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Abstract

The advent of computers with high processing power has led to the generation of huge datasets
containing large numbers of elements, where each element is often characterized by multiple
attributes. This has led to a critical need for ways to explore and analyze large, multidimen-
sional information spaces. Visualization lends itself well to this challenge by enabling users
to visually explore, analyze, and discover patterns within their data. Most visualization tech-
niques are based on the assumption that the display device has sufficient resolution, and that
our visual acuity is adequate to complete the analysis tasks. This may not be true however,
particularly for specialized display devices (e.g., PDAs, or large-format projection walls). This
paper discusses which properties of a display device need to be considered when visualizing
large, multidimensional datasets. We also investigate the strengths and limitations of our visual
system, in particular to understand how basic visual properties like color, texture, and motion
are distinguished. These findings will form the basis for new research on how to best match a
visualization design to a display’s physical characteristics and a viewer’s visual abilities.



1 Introduction

Visualization is an area of computer graphics that manages and presents information in a vi-
sual form to facilitate rapid, effective, and meaningful analysis and interpretation. Visualization
is used in areas like geographic information systems, land and satellite weather information,
scientific simulations, aerospace research, molecular biology, defense, and medicine. Visual-
ization also supports more abstract domains, for example, program visualization, data mining,
and network security. In situations where user collaboration is required or time is a critical
factor, visualization enables people to analyze and interpret vast amounts of information and
make important decisions. The desire to extract knowledge rapidly and efficiently from large,
complex datasets motivates the need for effective visualization systems [36].

More formally, a datasetD = {e1, .., en} containsn sample points, or data elements,ei.
A multidimensional dataset represents two or more data attributes,A = {A1, ..., Am}, m > 1.
The data elements encode values for each attribute:ei = {ai,1, ..., ai,m}, ai,j ∈ Aj. A data-
feature mapping converts the raw data into images that can be presented to a viewer. Such a
mapping is denoted byM(V, Φ), whereV = {V1, ..., Vm} is a set ofm visual features with
Vj selected to represent each attributeAj, andΦj : Aj → Vj maps the domain ofAj to the
range of displayable values inVj. Visualization is thus the selection ofM together with a
viewer’s ability to comprehend the images generated byM . An effectiveM produces images
that support rapid, accurate, and effortless exploration and analysis [20].

Knowledge of perception can be used to generate visualizations that harness the strengths
of the low-level human visual system. Applying perceptual guidelines to “take full advantage
of the available bandwidth of the human visual system” has been cited as an important area
of current and future research in visualization [25, 38]. “Visual bandwidth” depends on the
following criteria:

1. Physical characteristics of the display device (e.g., resolution in terms of the total number
of pixels, and the physical size of the display).

2. Acuity of the human visual system (e.g., the limits of distinguishability of the human
eye for different image features like color, orientation and size, and the visual angle
subtended by elements on the viewer’s eye).

3. Visualization technique (e.g., the methods used to map a data element’s values to a visual
representation).

4. Properties of the data (e.g., its dimensionality and number of elements) and the analysis
tasks to be performed by the viewer.

To date, significant research effort has been expended on the last two criteria, constructing new
visualization techniques and studying how different types of data can be displayed effectively.
Much less work has been conducted on the first two criteria: understanding how display reso-
lution and visual acuity affect the expressiveness of a visualization. Knowledge from human
psychophysics and computer vision could be used as a foundation for these types of studies.
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Figure 1: Visualization of a weather dataset using perceptual texture elements withtemperature→ hue,wind
speed→ density,pressure→ size,precipitation→ orientation, andcloud coverage→ luminance

One important goal of our work is to identify and extend these basic findings of display reso-
lution and visual acuity to our visualization domain.

As an example of a typical multidimensional visualization, consider Figure 1 which visu-
alizes a weather dataset made up of monthly environmental and weather conditions provided
by the Intergovernmental Panel on Climate Change. This multidimensional dataset contains
mean monthly surface climate readings in1

2

◦
latitude and longitude steps for the years 1961

to 1990 (e.g., readings for January averaged over the years 1961-1990 and so on). Individual
weather readings (or data elements) are visualized using stroke glyphs (2D rectangular objects)
that vary their color and texture properties. Hue representstemperature: blue strokes for cold
temperatures to red strokes for hot temperatures. Density representswind speed: more strokes
displayed in a fixed area of screen space for stronger wind speed. Size representspressure:
larger strokes for higher pressure. Orientation representsprecipitation: tilted strokes for heav-
ier rainfall. Finally, luminance representscloud coverage: brighter strokes for heavier cloud
coverage.

Figure 2 visualizes a more abstract dataset of query results representing movie recommen-
dations from the MovieLens1 recommender system. MovieLens returns a movie’stitle, its
genreand a predicteduser rating. This data was augmented with information taken from the

1MovieLens (movielens.umn.edu) is a collaborative filtering research site run by the GroupLens Research
Group at the University of Minnesota.
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Figure 2: Visualization of a movie dataset using perceptual texture elements withuser ratingmapped to spatial
position and height,yearmapped to colored flag at the bottom of the glyph,genremapped to light brown flags at
different heights, andlengthmapped to luminance

Internet Movie Database (IMDB)2 to include theyearthe movie was released, thelengthof the
movie in minutes, and the IMDBrating of the movie. Tower-like glyphs are positioned along a
spiral embedded in a plane based on how much MovieLens thinks the user will enjoy the movie
(predicteduser rating). The value of theuser ratingdecreases as glyphs move away from the
center of the spiral, that is, movies closest to the center of the spiral are the ones MovieLens
ranked highest. Predicteduser ratingis also mapped to the height of each tower to reinforce
this important value.Year is mapped to a colored flag at the bottom of the glyph: yellow for
1921 to 1940, green for 1941 to 1960, purple for 1961 to 1980, blue for 1981 to 2000, and
white for after 2000.Genreis mapped to light brown flags wrapped around the glyph at differ-
ent heights; the order of the flags from bottom to top represent Action, Comedy, Drama, and
Romance, respectively. Since a movie can be classified into multiple genres, multiple genre
flags may appear on a glyph. Finally,length is mapped to luminance (dark red for short to
bright red for long) [36].

Most visualization algorithms to date (including the two examples shown above) assume
that a sufficient display resolution will be available to generate visualizations that can be pro-
cessed effectively by the viewer. The increased use of non-traditional display devices such as
multi-projector powerwalls, responsive workbenches, high-resolution monitors (e.g., with 200
or more pixels-per-inch), PDAs, and mobile phones, each with different display characteristics,

2www.imdb.com
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can have a significant effect on a particular visualization technique. The physical size, pixel
resolution, and standard viewing distance varies across different display devices. This directly
impacts which part of a dataset we can display effectively. Another issue that needs to be con-
sidered is the human visual system itself. For example, an on-screen element must subtend a
minimum visual angle on the viewer’s retina to be distinguishable. Increasing a display de-
vice’s pixel resolution (i.e., increasing pixels-per-inch and therefore decreasing the size of the
on-screen elements) beyond a certain limit will produce diminishing results.

Consider a simple example of visualizing a large, multidimensional dataset on a typical
CRT monitor, and assume that the viewer has zoomed in on a small subset of the dataset. At
this point, a full-detail visualization containing as many attributes as can be shown effectively
will be most useful. Now, if the viewer zooms out to see an overview of the entire dataset,
only a few pixels of screen space will be allocated to each data element, and thus many of
the visual features used to represent different data attributes may not be easy to distinguish.
This “background clutter” could be counterproductive, since it may interfere with our ability
to identify important data values at this low resolution. One possible solution is to have a
visualization system that smoothly reduces the number of attributes it represents as the viewer
zooms out, and redisplays the attributes as the viewer zooms in. The idea is to maximize
the utilization of the display’s capabilities in an effective and efficient manner, maintaining a
balance in the display environment: more elements with fewer attributes encoded, or fewer
elements with more attributes encoded.

Figure 3 shows an example of this situation. The dataset being visualized is the same as
used in Figure 1. In the top imagetemperature, pressure, wind speed, cloud coverage, and
precipitationare mapped to hue, luminance, size, orientation, and regularity, respectively. In
the bottom-left image the same data is visualized, but for the entire continent of North America.
Because only a few pixels are available for each data element, many of the visual feature values
are difficult to identify. Moreover, the presence of certain features (e.g., small sizes) interferes
with our ability to see other features (e.g., color). In the bottom-right image the same elements
are visualized, but the number of attributes are reduced to two:temperatureandpressure. Since
both hue and luminance are distinguishable even at small physical resolutions, the underlying
data patterns are easy to identify.

An obvious question is: how can we define this kind of visualization hierarchy? The answer
will depend on how many pixels (i.e., what display resolutions) are needed for a visual feature
to represent information effectively, and how much physical size (i.e., what visual acuity) is
needed for our visual system to accurately identify and interpret the visual feature. This survey
summarizes what is currently known about these topics, and offers suggestions on how future
research could fill in missing details, and then combine the results into a working visualization
system. Understanding limits on display resolution and visual acuity will allow us to better
validate a given visualization technique, and characterize to what extent the technique saturates
“visual bandwidth”.

When we design a visualization, properties of the dataset and the visual features used to
represent its data elements must be carefully controlled to produce an effective result. Impor-
tant characteristics that must be considered include [48]:
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Figure 3: Examples of visualizing with different viewing parameters: (top) a close-up of Hudson Bay, each
square represents weather conditions on a1

2

◦
longitude by1

2

◦
latitude grid,temperaturemapped to hue (blue for

cold to red for hot),pressuremapped to luminance (brighter for higher),wind speedmapped to size (larger for
stronger),cloud coveragemapped to orientation (more tilted for denser), andprecipitationmapped to regularity
(more irregular for heavier); (left) North America with all five attributes visualized; (right) North America with
only temperatureandpressurevisualized
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1. Dimensionality: as the number of attributesm in the dataset grows, additional visual
features must be identified to represent each attribute; for largem, this may be difficult
or impossible, necessitating the display of only a subset of the dataset’s attributes.

2. Number of elements: as the number of elementsn increases all of the elements may not
fit on-screen.

3. Visual-feature salience: each visual feature has strengths and limitations that make it
suitable for certain types of data attributes and analysis tasks; an effective visualization
needs to respect these properties.

4. Visual interference: different visual features can interact with one another, producing vi-
sual interference; this must be controlled or eliminated to guarantee effective exploration
and analysis.

Display resolution and visual acuity will further impact how a dataset can be visualized, for
example, how many data elements and data attributes we can represent at once, and which
visual features are best suited for displaying different attribute values.

The remainder of the survey proceeds as follows. In Section 2, we review the important
physical characteristics of display devices. Section 3 discusses physical vision and visual acu-
ity. Section 4 focuses on the properties of different visual features such as color, texture, and
motion. Finally, Section 5 discusses conclusions and future work.

2 Display Device Properties

Properties of a display device that can have a significant effect on its visualization capabilities
include: display resolution, physical size, and viewing distance. This leads us to ask: (1) What
fraction of a dataset can a display represent effectively? and (2) What fraction of a display can
a viewer attend to at any given time? The physical size and the viewing distance affect the
visual angle formed by the object.

Visual angle is the angle subtended by an object on the eye of an observer. Visual angles
are generally defined in degrees, minutes, and seconds of arc (a minute is1

60
degree and a

second is1
60

minute). For example, a 0.4-inch object viewed at 22-inches has a visual angle of
approximately 1 degree. In Figure 4, visual angle can be calculated as [47]:

θ

2
= arctan(

ab

d
) (1)

The visual angle depends on two factors: (1) it is proportional to the actual size of the
object; and (2) it is inversely proportional to the distance of the object from the eye. The larger
the size of the object, the larger the visual angle; and the larger the distance of the object from
the eye, the smaller the visual angle.
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Figure 4: Visual angle subtended by an object on a human eye

2.1 Display Resolution

A display device’s resolution defines the number of pixels it contains, expressed in the hori-
zontal and vertical directions. The sharpness of the display depends on its resolution and on its
physical size. The same resolution will be sharper on a smaller monitor compared to a larger
monitor because the same number of pixels are being spread out over a larger physical region
[34]. We use the termdisplay resolutionto refer to the resolution and the physical size of a
particular display device. Real-world data are visualized on a range of display devices such as
computer monitors (traditional CRTs and LCDs), PDAs, mobile phones, and powerwalls3. Ta-
ble 1 shows common display resolutions for these types of display devices [26, 29, 30, 27, 28].

The low display resolution of devices like mobile phones and PDAs limits the amount of
information they can display at any given time. A common display resolution for a PDA is
240 × 320 pixels at 3.5-inches diagonal. Consider the example of visualizing a large dataset
on a PDA screen. This would allocate very few pixels to each data element. Even if the
resolution is increased dramatically (i.e., a significant increase in pixels-per-inch), it would
not fully resolve the issue. An element must subtend a minimum visual angle on the viewer’s
retina to be distinguishable. Increasing pixels-per-inch beyond a certain point will produce
diminishing results in terms of the amount of additional information a viewer can see. At the
opposite extreme, a large display device such as a powerwall typically results in a large field of
view (FOV)4. But, there is a limitation on the amount of information human eyes can perceive
based on the horizontal and vertical FOV. Also, as the FOV increases users have to utilize their
peripheral vision [3], and it is a known fact that static visual features do not perform well under
peripheral conditions [2].

2.2 Physical Size

Physical size is an important cue to sensory and judgment processes in humans. In a series of
studies, Simmons [37] showed that users performed better on productivity tasks using large 21-
inch monitors as compared to smaller ones. Chapanis and Scarpa [10] conducted experiments

3A multi-projector display that is typically both physically large as well as very high in resolution
4“The maximum number of degrees of visual angle that can be seen instantaneously on a display” [3]
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Display Device Manufacturer Model Resolution Screen Size
Mobile Phone Vodofone Sharp GX30 858 × 1144 2.2-inch screen

Sanyo SCP-5300 132 × 176 2.1-inch screen
Samsung SPH-A600 128 × 160 2.0-inch screen
Nokia 6200 128 × 128 27.3 × 27.3 mm

PDA Toshiba e805(BT) 800 × 600 4.0-inch screen
Sony Clie PEG-UX50 480 × 320 4.0-inch screen
Hewlett Packard iPAQ RZ1715 240 × 320 3.5-inch screen
T-Mobile Sidekick II 240 × 160 2.75-inch screen

Monitors Auto Vision Inc AVHRPC703 640 × 480 7.0-inch screen
COMPAQ MV520 800 × 600 15.0-inch screen
ViewSonic VX510 1024 × 768 15.0-inch screen
Sony CPD-E240 1280 × 1024 17.0-inch screen
ViewSonic G90fb 1600 × 1200 19.0-inch screen
LG L2320A 1920 × 1200 23.0-inch screen

PowerWall SGI Onyx2 6400 × 3072 8 × 2.85 m
POWER Onyx 3200 × 2400 6 × 8 feet
Exec CUG 2560 × 2048 14 × 10 feet

Table 1: Display Resolution of current display devices

comparing the readability of physical dials at different distances to examine the psychophysical
effects of distance and size. They used dials of different sizes and markings that were propor-
tional to the viewing distance so as to keep visual angles constant. They found that beyond
28-inches, dials were read more easily. The effects they found, however, were relatively small.

Studies conducted by Desney et al. [13] suggest that users performed better on spatial
orientation tasks that require mental rotation on large displays compared to desktop monitors.
The visual angle was held constant by adjusting the viewing distance to each of the displays.
Large displays provide users with a greater sense of presence, allowing them to imagine rotat-
ing their bodies within the environment. Smaller display force users to imagine rotating the
environment around themselves [9, 50]. Large displays normally cast a larger retinal image,
offering a wider FOV. Czerwinski et al. [12] reports that a wider FOV increases the sense of
presence and improves performance in 3D navigation tasks, many of which are important in
visualization.

The physical size of a display device has a direct affect on the available FOV. Also, for
a fixed pixels-per-inch, larger display devices have higher resolutions and therefore may be
capable of visualizing more information.
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2.3 Viewing Distance

The standard distance to the viewer from the computer screen is approximately 22-inches [47].
For large displays such as powerwalls, the optimal viewing distance is about twice the width of
the display [41]. As the viewing distance increases, the FOV decreases. For example, a 16-inch
display placed 22-inches from the user produces a FOV of approximately40◦. Increasing the
viewing distance to 30-inches reduces the FOV to30◦.

Display resolution for current display devices range from as low as128× 128 to as high as
6400 × 3072. A good visualization technique should take into account the display resolution,
physical size, and standard viewing distance in order to maximize both the quantity and the
quality of the information it displays. The number of pixels allocated to each data element
is directly proportional to the display resolution. For a particular display resolution, it is im-
portant to determine which visual features can be rapidly identified and which cannot, based
on the number of the pixels that need to be allocated to each visual feature to make its values
distinguishable. This knowledge is necessary to build data elements that generate effective and
efficient visualization.

3 Physical Vision and Visual Acuity

3.1 Physical Vision

Figure 5 shows the internal structure of the human eye. The important features are: the retina,
the lens, the fovea, the iris, the cornea, and the eye muscle. Light focused by the lens falls on
the retina. The retina consists of two types of photosensitive cells: rods and cones. Cones are
primarily responsible for color perception and rods are responsible for intensity, though they
are typically ten times more sensitive to light than cones. There is a small region at the center
of the visual axis known as the fovea that subtends 1 or 2 degrees of visual angle. The structure
of the retina is roughly radially symmetric around the fovea. The fovea contains only cones,
and linearly, there are about 147,000 cones per millimeter [14]. The fovea is the region of
sharpest vision. As we move outward from the fovea, rods begin to appear among the cones,
and at the edge of the fovea there are more rods than cones. The human eye contains separate
systems to encode spatial properties such as size, location and orientation, and object properties
such as color, shape and texture. These spatial and object properties are important features
that have been successfully used by researchers in psychology for simple exploration and data
analysis tasks such as target detection, boundary detection and counting, and by researchers in
visualization to represent high-dimensional data collections [47].

The human eye contains a limited number of rods and cones (about 120 million rods and 6
million cones), and due to this it can only manage a certain amount of information over a given
time frame. Thus, even though we can generate images with a high number of pixels-per-inch,
it will not improve our analysis abilities once it crosses the threshold where pixels blur together
with their neighbors. This poses an interesting question for the visualization field: “What is the
minimum number of pixels required to represent different visual features such as color, texture,

9



Figure 5: Internal structure of a human eye

and motion in order for it to be perceptually identifiable?” More discussion about this can be
found in the next section.

3.2 Visual Acuity

Visual acuities are measurements of our ability to see detail. Acuities are important because
they define absolute limits on the information densities that can be perceived. Some of the
basic acuities are summarized in Table 2 [47]. Visual acuity for a person with 20/20 vision5

is measured as the minimum angle of the viewing field that must be filled with an image to
recognize one feature from the rest of the image (measured in “minutes”),20

20
= 1 minute [45].

Most of the acuity measurements in Table 2 suggest that we can resolve visual phenomena,
such as the presence of two distinct lines, down to about 1 minute (1

60
◦) of visual angle. This

is in rough agreement with the spacing of receptors in the center of the fovea. For us to see
that two lines are distinct, the blank space between them should lie on a receptor; therefore, we
should only be able to perceive lines separated by roughly twice the receptor spacing. However,
there are a number of superacuities, like stereo acuity and vernier acuity. A superacuity is the
ability to perceive visual properties of the world to a greater precision than could be achieved
based on a simple receptor model.

5A person with vision that is able to recognize at 20 feet what the average person with good eyesight can
recognize at 20 feet
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Type Description
Point acuity (1 arc minute) The ability to resolve two distinct point targets.
Grating acuity (1-2 arc minutes)The ability to distinguish a pattern of bright and dark

bars from a uniform grey patch.
Letter acuity (5 arc minutes) The ability to resolve a letter. The Snellen eye chart

is a standard way of measuring this ability. 20/20
vision means that a 5-minute letter target can be seen
90% of the time.

Stereo acuity (10 arc seconds) The ability to resolve objects in depth. The acuity is
measured as the difference between two angles for a
just-detectable depth difference.

Vernier acuity (10 arc seconds) The ability to see if two line segments are collinear.

Table 2: Some basic acuities

Postreceptor mechanisms are capable of integrating the input from many receptors to obtain
better single-receptor resolution. A good example of this is vernier acuity, the ability to judge
the collinearity of two fine line segments. This can be done with amazing accuracy to better
than 10 arc second. The resolution of the eye is often measured in cycles per degree and ranges
from 1

2
arc minute (120 cycles/degree) to 1 arc minute (60 cycles/degree). Resolution of 1 arc

minute allows one to distinguish detail of 0.01 seconds at 3 feet. Consider a display screen
that is 20-inches wide and positioned 22-inches from the viewer. How many pixels across one
scanline subtending45◦ would it take to match human visual acuity? If we assume human
visual acuity to be1

2
arc minute, then we would need120 ·45 = 5400 pixels to match our visual

ability [46].
Neural postprocessing can efficiently combine input from two eyes. The area of the overlap

is approximately120◦ with 30-35◦ monocular vision on each side. Combined horizontal FOV
is 180-190◦ and vertical FOV is 120-135◦ for both eyes [46]. This suggests that if the data
elements in a visualization environment lie within this region of overlap they are identified
more accurately than the data elements that lie in the monocular region. Campbell and Green
[8] found that binocular viewing improves acuity by 7% as compared with monocular viewing.
Interestingly, Campbell and Green’s findings suggest that we should be able to use the ability
of the eye to integrate information over space and time to allow perception of higher-resolution
information than is actually available on our display device. One technique for achieving
higher-than-device resolution is anti-aliasing. There is also an intriguing possibility that the
temporal-integration capability of the human eye may allow us to distribute information in a
high-resolution image over a sequence of frames on a lower-resolution display in a way that
the brain integrates back into a single, coherent result.

In the next section we focus on different visual features such as color, texture, and motion
with respect to display resolution, visual acuity, applicability to spatial frequency and data
domain, and visual interference.
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4 Visual Features

A variety of visual features have been used in visualization. Some of them are listed in Table 3
[19]. In this section we describe what we know about the visual features (hue, luminance,
texture, and motion), and provide suggestions on how future research could fill in the missing
details, and then combine this knowledge into a working visualization system that defines a
visualization hierarchy. The next few sections discuss hue, luminance, texture, and motion
properties based on domain, visual interference, and spatial frequency, then present examples
of each feature within a visualization display.

Feature Author
line (blob) orientation Julész & Bergen (1983); Wolfe (1992)
length Triesman & Gormican (1988)
width Julész (1984)
size Triesman & Gelade (1980)
curvature Triesman & Gormican (1988)
number Julész (1985); Trick and Pylyshyn (1994)
terminators Julész & Bergen (1983)
intersection Julész & Bergen (1983)
closure Enns (1986); Triesman & Souther (1986)
color (hue) Triesman & Gormican (1988); Nagy and Sanchez (1990);

DZmura (1991)
intensity Beck et al. (1983); Triesman & Gormican (1988)
flicker Julész (1971)
direction of motion Nakayama & Silverman (1986); Driver and McLeod (1992)
binocular lustre Wolfe & Franzel (1988)
stereoscopic depth Nakayama & Silverman (1986)
3D depth cues Enns (1990)
lighting direction Enns (1990)

Table 3: Different Visual Features used in Visualization

4.1 Hue

Color is a visual feature commonly used in visualization. An individual color can be described
by providing its hue, saturation, and luminance. Hue is the wavelength we see when viewing
light of the given color. Saturation describes how strong (or how far from grey) the color is.
Luminance refers to the intensity or brightness of the color. In this report we refer to colors by
their hue names. Examples of simple color scales include the rainbow spectrum, red-blue or
red-green ramps, and the grey-red saturation scale. More sophisticated techniques divide color
along dimensions like luminance, hue, and saturation to better control the difference viewers
perceive between different colors. Researchers in visualization have combined perceptually
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Figure 6: An example of Ware and Beatty’s coherency visualization technique, the four clouds of similarly-colored
squares represent four coherent groups of data elements

balanced color models with nonlinear mappings to emphasize changes across specific parts of
an attribute’s domain, and have also proposed automatic colormap selection algorithms based
on an attribute’s spatial frequency, continuous or discrete nature, and the analysis tasks to be
performed. Experiments have shown that color distance, linear separation, and color category
must all be controlled to select discrete collections of distinguishable colors [16, 18].

Results show that the preattentive nature of a color depends on the saturation and size of
the color patch as well as the degree of difference from its surrounding colors. As a rule
of thumb, 1

2

◦ of visual angle is probably a minimum size for color-coded objects in order to
avoid small-field color blindness [47]. One of the limitations of using color as a visual feature
is that in peripheral conditions humans are almost colorblind [51] and hence the ability to
differentiate between colors drops off drastically at the periphery. Healey showed that at most
seven isoluminant colors can be rapidly distinguished from one another in a display [16]. Hue
is best suited to represent low spatial frequency nominal data.

One example use of color was proposed by Ware and Beatty to display correlation in a
five-dimensional dataset [11]. Each of the five data attributes is mapped to one of the following
visual features: position along thex-axis, position along they-axis, red color,greencolor, and
bluecolor. The result is a two-dimensional display of colored squares, each square representing
an element in the dataset. Figure 6 shows that groups of elements with all five attributes in
common will appear as a spatial cloud of similarly-colored squares.

4.2 Luminance

Luminance is a physical measure that is used to define an amount of light in the visible region
of the electromagnetic spectrum [47]. High spatial frequency data (i.e., data with sharp spatial
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Figure 7: Isomorphic colormap for high spatial frequency data. The high frequency colormap reveals more
information in the radar data.

variations in its values) is best represented using luminance. Luminance is also best suited
to represent ordinal data. Levkowitz and Herman studied the problem of creating colormaps
for data visualization [23]. They knew that a grey-scale (i.e., luminance-based) colormap can
provide somewhere between 60 and 90 just-noticeable difference (JND) steps. They attempted
to build a linearized optimal color scale (LOCS) that offers a larger perceptual dynamic range
during visualization. Levkowitz and Herman showed that an LOCS with 32 values has a per-
ceived color-pair difference six times larger than a linear grey-scale colormap with 32 values
[17]. Some other possible color scales are non-linearized grey scale, heated object scale, rain-
bow scale, and linear optimized color scale.

Previous work reported in [5, 6, 7] showed that a random variation of luminance can inter-
fere with the identification of a boundary between two groups of differently colored elements.
Callaghan suggests that intensity is more important than hue to the low-level visual system
during boundary identification [5]. In practical terms, this suggests that our low-level visual
system “sees” luminance patterns first, and then hue patterns.

Figure 7 shows a radial sweep from a weather radar sensor, measuring the high spatial fre-
quency variation of reflected intensity (e.g., from thick clouds). The luminance-based colormap
being used offers a good representation of the minute details in the data [35].

4.3 Texture

Texture refers to the characteristic appearance of a surface having a tactile quality [40]. Texture
can be decomposed into a collection of fundamental perceptual properties. Researchers in
computer graphics have applied density, height, regularity, directionality, contrast, size, shape,
coarseness, and orientation to display information [15, 32, 33, 39]. Individual values of a data
attribute can be used to control one of the texture dimensions. The result is a texture pattern
that changes its visual appearance based on the underlying data within a dataset.

Height is not considered an “intrinsic textural cue”, but is one aspect of element size, that
is an important property of a texture pattern. Results from cognitive vision have shown that
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differences in height are detected preattentively by the low-level visual system [1, 42]. Results
from [22] suggest that height is best suited to represent quantitative data, and can support up
to five discrete values. Experimental results have shown that hue and luminance cause visual
interference with height [22]. In Figure 2, predicteduser ratingis mapped to the height of each
tower such that the taller the glyph, the higher theuser ratingand vice-versa.

Density is an important visual feature for performing texture segmentation and classifica-
tion [39]. Results from [22] suggest that density is best suited to represent low spatial frequency
ordinal data. Hue, luminance, and height cause visual interference with density [22].

The visual system differentiates orientation using a collection of perceptual direction cat-
egories. Some researchers believe only three categories of orientation exist: flat, tilted, and
upright. Wolfe suggests orientation might be divisible into four categories: steep, flat, left,
and right [49]. More recent work found that 2D orientation can be used to encode information
[48]; a difference of15◦ is sufficient to rapidly distinguish elements from one another. Based
on perceptual experiments, it was found that hue and luminance cause visual interference with
orientation [22]. In Figure 1,precipitationis mapped to orientation such that vertical strokes
represent little or no rainfall and horizontal strokes represent high rainfall.

Regularity refers to the uniformity of a texture element’s spatial position, and is a visual
feature that is commonly used to perform texture segmentation and classification in computer
vision algorithms [39]. In the human visual system, however, differences in regularity are
difficult to detect. Regularity can normally encode only binary information, and is best suited
to represent low spatial frequency data. Hue, luminance, height, and density all cause visual
interference with regularity [22].

4.4 Motion

Motion is a visual feature that possesses strong perceptual cues. Motion elicits “pop-out” ef-
fects in which moving objects can be searched in parallel by the visual system [43]. Motion
aids in the process of grouping elements and is effective at providing a general overview of
trends in data [4]. The human visual system can also perceive, track and predict movement.
Results have shown that motion detection does not deteriorate at the periphery. Motion com-
pares very favorably to color and shape if we are concerned with designing icons to attract a
user’s attention at the edge of a computer screen [2]. Motion comprises of different features
such as motion shape, frequency, amplitude, direction, phase, flicker, and velocity.

Flicker refers to a repeating on-off pattern applied to an image or an object, and is normally
measured as the frequency of repetitionF in cycles per second (cps). The rate at which suc-
cessive images need to be presented in order to perceive continuous motion is known as the
critical flicker frequency (CFF).F = 60 cps is an often-cited rule of thumb for the CFF, but this
number varies depending on the color, brightness, or size of the object being displayed, and
on its eccentricity (i.e., the distance in visual angle from the viewer’s current focal point to the
object). Huber et al. found that for rapid and accurate target detection, flicker must be coherent
and must have a cycle length greater than 120 milliseconds [21].

Direction of motion can be used in visualization to help discriminate between groups of
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elements with similar values. Differences in the direction of motion of glyphs provide cues to
help identify individual elements that differ from the neighboring background glyphs. Humans
can preattentively and simultaneously track up to five unrelated motion trajectories in the same
visual field [31]. Huber et al. found a target patch of moving glyphs can be rapidly and
accurately detected within a field of moving glyphs when the angular difference is greater than
20◦ [21].

The velocity that objects move with is a third property of motion that is rapidly detectable
by our visual system. van Doorn and Koenderink showed that higher initial velocities produce a
faster response to a change in the velocity [44]. This is due to the need for the target to traverse
a “critical distance” before it can be detected. Follow-on work by Mateeff et al. [24] showed
that for a baseline velocityV1 and a target velocityV2 = 2V1, approximately 100 milliseconds is
needed to see the velocity change fromV1 to V2 for slowV1 (1◦ per second) and approximately
50 milliseconds for fasterV1 (2◦ per second or higher). Huber et al. found that velocity of
motion must differ by at least0.43◦ of subtended visual angle in order to distinguish between
different velocities [21].

4.5 Display Resolution and Visual Acuity for Visual Features

Most visualization techniques assume that sufficient display resolution is available and our
visual acuity is adequate to complete the required analysis tasks. But, as established in the
previous sections, this may not be true. Thus, it is important to determine how many pixels are
needed for a visual feature to represent the values of a data attribute effectively, and how much
physical size is needed for our visual system to accurately identify and interpret the visual
feature. There has been little research to date in this area, particularly in the visualization
community. Thus, an important research opportunity is to find out how display resolution and
visual acuity affect the mapping of a data attribute to a particular visual feature on a given
display device.

5 Conclusions and Future Work

The desire to extract knowledge rapidly and efficiently from large, complex datasets motivates
the need for effective visualization techniques. This report suggests that a visualization tech-
nique must consider display resolution, physical size, and standard viewing distance in order
to maximize the utilization of a display’s capabilities in an effective and efficient manner. This
report also shows how display resolution and visual acuity can affect the expressiveness of a
visualization technique, and begins to characterize to what extent a given technique saturates
“visual bandwidth”.

Not much is known about the limits of resolution and acuity for visual features common in
visualization. Based on our current knowledge of visual features (hue, luminance, texture, and
motion), we plan to investigate how display resolution and visual acuity affect our ability to
recognize these features during visualization. We plan to design and run controlled experiments
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that will allow us to determine how many pixels are needed to distinguish different values for
a particular visual feature, and what visual resolution is required to “see” the feature. We
can then accumulate this knowledge and build a system that allows us to dynamically add or
remove information based on a display’s resolution properties, our visual abilities, and the type
and amount of data we are trying to visualize.

Results from the research described in this report will be used to: (1) investigate how dis-
play resolution, visual resolution, and field-of-view angle limit our ability to see different color,
texture, and motion properties; (2) construct perceptual display hierarchies that maximizes the
amount of information we can see for a given display environment; (3) combine our knowledge
of perception and display hierarchies to build a software system that assists users in creating
visualizations that are best-suited to their data, analysis tasks and viewing environment; and (4)
validate our theoretical findings using real-world application data. Our results will form guide-
lines on the use of color, texture, and motion across a broad range of display environments.
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