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Abstract

Nonphotorealistic rendering is a field in computer science in which scientists apply artistic
techniques to enhance computer graphics. This paper addresses the interrogatives what, how,
and why, about NPR. The discussion expands onwhat NPR is and what kinds of projects
are being done in NPR, specifically it focuses on three issues: two large problems in NPR,
simulating pen-and-ink illustration and simulating painting, and last the application of NPR
to visualization. Exploring these topics thoroughly provides some specific answers tohow
these effects are accomplished. Throughout the paper various motivations for using NPR are
revealed, including the application of NPR to visualization (as evidence ofwhy). Our lab
is interested in applying NPR techniques to visualization, so the paper concludes with some
conjecture on how to verify the efficacy of this goal.



1 Introduction

“Knowledge and techniques long used by artists are now being applied to computer graphics
to emphasize specific features of a scene, expose subtle attributes, and omit extraneous infor-
mation, (giving) rise to a new field. [GG01]” Gooch and Gooch are referring to the field of
nonphotorealistic rendering (NPR). As the name implies, scientists in NPR create algorithms
to display information in styles other than realism. Figure 1 gives a brief illustration of the
Goochs’ remark. In Figure 1b artistic enhancements were applied to the standard volume ren-
dering in Figures 1a, resulting in a more informative, nonphotorealistic image, revealing the
fibrous complexity of the tomato’s structure [RE01]. (Similar enhancement techniques applied
to medical imagery are discussed in Section 4).

[KP02]

(a) (b)

Figure 1: Volume visualizations of a tomato: (a) standard volume rendering; (b) rendering with silhouette and
boundary enhancements.

In general, the process of nonphotorealistic rendering can be thought of as having two
stages. First, some kind of input imagery is chosen. Second, the imagery is processed and
rendered in some artistic style. The diversity in NPR arises from the choices made in these
stages.

Photographic images may spring to mind immediately, as input imagery for drawing pro-
gram filters, such as embossing or charcoal sketching, which are, in fact, rudimentary NPR
systems. Some NPR systems take color photographs or grayscale images (made up of tones
of gray) as input, while others work on three-dimensional models or animations or video in-
put. The input for visualization systems, discussed in Section 4, are large sets of scientific
data. The input depends on the desired output of the program. “Jigsaw Image Mosaics,” for
example, takes as input monochromatic shapes and a database of small icons [KP02]. The
system tiles the shapes with icons of similar colors as shown in Figure 2. Creative input may
be required, depending on how interactive the system is. Though some systems are automated,
others are designed as artistic tools, providing an alternative to real canvases and paint brushes,
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for example, as in Haeberli’s “Paint by Numbers” system, described in Section 3, where users
can “paint” with a mouse [Hae90]. Alternative forms of user-interaction are being explored.
In one system eye-tracking records the user’s eye movements to determine how to abstract the
image. The image is painted with greatest detail where fixations gather [DS03] [SD02]. DAB
uses a haptic paintbrush device to allow the user to “paint” on a virtual canvas [BSMM01].

Figure 2: The Jigsaw Image Mosaic uses monochromatic containers and tiles them with small images of similar
colors: Left, the letters J, I, and M, are containers; Right, J, I, and M are tiled like a mosaic.

How the input is processed depends not only on the style of art being simulated, but on
whether the focus is on simulating the act of creating artwork, the physical behavior of the
media, or the visual characteristics of an artistic style. “Paint by Numbers” and the programs
described in section 3.1 fall into the first category, composing a collection of brush strokes
as an artist does. The second category refers to systems that model the physical properties
of the pencil, paper, paint, or whatever artistic materials are being simulated. For example,
Sousa and Buchanan created an elaborate system for simulating pencil drawing by studying
the microscopic interaction of pencil lead, blenders, erasers, and paper. Systems modeling
watercolor and oil paint are described in Section 3.3. Researchers simulating pen-and-ink
illustration began with the third approach, compiling a list of pen-and-ink illustration principles
based on literature on pen-and-ink [WS94] (see Section 2.1).

The examples in this paper come from three areas in NPR, simulating pen-and-ink illustra-
tion, simulating painting, and the application of NPR to visualization, the papers in these areas
are diverse collection of sources that facilitates discussion of the field of NPR and the topics
described above. A great deal of work has been done in both simulating pen-and-ink and paint-
ing, so we can study the problems they have solved; also, the systems are well-developed, so
they supply some impressive results. They also provide a basis to discuss the motivations for
nonphotorealistic rendering. Research in our lab has investigated the application of nonpho-
torealistic “painted” visualization. My focus here also reflects my interest in pursuing future
projects in this area.
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2 Pen-and-Ink Drawing

Figure 3: Hand drawn pen-and-ink illustration by artist Sarah Tateosian.

The illustration above shows the basic visual elements of pen-and-ink line drawing: out-
lining, shading, and texturing. Outlines are used judiciously and expressively and so may be
incomplete or imperfect. They often indicate an object’s shape rather than explicitly describ-
ing every detail. The thickness and direction of outlines may vary depending on the material’s
properties or the feeling they characterize. Discontinuities may occur in the outlines simply to
generate more interest. Since the ink itself doesn’t vary in tone, shading is a cumulative effect
of multiple strokes laid together. Hatching (loosely drawn patches of parallel lines), for exam-
ple, is a common shading technique in which darkness is directly proportional to the proximity
of the lines. I’m using the third term above, texturing, to describe the lines that indicate the
shapes and surface properties of objects. Textures could also be viewed as outlines on a finer
scale, as the lines outlining rocks add texture to the bridge in the drawing above or the lines on
the tree in the foreground outline the wrinkles on the trunk.

In certain applications, such as architectural drawing, medical textbooks, and instructional
manuals, pen-and-ink drawings are frequently preferred over photorealistic images. Architects
often employ a sketched first draft because it can convey the character of the design without
focusing on details [SS02]. Textbooks and manuals can use black and white images to avoid
reproduction artifacts that can be introduced by monitor and printing device color gamuts’
inconsistencies. Also, as [LS95] points out, a photograph of an engine is of little use to a
mechanic who is already looking at the real thing.

Rather than discussing related work chronologically, I have chosen to focus on some inter-
esting aspects of simulating pen-and-ink; papers are discussed in the context of their relevance
to the issues. Although some of the work is cumulative, the order in which it developed is not
as important as the problems they were solving. The following sections address how scien-
tists have approached simulating pen-and-ink in general (“Principles in Practice”), as well as
some more specific sub problems: simulating stroke textures, rescaling pen-and-ink images,

3



and simulating stippling, a style of pen-and-ink illustration. These topics provide the basis to
discuss the most interesting applications in this area.

2.1 Principles in Practice

A research group at the University of Washington made some of the earliest and most signif-
icant contributions to pen-and-ink simulation. They approached the problem as a student of
art might; they began by studying the principles of traditional pen-and-ink illustration. Then
they devised methods consistent with these principles. In one project they created a system that
takes polygonal models as input and renders them in pen-and-ink style (see Figures 4) [WS94].
One principle mentioned above is exhibited in this figure. Large areas of consistent texture in
Figure 4a are textured only sparingly, i.e., “indication” is used in Figure 4a. The system im-
plements indication by allowing the user to designate detail segments, drawn under the rim of
the roof, around the windows, etc. Then the image is drawn with attenuating detail as distance
from these line segments increases. Less is more here, not only because fewer strokes need to
be used, but the image is made more interesting (compare to Figure 4b in which each blade of
grass and each brick is drawn).

(a) (b)

Figure 4: Pen-and-ink illustrations of an architectural model: (a) the house drawn with “indication” (detail de-
creases as distance from the detail segments increases); (b) the same drawing without indication. Every brick and
blade of grass are drawn.

2.2 Stroke Textures

Generating stroke textures, sets of strokes which control the tone and add texture, is a funda-
mental subproblem in simulating pen-and-ink. Jodoin et al. focus on hatching and approach
the problem as a kind of texture synthesis [JEGPO02]. Given a sample hatching, a manually
drawn set of strokes, their system can generate a new set of strokes which is visually similar
to the sample. They use a statistical measure of similarity based on a subset of the previous
strokes.

The interactive drawing system of Salisbury et al. allows users to select from stored stroke
textures or to create them [SABS94]. The stored textures are simply a collection of images
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which includes each texture drawn in several tone values. Otherwise, the system allows the
user to add to this library by creating a new patch from stippling, parallel hatching, or curved
strokes.

Another system from the University of Washington uses “orientable textures” [SWHS97].
The system provides a set of stroke texture samples and the user chooses a stroke texture type
and a direction field for each region in a grayscale image. The user can edit the tone and
the direction field. The system adds strokes from the specified stroke texture set until the
desired tone is achieved. The tone is approximated by the system after each stroke is added
by comparing the tone image to a blurred version of the illustration pixel-by-pixel. Strokes are
positioned at points which have accumulated the least amount of their intended darkness, so
that shading occurs consistently. Strokes are drawn so that the control hull follows the target
direction field. This means that the curve itself may not pass through the target direction field,
but it is a close enough approximation. The raccoon in Figure 5 was created with this system.

Figure 5: A raccoon created with the orientable textures developed by Salisbury et al.

In [WS96] the authors expanded their system in [WS94] to not only take flat polygonal
models as input, but to illustrate free-form surfaces described parametrically. Their “controlled
density hatching” system allows them to control texture and tone simultaneously. Individual
strokes vary in width along their length based on the distance between the strokes when pro-
jected onto the two-dimensional image. This allows for control of tone, not only to enhance
the image, but also to avoid unexpected and undesired darkening where strokes grow close
together, like in Figure 6a. Figure 6b shows a sphere drawn with controlled density hatching
to correct the problem.
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(a) (b)

Figure 6: Pen-and-ink spheres: (a) undesired darkness appears where the strokes gather; (b) controlled density
hatching solves the problem.

2.3 Rescaling

Enlarging or shrinking images can result in undesired changes in tone and sharpness. In
[WS94], Winkenbach and Salesin address this issue by assigning a hierarchical structure to
textures, so that the amount of detail drawn varies with the size of the image. Lower priority
elements of a texture are not drawn when the image is small, so that the strokes do not become
too crowded and appear only dark instead of defining the object. Figure 7 shows a brick texture
drawn at different scales. The amount of texture drawn on the bricks decreases with the size
and only the brick outlines remain in the smallest image.

Figure 7: The system developed by Winkenbach and Salesin are made up of prioritized structures. Here the brick
textures vary as they are resized.

Salisbury et al. maintain the tone of a pen-and-ink drawing by storing the underlying
grayscale image, resizing this image, and drawing a new set of strokes [SALS96]. When
the resolution is changed or the image is enlarged, areas with sharp discontinuities can become
blurred. In the underlying grayscale image, pixels on the edge of contrasting areas may con-
tain an average of these areas’ grayscale values and hence the edge in the pen-and-ink image
becomes fuzzy as this area is enlarged. To preserve sharpness, a list of discontinuity edges that
mark sharp discontinuities in the image is created and the image is resampled. Tonal values are
determined for a pixel by inspecting its neighbors. Distant neighbors have less influence than
close ones. Distance is affected by the intervening discontinuity edges. Some neighbors may
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even be unreachable because of discontinuity edges and so will have no influence on the tone
for this pixel.

2.4 Stippling

Stippling is a style of pen-and-ink illustration which uses very few, if any, lines; instead, dots
define and shade objects. To avoid unintended patterns or tonal variations, stipple placement
should be locally irregular, though bunching and sparseness should be deliberate. These are
surprisingly difficult results to achieve by hand. Computer stippling simulation systems need
to determine placement and in some cases the size of the stipples.

The common struggle between speed and image quality arises. Adrian Secord describes
two methods; one that can take 20 minutes to produce high quality stipplings of grayscale
images; the other can stipple animations [Sec02]. The first method initially distributes a set
of stipple points. Then the Voronoi diagram partitions the space into cells, each containing
one stipple. The center of mass of each cell is then found. Finally, each stipple is moved to
the center of mass in its cell and the resulting arrangement of stipples is the stipple drawing.
The grayscale tone of the underlying region is used to calculate the centers of mass, so that the
stipples become tightly packed in darker areas and sparser in light areas. The plant in Figure 8
was created with this method. The second method pieces together patches of stipple samples.
The samples vary tone by varying stipple density and are selected to match the values of the
underlying grayscale image. This method achieves interactive rates, but the quality is lower
and frame-to-frame incoherence causes shimmering.

(a) (b)

Figure 8: Computer-generated stipple drawings: (a) plant stippled with Secord’s high quality method (20,000
stipples); (b) stippled volume visualization with interior enhancement and silhouette curves created by Lu et al.

The speed of point rendering makes stippling an attractive means to render volume infor-
mation. Grigoryan and Rheingans used multi-colored stippling, to show uncertainty on the
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surface of growing tumors [GR02]. This property is important for cancer researchers to see,
since the growth of tumors is not well understood. Sparsely placed points create visual fuzzi-
ness, conveying uncertainty intuitively. Lu et al. stipple-renders volumes, as well, using a
more traditional black and white pen-and-ink stippling where stipples are carefully placed and
sized to control the local and overall tone [LME+02]. Preprocessing distributes an initial set
of stipples and computes gradient properties. Then the volume is drawn with a subset of the
stipples in this pre-generated list to preserve frame-to-frame coherence. The number of stipples
per voxel is the product of the precomputed maximum number per voxel and the enhancement
factor. The size of the stipples in a voxel is the user-specified maximum size times the voxel
gradient’s magnitude. The enhancement factor is the product of several enhancement values:
the boundary and silhouette factor increases the number of stipples in these areas; the reso-
lution factor increases the stipples used as the image moves closer to the viewpoint; the use
of the distance factor causes more distant parts to contain fewer points; the use of interior en-
hancement causes areas further from the center to be more transparent; and finally, lighting
enhancements only allow stipples to be drawn in voxels oriented away from viewer. Silhouette
curves can also be added to sharpen the outlines and interior curves of objects. Figure 8 shows
some volumes rendered with some of these enhancements.

3 Painting

Haeberli presented the idea of using a list of paint strokes to create nonphotorealistic imagery,
in effect, simulating the traditional process of painting [Hae90]. His system takes a photo-
graphic source image or a 3-dimensional scene and allows the user to interactively paint the
scene by clicking to indicate stroke locations. Each click creates a stroke whose characteristics,
with the exception of color, are chosen by the user. A stroke is specified by its location, color,
shape or style, size, and direction. The system is called “Paint by Numbers” because the color
of the stroke is determined by the color of the underlying source image at that location. Stroke
styles include curved, pointillist, and polygonal. The mouse speed or the keyboard can be used
to control the stroke’s size. Stroke direction can be controlled by the user or by gradients. The
system provides enhancement techniques often used by artists such as increasing saturation,
exaggerating edges between dark and light areas by making dark areas darker and light areas
lighter, and adding noise to flat colored regions.

Haeberli’s work raises several questions about simulating painting; the sections below dis-
cuss how various scientists have addressed these questions:

1. How can the brush stroke composition paradigm be extended to produce more sophis-
ticated paintings, to require less user interaction, or to accept different forms of input
imagery? (Section 3.1)

2. How can the brush strokes be made more expressive or appear more realistic? (Sec-
tion 3.2)

3. What other approaches apart from composing lists of brush strokes, can be taken to
simulate painting? (Section 3.3 and Section 3.4)
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3.1 Brush Stroke Compositions

Haeberli’s work provided a starting point for many other painting systems which use stroke
lists and stroke attributes, position, color, shape, style, and size. Subsequent systems differ in
the manner in which these attributes are chosen and vary greatly in their results. They expand
on the basic idea he presented by exploring new ways to paint with less user-interaction, new
ways to make the strokes more expressive, and by allowing for different types of input, such as
animations and videos. Several such systems are discussed here.

Meier created painterly renderings of animation using lists of brush strokes [Mei96]. The
main challenge of nonphotorealisticly rendering animation is coherence, since painting strokes
should appear to be randomly distributed, but randomness in animation causes an undesirable
popping effect. Here a set of particles distributed on the surfaces of objects in the images deter-
mine the positions of the strokes. The system uses the geometry, surface attributes, and lighting
of a scene to determine the color, orientation, and size of each stroke. An image of transparency
values mapped onto the stroke determines the stroke style. The system allows the user to make
decisions about the lighting, color, and brush strokes characteristics, then the system positions
and draws the strokes automatically. The results are Impressionistic style paintings like the one
shown in Figure 9a. Here abstraction allows the image to portray haystacks without rendering
each thread of hay.

(a) (b)

Figure 9: Computer-generated paintings based on different types of input: (a) based on three-dimensional model
animations (by Meier); (b) based on video sequences (by Litwinowicz).

Litwinowicz describes a technique for “painting” video sequences in Impressionistic style
(see Figure 9b) [Lit97] . The system creates a list of strokes, storing position, color, orientation,
radius, and length attributes for each stroke, until the image is covered. Edge detection seeks
outlines in the image and strokes are clipped to conform to object shapes. Optical flow methods
are used to move strokes from frame to frame. In some areas strokes are pushed together,
causing overcrowding, which slows processing. Thus, some strokes are eliminated where their
centers grow too close together. Other regions can become too sparsely covered, as new visual
elements come into the scene so new strokes are added.

9



Hertzmann’s automated painting uses curved brush strokes applied in a series of layers
[Her98]. A rough rendition is painted first and layers with progressively finer detail are laid on
top, as artists sometimes paint undercoating to define the basic shapes of elements in the scene
and add finer detail in subsequent layers. Given a reference image and a set of brush radii, the
system paints one layer for each radius. The highest radius, which produces the coarsest image,
is used first. A Gaussian blurred version of the reference image is compared with the canvas.
Then strokes are placed in the current layer where the difference exceeds the approximation
threshold. The strokes are anti-aliased cubic B-splines whose control points are positioned by
the luminance gradients of the underlying image. A number of style parameters can be varied
to create different renderings of the same input image. The lizard in Figure 10a is painted in
Impressionistic style by using a large approximation threshold. Increasing the curvature filter
exaggerates the curvature of the strokes to create an Expressionistic style like in Figure 10b.
The color wash look in Figure 10c was created by increasing the paint opacity.

(a) (b) (c)

Figure 10: The lizard is painted in three styles with Hertzmann’s curved strokes: (a) Impressionist lizard; (b)
Expressionist lizard; (c) Color wash lizard.

Standing close to an oil painting hanging in a museum, you may notice that the surface
of the paint is not flat. Chunks of paint dry just as the brush left them when the strokes were
painted. These undulations in the paint catch the light and subtly add to the overall effect of
the image viewed from further away. Painting programs often simulate the texture of each in-
dividual stroke with a texture mapped to the surface of each stroke [Mei96], [Lit97], [Her98],
[GCS02]. In [Her02] Hertzmann described a method that improves on this technique, by sim-
ulating the effect of paint moving as new strokes are painted over existing strokes. The system
renders a set of curved brush strokes as described in [Her98]. Each stroke is given a texture
map, also considered the height map of the stroke; the grayscale values of the texture map are
used as height values (with black = zero height and lightest gray = highest). As the strokes are
laid, a height value is computed at each pixel of the stroke as the sum of the stroke’s height
value at that pixel and a fraction of the number of strokes already laid there. The resulting
height map for the image is then lit with Phong shading. Figures 11a-c show a painted version
of a photographic input image, a height field, and the resulting image.

Using the underlying source image values of the pixel at the center of the stroke is a sim-
ple approach to assigning the parameters of a brush stroke in a simulated painting. Shiraishi
and Yamaguchi describe a method which incorporates more information from the image by
considering the surrounding neighborhood, as well [SY99] [SY00]. The system uses an image
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(a) (b) (c)

Figure 11: Three steps in Hertzmann’s fast paint texture system: (a) paint the image; (b) create a height field
image; (c) bump-map the image and light to create the textured result shown here.

moment function in two contexts to calculate the parameters of a rectangle that approximates
an object in a grayscale image. First, it is used to calculate the size of a set of proposed brush
strokes. For each pixel in the input image, the system creates a grayscale difference image by
calculating the difference between the color of a square of the input image centered at that pixel
and a monochrome square of the color of that pixel. The lightest areas in the difference image
are closest in color to that pixel. The dimensions of a rectangular stroke that approximates the
shape of these areas are calculated by the image moment function. The collection of rectangles
are then used to calculate a set of possible stroke locations. The difference image is found at
each of these locations. Then at each of these locations, the image moment function is used
again to find a stroke and its parameters: length, width, orientation, and location (color is set
to that of the location used to generate it). This final stroke list is sorted by size and strokes
are drawn in order from largest to smallest, so that small strokes are on top, showing fine de-
tail. The size of the grayscale difference image, i.e., the size of the neighborhood to which
a point is compared, is an s-by-s square, where s is a user-selected variable that also controls
the maximum stroke size (See Figure 12a in which the dog is painted with s = 25 and 11048
strokes.)

Another way of taking a more global approach is described by Gooch et al. in [GCS02].
The system works by segmenting an input image into regions, as an artist might do with a
pencil, and finding the medial axes or backbones of the segments to determine how to paint
them. The strokes are textured B-spline curves or textured sets of quadrilaterals, depending on
the method used to approximate the medial axes. The system allows for underpainting to be
used and provides paint mixing between the layers (see Figure 12b).

3.2 Brush Strokes

The early systems above used a fairly rudimentary textured rectangular brush stroke, mostly
focusing on how to choose brush stroke attributes and how to compose the image with the list
of brush strokes, while ignoring the nuances of strokes which in real paintings are affected
by how much pressure the artist applies, how much paint is on the brush, and other factors.
The systems described below focus on the simulation of the brush strokes and addressing these
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(a) (b)

Figure 12: Dogs painted with two region-based methods: (a) image moment dog by Shiraishi and Yamaguchi with
maximum stroke size 25 and a total of 11048 strokes; (b) medial axes dog with a pink undercoating by Gooch et
al.

issues.
In [Str86], Strassmann describes a technique for simulating brush strokes of a style inspired

by a bokbotsu sumi-e, a Japanese painting technique. The style features scenes composed of
only a few brush strokes of black ink applied to light canvas (See Figure 13a). The system
allows a user to create grayscale brushstrokes by specifying control points and pressure values
at each point. Control points specify positions that affect the shape of the curve. Pressure
values represent how much pressure the painter is applying to the brush as it moves through
the stroke and so a pressure value controls the width of the stroke at that point. The system is
object-oriented with brush, bristle, stroke, dip, and paper objects. After each stroke is drawn
the virtual brush is dipped back in the paint and the dip object stores the amount of paint on
the brush. The amount of ink on the bristles decreases as the stroke is drawn which can cause
the tone to vary across the stroke. To render the stroke, the system uses a cubic B-spline curve
which approximates the position values and interpolates the pressure values along the curve.
Quadrilaterals are computed along the curve’s spline and these are then anti-aliased. Various
effects can be created by varying the parameters such as the grayscale value across the stroke,
the amount of ink each bristle contains, and the pressure, which can vary bristle contact or
spread the bristles. Texture mappings can also be applied, creating various types of effects.
Rendering each stroke takes one to two minutes.

In 1991, Pham created another Sumi-e brush stroke system designed to be more intuitive
for the user [Pha91]. Instead of specifying control points, most of which the curve does not
pass through, the user chooses knots, which the curve does pass through. Usually, control
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points are used to specify B-spline curves, since the equations that define the curves depend
on these points. Pham uses an inversion algorithm to convert the knots into control points for
a curve. The system then draws a stroke centered about this curve by drawing quadrilaterals
between offset curves until the user specified thickness is achieved. Transformations can be
performed on the control points to create animations.

The Hsu and Lee created “skeletal strokes” [HL94], so called because a basic stroke unit
is any arbitrary image which can be deformed by manipulating the backbone and thickness,
shown in Figure 13c where the reference image is a fish and the backbone is curved, bent,
and twisted. The strokes are expressive, because anchors can be affixed to different parts
of the stroke, so that when the backbone is manipulated, some portions of the stroke stretch
independently. Also, strokes can consist of substrokes. The cartoon in Figure 13b was created
with skeletal strokes.

(a) (b)

(c)

Figure 13: Images from two brush stroke programs: (a) Sumi-e style shrimp painting by Strassmann; (b) cartoon
style drawing by Hsu and Lee using skeletal strokes; (c) a fish skeletal stroke and its backbone (in red) on the left
and deformed using the backbone in the other images.

3.3 Physical Models

By composing collections of brush strokes, Haeberli and the scientists cited in Section 3.1
approach simulation as an artist might. Alternatively, some scientists address the problem by
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approximating the physical properties of the painting materials such as watercolor paint and
paper as described in the first paragraph below and oil paint in the second.

Curtis et al. took this approach to simulate watercolor painting by modeling watercolor
paper and the flow and interaction of multiple glazes of pigment mixed with water [CAS+97].
They studied the makeup of watercolor paint and the techniques that watercolor artists use to
create a model consisting of three layers: one inside the paper, called the “capillary layer,” one
just on top of the paper called the “pigment-deposition layer,” and one just above the surface of
the paper, the “shallow-water layer.” The simulations are achieved by modeling the movement
of water and pigment in the shallow-water layer and the transfer of pigment to the deposition
and capillary layers. A variety of effects can be achieved with watercolor paint, depending
on the wetness of the paper, how much pigment is on the brush, the composition of the paint,
and other factors. Flow effects, can be seen on the pear, for example where, wet green paint
was virtually applied to wet yellow paint already on the paper. Wet-in-wet makes the paint
bleed. Figure 14a was created by their automatic watercolorization system. Another effect,
edge darkening can be seen in the real watercolor in Figure 14b where a wet brush was applied
to dry paint to create the dark edges on the potato.

(a) (b)

Figure 14: Watercolor examples (a) automatic watercolorization (by Curtis et al.); (b) real watercolor created by
Laura Tateosian.

Cockshott et al. model oil painting with three components: paint particles, an intelligent
canvas, and a painting engine [CPE92], [Coc91]. Paint particles have attributes such as color
and concentration. The canvas is a 2-dimensional array of cells which hold paint, like an egg
carton. The cells are so-called because the ideas of cellular automata, large collections of
finite automata, are the basis for the canvas. Each cell in the canvas has information about its
attributes, such as its volume, its absorbency, and how much paint it contains. Since oil painting
is often done on a canvas propped on an easel, gravity affects the outcome. In this system, if
a cell is full, paint may flow from that cell to another. Which cell it flows into depends on
that cell’s preferred direction of flow. The paint engine controls the interaction between the
paint particles and the canvas. The system deposits paint particles onto the canvas as a brush
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is moved across it. The results are somewhat unpredictable which is considered serendipitous,
since accidents are an aspect of real painting.

3.4 Texture Synthesis

Texture can be perceived at different levels in a painting. Each of the following could be
thought of as a texture in itself: the ridges left by a paint brush in the paint on a single brush
stroke; the blades of grass painted in a field in a painting; or even, the entire painting itself. Tex-
ture synthesis is traditionally used to cover surfaces in repeating patterns (e.g., bricks, gravel).
I’ll begin discussing how scientists apply texture synthesis to simulation with the most intuitive
of the three interpretations of textures described above, the texture on brush strokes, and follow
with examples of the others.

Haeberli’s “Paint by Numbers” system and the systems in Section 3.1 above use a texture
mapped rectangle to simulate a brush stroke footprint. Haeberli and Segal proposed the use
of texture maps as a fundamental drawing primitive and use texture maps to create air-brush
strokes [HS93]. The article suggests that texture mapping can be used to create any conceivable
brush stroke, even multi-colored ones.

Figure 15: The texture in the sky, sea, and grass was generated using texture spectrums. The texture on the heads
was created using Lewis’ method for pre-existing texture.

A system that would be appropriate for applying the grass texture in the field is described
by Lewis (in fact, see the grass texture in Figure 15) [Lew84]. The system is based on the fact
that each texture has a corresponding frequency domain and the spectrum which visualizes
the frequency domain is unique. An expression representing a texture can be converted to an
expression representing its frequency domain using a Fourier transform and vice versa using
an inverse Fourier transform. The author paints a spectrum and applies an inverse Fourier
transform. The resulting texture sample convolved with sparse white noise produces a texture
field. The convolution method can also be applied to a pre-existing texture to generate a random
texture field. In order to do so, a window of the sample must be chosen so that it resembles the
result of an inverse Fourier transform on a spectrum. To design a texture the user applies one of
the methods above and specifies parameters of the noise. The textures can then be blended with
the color or texture already on the surface. With some experience the user can create appealing
paintings. The sky and hillside in Figure 15 textured with the spectrum method and the stone
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heads were textured with pre-existing textures (as seen on the left head, discontinuities can
occur using this method).

Figure 16: Hertzmann’s image analogy system created B’ based on B and the relationship between A and A’, so
that A is to A as B is to B’.

Hertzmann et al. view an entire painting as a texture [HJO+01]. Their system considers the
relationship between an image and any filtered version of the image as a texturing. The driving
concept is called an “image analogy”, because given images A, A’, and B, where A’ is a filtered
version of A, the system can generate B’ such that A is to A’ as B is to B’. For example, in
Figure 16 the system was given A, a three-dimensional model and A’, a watercolorization of A,
and the photograph B, and it generated the watercolor version of B, B’. The system works by
first creating different resolution versions of A, A’, and B. Each pixel contains several channels
of information, including RGB values and luminance, which are used in pixel comparison.
The channel used in the comparisons depends on the style of filtering being simulated. At each
level of resolution, the system takes images A, A’, and B and the current version of B’ and
finds the pixel in the source pair that best matches the pixel being synthesized by inspecting its
existing neighbors, the corresponding pixel in B’ and that pixel’s neighbors. Though a devoted
system may be capable of generating an individual style more effectively, the image analogy
is a general model capable of simulating oil painting, watercolor painting, traditional texture
synthesis, embossing, or any arbitrary filter.

4 Nonphotorealistic Visualization

Visualization is an area in computer graphics, where scientists create images to represent col-
lections of data. Challenges include choosing salient and compatible visual features and de-
vising effective mappings from data attributes to visual features. Simulating artwork can be
thought of as a kind of visualization, where a source image or model is being visualized in
some stylized fashion. But scientific visualization is mostly concerned with visualizing large
multivariate scientific datasets to facilitate analysis.

Scientists in visualization have begun using ideas from the field of nonphotorealistic ren-
dering to enhance visualizations or to inspire new visualization techniques, creating nonpho-
torealistic visualizations (NPV). Artistic techniques, such as using abstraction to eliminate
unimportant distractions, and sharpening details to draw attention to important areas, can help
to convey information more effectively. Also, application of artist techniques may create more
aesthetically pleasing images which may engage the viewer’s attention and encourage extended
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exploration. To develop their visualizations, some scientists are turning to literature on fine arts
techniques as well as nonphotorealistic rendering work or even visiting art galleries to observe
master artwork.

David Laidlaw describes his observations from a field trip with his students to a gallery in
[Lai01]. He remarks that paintings offer information at multiple scales; i.e., viewing painting
from different distances yields different understanding at each viewpoint. A painting by Van
Gogh, for example, when viewed from afar, appears as one overall texture, but closer view-
points reveal the nuances of each brush stroke. He also notes that time has an affect on the
viewer’s perception of painting. Some features are obvious immediately, while other aspects
may become apparent upon sustained observation. Laidlaw et al. applied artistic techniques
to develop new mappings from data attributes to visual features. Examples are shown in Fig-
ures 17 and 18 and described below.

Figure 17 is the visualization of a mouse spinal cord. Laidlaw et al. apply the idea of
multi-scale paintings to visualization [LAK+98]. From a distance, a glance at the image gives
the impression of a butterfly shape in the middle, surrounded by a darker area. The interior is
the gray brain matter and the surrounding area is the white matter. On closer inspection, some
of the elliptical shapes have a striped texture, a feature mapped to the rate of diffusion. To
scientists studying the effects of Encephalomyelitis, a disease which attacks the white matter,
the differentiation between white and gray matter is important and the visualization of multiple
tensor image attributes in the same image can help them understand the relationship between
these factors and the progress of the disease. The authors use the analogy of underpainting and
brush strokes. The underpainting is a luminance image showing the overall structure of the
anatomy. The brush strokes are “painted” on top of this and the visual features such as shape,
color, transparency, orientation, and texture vary, just as in the painting programs described
above. But here the visual features are representing the diffusion tensor data.

The brush stroke and underpainting analogies are also employed by Kirby, Marmanis, and
Laidlaw to create the flow visualization shown in Figure 18 [KML99]. The image visualizes
six data values at each point of an experimental two-dimensional flow past an airfoil. First a
gray primer covers the surface. Then an underpainting, ranging from blue to yellow shows
clockwise or counter clockwise vorticity (the rotation component of the flow). A layer of el-
liptical brush strokes with varying sizes and orientations is mapped to the deformation rate and
direction. Transparency and texture of the ellipses both show the vorticity magnitude. Finally,
a layer of arrow-shaped brush strokes are sized and directed to represent velocity magnitude
and direction. The mapping is chosen to display velocity and vorticity prominently, while still
showing deformation of the fluid elements simultaneously. In other words, the visualizations
focus attention with visual cues, as an artist might do in a painting.

Interrante proposes another artistic approach to creating visualizations by employing the
appeal of natural textures, such as weaving honey combs and woven cloth [Int00]. Interrante
observes that natural textures lend themselves to displaying multiple attributes, because of
their intrinsic variety, their visual appeal, and how humans receive them with less stress than
other more traditional texture visualization patterns. Figure 19, a prototype example created by
Interrante, visualizes US agricultural data with a weaving texture, a pebble texture, and color.

Skog et al. are focusing on creating visualizations to be used by the general public to display
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Figure 17: Diffusion tensor data from a healthy mouse spinal cord visualization from Laidlaw et al., visualizing
anatomical image (underpainting lightness), ratio of largest to smallest eigenvalue (stroke length and width and
transparency), principle direction in the horizontal plane (stroke direction), principle direction in the vertical plane
(stroke red saturation), and magnitude diffusion rate (stroke texture frequency).

information in public places [SLH03]. The visualizations where inspired by the painting style
of Dutch artist, Piet Mondrian, probably chosen for its sleek simplicity. As seen in Figure 20
the basic design uses blocks of color and lines to break up the canvas. Several applications were
tested, including email, world weather, local forecast, and bus traffic. In the bus traffic example,
shown in Figure 20, each bus was represented by a colored square. The position, size, and
color of each square are mapped to bus schedule information. User studies indicated that the
mappings may need to be revised, but the fundamental idea met with approval. Though users
need to learn the mapping initially, as an alternative to the traditional timetable, visualizations
such as this may more directly address users’ demands for “information at a glance,” as one
user put it.

A volume visualization example was discussed in Section 2.4 that used a stippling tech-
nique. Rheingens and Ebert demonstrate another application of NPR to volume visualization.
In their work we see that applying artistic techniques to volume visualization can be a very
effective means of enhancing images so that various aspects can be discerned more readily
[ER00] [RE01]. The result of mapping data values of a CT scan of an abdomen with a standard
transfer function are shown in Figure 21a. Silhouette and boundary enhancements achieved by
varying opacity depending on gradient magnitude, as in Figure 21b reveal the internal structure
of the organs. Another effect created by decreasing the opacity of features oriented towards the
viewer creates an outline sketch of the structure, seen in Figure 21c. Regional enhancement
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Figure 18: Experimental flow past an airfoil visualization from Kirby et al. visualizing velocity ( arrow direction),
speed (arrow area), vorticity (underpainting/ellipse color (blue=cw, yellow=ccw) and ellipse texture contrast),
diffusion rate (log(ellipse radii)), divergence (ellipse area), and shear (ellipse eccentricity).

Figure 19: Interrante’s agricultural map shows farms as a percentage of land (weaving texture), percent change in
number of farms (pebble texture), average age of farm operators (color).

draws attention to the liver in Figure 21d.
In our lab we are also interested in how applying artistic techniques can enhance our visu-

alizations [HETR04]. We created visualizations with visual features based on characteristics
of Impressionistic artwork. In the resulting images the visual features of texture mapped brush
strokes (size, orientation, and color) are mapped to attributes of large datasets. The place-
ment of the strokes (coverage) is also based on dataset information. In Figure 22 a large
multi-dimensional weather dataset is visualized with this system. In this image temperature is
mapped to color (dark blue to bright pink for cold to hot), wind speed is mapped to coverage
(low to high coverage for weak to strong), pressure is mapped to stroke size (small to large for
low to high), wet day frequency is mapped to orientation (upright to flat for light to heavy),
and precipitation is mapped to bright highlight strokes on a top layer. Studies showed that the
visual features we derived from artistic techniques correspond to ones detected by the low-level
human visual system, an encouraging sign for further research in applying artist techniques to
visualization.
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Figure 20: Contemporary art style display for public space (by Skog et al). Here each of the four colored squares
represents a bus.

(a) (b) (c) (d)

Figure 21: Abdominal CT scans: (a) standard CT visualization; (b) silhouette and boundary enhancements; (c)
colored outline sketch techniques; (d) regional enhancement centered on the liver.

5 Conclusions

This survey of NPR demonstrates two general lessons about NPR. First, NPR has a myriad
of potential uses. Why not just scan a real painting if artistic digital images are needed? The
obvious answer (not everyone can create his own real artwork or come by artwork freely) is not
the only one. This survey has described some systems that are designed to be used by artists,
providing a new alternative tool for creative expression. Also, the less interactive systems offer
an opportunity for less artistically inclined users to produce creative effects and be exposed to
a creative realm that they might otherwise avoid. Making artistic images easy to create and
share may increase society’s creative literacy, and improves individuals’ intellectual ability to
operate in analytical and creative realms simultaneously. Finally, Section 4 provided one of the
most concrete and compelling motivations for continued research in NPR: NPR may provide
improved alternative visualization techniques.

Second, NPR is not as easy as it looks. Because artwork often simplifies and abstracts its
subjects, a well-executed piece of artwork may lead to the assumption that because it looks
harmonious and clean, the process of creating it was simple as well. A good artist makes it
look simple. The same might be said of sophisticated nonphotorealistic rendering. But the
complexity of the algorithms described in this paper contradicts this notion. A great deal of
work goes into achieving an artistic feel, perhaps because some of the beauty and authenticity
of artwork comes from imprecision and computers are relentlessly precise.

Musing on the future of NPR, an interesting implication is the resurgence of an intermin-
gling of art and science. This may not be a new renaissance, but it seems that the influx of ideas
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Figure 22: A visualization of January weather conditions in easter US, visualizing temperature with color (dark
blue to bright pink for cold to hot), wind speed with coverage (low to high coverage for weak to strong), pressure
with stroke size (small to large for low to high), wet day frequency with orientation (upright to flat for light to
heavy), and precipitation with bright highlight strokes on a top layer.

from the artistic domains may prove to be a fertile source for understanding and invention in
NPR, visualization, and possibly even in other areas of computer science. In the Renaissance,
Leonardo Da Vinci possessed an understanding of both science and art and this seemed to im-
prove his abilities in both; his understanding of anatomy, for example, enhanced his drawing
abilities and visa versa.

As new artistic media and new uses of old media are discovered, new NPR techniques
may follow. For example, contemporary artist, Andy Goldsworthy, creates stunning works of
art from natural objects. As mentioned in Section 4, research is already being conducted on
using natural textures in visualization. Natural textures and imagery, like Goldsworthy’s, might
inspire innovative styles in which NPR techniques are partnered with natural phenomenon
simulation.

Alternatively, we may view NPR and NPV as a means of discovering new artistic possi-
bilities. Generating images with computers opens the possibility of diverging from imitation
and creating new forms of artwork not yet explored or perhaps not even possible with real
materials because of physical limitations. Cockshot’s painting model, for example, described
in Section 3.3 allows for specification of different gravity directions on the same canvas. So
strokes can be applied to two cells and the paint will run in two directions simultaneously. Free
from the constraints of the physical world, the creative possibilities are boundless. Meanwhile,
nonphotorealistic visualizations demonstrate the influence of art on visualization. Visualization
may contribute to art the realm, as well. Work by contemporary artist Mark Lombardi, “Con-
spiracy Art,” consists of large charts visualizing the relationships between currents events, such
as the links between global finance and international terrorism. In summary, the intermingling
of art and NPR or NPV seems to result in a symbiotic relationship.

In our lab we are interested in pursuing some of the open questions on the relationship
between art and visualization. The work described in Section 4 has produced some appealing
images and expanded the visual feature vocabulary of the visualization community. Our lab
has conducted some studies that support the effectiveness of the visualizations we’ve created,
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as compared to traditional means of presenting this information. In comparison to a traditional
weather map, a visualization like the one in Figure 22 was as effective and more effective in
some measures. More studies are needed to compare the effectiveness of these visualizations
to traditional glyph-based visualizations. Assuming that these prove to be equally accessi-
ble, in the sense that viewers can use them to detect answers to specific questions about the
data accurately and efficiently with either visualization, some more interesting questions still
remain.

Work in NPR is motivated by the underlying premise that artistic images have advan-
tages over photorealistic images in some circumstances. This leads to the question: Does
this premise extrapolate to the realm of visualization? Specifically, do nonphotorealistic visu-
alizations have the advantages over traditional visualizations that we intuitively expect? For
example, do they encourage extended exploration, enabling discovery? In fact, this may be a
good starting point, since it is readily quantifiable. Then, if the answer is yes, we can follow
the path of existing and future NPR research to make our images even more appealing. In our
visualizations thus far we have used individually textured rectangles. Two obvious next steps
could be using curved strokes and applying Hertzmann’s method to create a more convincing
oil paint-like overall texture [Her02]. If, on the other hand, the answer is no, we could pursue
one of two possible avenues: 1) We could develop different nonphotorealistic visualization
methods and iterate again. Do these methods have the same results? If so, we may begin to
believe that the hypothesis was invalid and extended attendance is not an advantage of non-
photorealistic visualizations. 2) Otherwise, we might change our focus and ask, if there are
other possible advantages of nonphotorealistic visualizations. This report began by making the
point that scientists in NPR observe that artistic images have the capacity to “emphasize spe-
cific features of a scene, expose subtle attributes, and omit extraneous information. [GG01]”
Intuitively, this application of abstraction and focus on detail could enhance visualizations of
large datasets. An interesting study might involve a comparison of viewers’ eye-movements
when viewing the visualizations. We could determine where and when fixations occur on a
nonphotorealistic visualization versus a traditional glyph-based visualization.

Of course, other important questions may arise as these questions are being answered. Re-
gardless of whether or not the answers to any of these questions are affirmative, they will
contribute to the body of knowledge in the visualization community and perhaps in the non-
photorealistic rendering community, as well.
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