type at a time can be chosen for visualization.

In the Aggregation Eye (AE) system devised by Mockus [29], a rectangular widget is used
to select ranges of values for two attributes represented as a 2-dimensional grid. Data elements
whose attribute values fall within the selected range are then aggregated by selecting an ag-
gregate type similar to those used in AM. These aggregates are represented using rectangular
glyphs. The size and color of the glyphs are used to display additional information about the
elements’ the attribute values. For instance, higher values can be represented with larger glyphs
and lower values with smaller glyphs, or colors varying from red to blue can be used to denote
values ranging from high to low. However, while the visual features of the glyphs (size and
color) allow additional aggregate types to be represented, only ranges of two attributes at a
time can be applied on the selection grid.

A similar aggregation based technique is also employed in the Snap-Together Visualization
(STV) system developed by Fredrikson, et al. [13]. Here, sliders are used to control the range
of values for each attribute, and aggregates representing the corresponding data elements are
visualized using rectangular glyphs whose size and color are used to encode additional attribute
information or aggregate types. This system also allows users to summarize data from several
attributes and their ranges. The aggregates are displayed using map-based visualizations and

11



bar charts. Such multiple views allow users a better perspective of the data.
All of these techniques depend on the availability of domain knowledge to be effective. In

AE for instance, information about what constitutes high and low for each attribute is required
to decompose the attribute into meaningful sub-ranges. Choosing an appropriate aggregate
type is also important. Nominal data, for instance, cannot be meaningfully represented by
totals or averages. Also, aggregation is only performed on the ranges chosen interactively by
the users.

In [8], Chuah introduces two aggregation based visualization techniques that support auto-
mated aggregation. In the first technique, calledSolarPlot, a circular histogram with attribute
values plotted along its circumference is used to visualize a 1-dimensional dataset. The length
of the circumference determines the number of data elements that can be effectively displayed.
When the number of elements exceeds the number of pixels along the circumference, multiple
attribute values must share a single pixel. These values are then summarized using aggregation
methods and the resulting aggregate is displayed at that pixel location. Users can interactively
manipulate the circumference of the histogram to visualize the data at multiple levels of detail.
As the circumference grows, the level of aggregation decreases dynamically to allow more indi-
vidual detail to be displayed. Sections of the circle can be marked by users as areas of interest.
These areas can then be magnified to show more local detail. While this technique simplifies
large datasets, it does not support the ability to visualize multiple dimensions simultaneously.

The second technique discussed in [8] is the Aggregate Tree Map visualization. Aggregate
Tree Maps are useful for visualizing hierarchical data. Here, each node in a data hierarchy
is represented within a triangular region. The triangle is subdivided horizontally into regions
corresponding to levels in the data hierarchy. The root node is represented near the apex of
the triangle and the leaf nodes are represented along its base. Each horizontal region is further
divided vertically in such a way that the space allotted to each node in the horizontal area is
directly proportional to its number of children. Sub-regions are shaded with different colors to
represent different ranges of the number of children. This technique is unsuited, however, to
datasets for which data hierarchy is not known apriori.

7 Reducing Dimensionality

Dimensionality reduction maps an-dimensional datasetD, top new dimensions, wherep < n.
The reduction is designed to retain the important aspects ofD, which are of interest to the user.
One popular method for dimensionality reduction is Principal Component Analysis (PCA).

7.1 Principal Component Analysis

In PCA, attributesA1, ..., An are combined linearly to construct a series of orthogonal principal
component axesZ1, ..., Zn spanning then-dimensions inD [35]. The direction of each axisZi

is chosen in a way that maximizes the varianceσ2 captured fromD with the axes ordered such
thatσ2(Z1) ≥ ... ≥ σ2(Zn).

12



In practice, a limited number of axesp, p � n, can often capture most of the variation in
D. A user-specified cutoff parameterτ is used to choosep such thatσ2(Z1)+ ...+σ2(Zp) ≥ τ .
To calculate the principal component axes, the variance between all pairs of attributesAi and
Aj are determined. This is represented by an × n covariance matrixC, where:

Ci,j =
∑m

k=1
Dk,iDk,j

n−1
−

∑m

k=1
Dk,i

∑m

k=1
Dk,j

n
(4)

Here, Dk,i and Dk,j represent the corresponding values of attributesAi andAj for the kth

element inD, respectively. Next, eigenvaluesλi and eigenvectorsZi are computed usingC,
whereZi represent the principal component axes andλi represent the variance captured byZi.
τ is used to select the firstp principal component axes that capture the required variance.

Visualizing the reduced data in principal component space, can be challenging, however,
since users have no way to intuitively convert data from principal component space back to the
original attribute space. Because of this, data must be transformed from principal component
space back ton-dimensional space prior to visualization.

In [35], Walter and Healey use PCA to reduce the dimensionality of a large multidimen-
sional dataset. The reduced data is then simplified using geometric simplification techniques.
The simplified data produces images containing far fewer elements compared to to the original
dataset, while simultaneously retaining areas of high variance and important details.

8 Spatial Data Summarization

Datasets that include an explicit coordinate system within their attributes are often referred to as
spatial datasets. Meteorological datasets with latitude, longitude and elevation attributes, and
medical scans with slice locations and inter-slice distance attributes, are instances of spatial
data. Distances and neighborhoods can be determined based on the spatial locations of the
elements. Traditional data mining algorithms do not consider these properties when dealing
with spatial data. These algorithms treat all elements as independent of each other [34], and
incorporate spatial attributes, and even temporal attributes, simply as additional dimensions
within the mining process [32].

In the summarization approaches by Ester et al. [11, 10] and Shekhar et al. [34], data ele-
ments are not treated independent of each other. Instead, elements that lie within a user-defined
distance threshold are termed spatial neighbors. These neighborhoods are then used to detect
clusters, trends [11] and outliers [34]. Ester et al. also consider relative differences in non-
spatial attribute values when defining spatial neighborhoods [11, 10]. In their approach, two
elementsei andej are considered spatial neighbors ifei andej lie within a distance threshold
of each other, and ifei’s non-spatial attribute values do not differ from those ofej , by more
than a user-defined similarity threshold.

For spatial cluster detection, a new clusterC is created for anei ∈ D that does not belong
to any cluster. Then, for all elementsej ∈ D not part of any cluster,ej is added toC if
ej is a spatial neighbor ofei. The process is repeated until all elements inD belong to a

13



cluster. The clusters are then visualized to display both the spatial and the non-spatial attribute
characteristics of the dataset. Spatial trends (increasing or decreasing) are also discovered using
the concept of spatial neighbors. A spatial trend tracks the change in one or more non-spatial
attribute values when moving away from a certain specific location [11]. To detect decreasing
trends starting from a locationei, ei’s neighbors are examined to find anej whose attribute
values are lower than that ofei. Thisej is added to the current trend. Then,ej is examined in
a similar fashion. Increasing trends, are also detected in the same fashion.

Ester et al. consider only one spatial neighbor at a time in characterizing spatial data. In
the outlier detection technique by Shekhar et al. [34], a neighborhood ofk nearest neighbors is
evaluated. Here, outliers are elements whose non-spatial attribute values deviate significantly
from those of itsk nearest spatial neighbors. The “outlierness” of any elementei is determined
by the equation:

∣∣∣∣∣
S(ei) − µS

σS

∣∣∣∣∣ > θ (5)

Here,S(ei) is a value that denotes the difference betweenei’s attribute values, and the average
of the attribute values of itsk nearest neighbors.µS andσS are individual values that denote
the average and the standard deviation ofS(ei), for all ei ∈ D, respectively.θ denotes a user-
specified confidence value: if the outlierness ofei is greater thanθ, it is marked as a spatial
outlier. This technique can be extended to include temporal attributes, to discover temporal
and spatial-temporal outliers.

Both, the spatial data characterization technique of Ester et al. [10], and the outlier detec-
tion technique of Shekhar et al. [34] described above, are based on the assumption that spatial
data elements usually exhibit a strong correlation with elements that lie in their neighborhood.
This property is also referred to asspatial autocorrelation[7]. However, spatial autocorrela-
tion does not account for datasets that exhibit a high spatial frequency. Also, these techniques
are suited only to spatial datasets. Finally, computing distances between spatial data elements,
especially when dealing with very large datasets, can adversely affect the efficiency of the
algorithms.

9 Conclusions

In this report we examined how summarizing large multidimensional datasets can be advan-
tageous to visualization systems. Specifically, we studied how techniques from pattern detec-
tion, classification and clustering, dimensionality reduction, and aggregation can be used to
compress large multidimensional datasets into smaller datasets which still retain the important
characteristics of the original data. Summarizing large datasets before visualizing the data,
could lead to more effective visualizations, which in turn would support more efficient and
accurate visual analysis.

There are several important issues that need to be addressed to use summarization effec-
tively during visualization. First, we must investigate how specific summarization techniques

14



can be applied effectively to large datasets, especially temporal and spatial-temporal datasets.
Second, we need to understand which information is most relevant to a broad spectrum of users
and domains. Third, we must determine how various visualization techniques can be applied
to accurately display summarized data.

Addressing these issues could provide a better understanding of the benefits of summariza-
tion to visualization systems. It may also offer insights into the task of effectively managing
large multidimensional datasets.

15



References

[1] AGGARWAL, C. C., AND YU, P. S. Outlier detection for high dimensional data. In
SIGMOD Conference(2001).

[2] AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN , P. Automatic sub-
space clustering of high dimensional data for data mining applications. InProc. ACM
Conf. on Management of Data(1998), pp. 94–105.

[3] AGRAWAL, R., IMIELINSKI , T., AND SWAMI , A. N. Mining association rules between
sets of items in large databases. InProceedings of the 1993 ACM SIGMOD International
Conference on Management of Data(Washington, D.C., 26–28 1993), P. Buneman and
S. Jajodia, Eds., pp. 207–216.

[4] AGRAWAL, R., AND SRIKANT, R. Fast algorithms for mining association rules. In
Proc. 20th Int. Conf. Very Large Data Bases, VLDB(1994), J. B. Bocca, M. Jarke, and
C. Zaniolo, Eds., Morgan Kaufmann, pp. 487–499.

[5] A NKERST, M., KASTENMÜLLER, G., KRIEGEL, H.-P., AND SEIDL, T. 3D shape
histograms for similarity search and classification in spatial databases. InAdvances in
Spatial Databases, 6th International Symposium, SSD’99(Hong Kong, China, 1999),
R. Güting, D. Papadias, and F. Lochovsky, Eds., vol. 1651, Springer, pp. 207–228.

[6] BREUNIG, M. M., KRIEGEL, H.-P., NG, R. T., AND SANDER, J. LOF: identifying
density-based local outliers. InACM SIGMOD Conference Proceedings 2000(2000),
pp. 93–104.

[7] CHAWLA , S., SHEKHAR, S., WU, W., AND OZESMI, U. Modeling spatial dependencies
for mining geospatial data. InProc. of the 1st SIAM International Conference on Data
Mining (Chicago, IL, 2001).

[8] CHUAH, M. Dynamic aggregation with circular visual designs. InProceedings IEEE
Symposium on Information Visualization 1998(1998), pp. 35–43.

[9] DEBOECK, G., AND KOHONEN, T., Eds. Visual Explorations in Finance with Self Or-
ganizing Maps. Springer - Verlag, Menlo Park, California, 1998.

[10] ESTER, M., KRIEGEL, H.-P., AND SANDER, J. Spatial data mining: A database ap-
proach. InFifth Symposium on Large Spatial Databases (SSD’97)(Berlin, Germany,
1997), M. Scholl and A. Voisard, Eds., vol. 1262, Springer, pp. 48–66.

[11] ESTER, M., KRIEGEL, H.-P., AND SANDER, J. Knowledge discovery in spatial
databases. In23rd German Conference on Artificial Intelligence, KI’99(Bonn, Germany,
1999), vol. 1701, Springer, pp. 61–74.

16



[12] FLEXER, A. On the use of self-organizing maps for clustering and visualization. In
Intelligent Data Analysis 5(2001), IOS Press, pp. 373–384.

[13] FREDRIKSON, A., NORTH, C., PLAISANT, C., AND SHNEIDERMAN, B. Temporal,
geographical, and categorial aggregations viewed through coordinated displays: A case
study with highway incident data. InWorkshop on New Paradigms in Information Visu-
alization and Manipulation(1999), pp. 26–34.

[14] GOLDSTEIN, J., AND ROTH, S. F. Using aggregation and dynamic queries for explor-
ing large data sets. InProceedings of ACM CHI’94 Conference on Human Factors in
Computing Systems(New York, April 1994), ACM, pp. 23–29.

[15] HAWKINS, D. Identification of Outliers. Chapman and Hall, 1980.

[16] HEALEY, C. G., AMANT, R. S.,AND CHANG, J. Assisted visualization of e-commerce
auction agents.Proceedings Graphics Interface 2001(2001).

[17] HEALEY, C. G., AND ENNS, J. T. Building perceptual textures to visualize multi-
dimensional datasets.Proceeding Visualization ’98(1998), 111–118.

[18] HINNEBURG, A., AGGARWAL, C. C., AND KEIM, D. A. What is the nearest neighbor
in high dimensional spaces? InThe VLDB Journal(2000), pp. 506–515.

[19] HIPP, J., GÜNTZER, U., AND NAKHAEIZADEH , G. Algorithms for association rule
mining – a general survey and comparison.SIGKDD Explorations 2, 1 (July 2000), 58–
64.

[20] JAIN , A., AND DUBES, R. Algorithms for Clustering Data. Prentice - Hall, Englewood
Cliffs, NJ, 1988.

[21] KANUNGO, T., MOUNT, D., NETANYAHU , N., PAITKO , C., SILVERMAN , R., AND

WU, A. An efficient k-means clustering algorithm: Analysis and implementation.IEEE
Transactions on Pattern Analysis and Machine Intelligence 24, 7 (July 2002), 881–892.

[22] KASKI, S. Data exploration using self-organizing maps.Acta Polytechnica Scandinavica,
Mathematics, Computing and Management in Engineering Series No. 82(March 1997).

[23] KNORR, E., AND NG, R. Distance-based outliers in large data sets. InVLDB Conference
Proceedings(1998).

[24] KOHONEN, T. Self Organizing Maps. Springer Verlag, Berlin, 1995.

[25] KREUSELER, M., AND SCHUMANN, H. A flexible approach for visual data mining.
IEEE Transactions on Visualization and Computer Graphics 8, 1 (2002), 39–51.

[26] LI, J. Optimal and Robust Rule Set Generation. PhD thesis, School of Computing and
Information Technology, Griffith University, Australia, 2002.

17



[27] LI, J., TOPOR, R., AND SHEN, H. Construct robust rule sets for classification. InPro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining(2002), pp. 564 – 569.

[28] MCCORMICK, B., DEFANTI, T., AND BROWN, M. Visualization in scientific computing
- a synopsis.IEEE Computer Graphics and Applications 7 7(1987), 61–70.

[29] MOCKUS, A. Navigating aggregation spaces. InProc. IEEE Conference on Information
Visualization ’98(Los Alamitos, CA, 1998), IEEE.

[30] PERNER, P., AND APTE, C. Empirical evaluation of feature subset selection based on
real-world data set. InPrinciples of Data Mining and Knowledge Discovery(2000), D. A.
Zighed, J. Komorowski, and J. Zytkow, Eds., Springer Verlag, pp. 575–580.

[31] QUINLAN , J. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,
CA, 1993.

[32] RODDICK, J., AND LEES, B. Paradigms for spatial and spatio-temporal data mining. In
Geographic Data Mining and Knowledge Discovery(2001), H. Miller and J. Han, Eds.,
Taylor and Francis, pp. 33–50.

[33] RODRIGUES, J. F., TRAINA , A. J. M., AND JR, C. T. Enhancing data visualization tech-
niques. InProc. Third IEEE Intl. Workshop on Visual Data Mining - VDM@ICDM’03,
Melbourne - CA, USA(2003), pp. 97–112.

[34] SHEKHAR, S., LU, C.-T., AND ZHANG, P. Detecting graph-based spatial outliers: algo-
rithms and applications (a summary of results). Inthe Seventh SIGKDD Int’l Conference
on Knowledge Discovery and Data Mining (KDD 2001)(2001), pp. 371–376.

[35] WALTER, J. D., AND HEALEY, C. G. Attribute preserving dataset simplification. In
Proceedings IEEE Symposium on Information Visualization 2001(2001), pp. 113–120.

[36] WANG, W., YANG, J., AND MUNTZ, R. R. TAR: Temporal association rules on evolv-
ing numerical attributes. InSeventeenth International Conference on Data Engineering,
ICDE 2001(Heidelberg, Germany, 2001), IEEE Computer Society, pp. 283–292.

18


