
Scientific visualization represents information as
images that let us explore, discover, analyze, and

validate large collections of data. Much research in this
area is dedicated to designing effective visualizations
that support specific analysis needs. Recently, though,
we’ve considered visualizations from another angle.
We’ve started asking, Are visualizations beautiful? Can
we consider visualizations works of art?

You might expect answers to these questions to vary
widely depending on an individual’s interpretation of
what it means to be artistic. We believe that the issues of
effectiveness and aesthetics may not be as independent
as they seem initially. We can learn much from studying
two related disciplines—human psychophysics and art
theory and history. Human psychophysics teaches us
how we see the world around us. Art history shows us
how artistic masters capture our attention by designing
works that evoke an emotional response. The common
interest in visual attention provides an important bridge
between these domains. We’re using this bridge to pro-
duce effective and engaging visualizations, and we’d like
to share some of the lessons we’ve learned along the way.

Multidimensional visualization
Through our lab work, we’ve studied various issues in

scientific visualization for much of the last 10 years. A
large part of our effort focused on multidimensional visu-
alization, the need to visualize multiple layers of over-
lapping information simultaneously in a common display
or image. We often divide this problem into two steps: 

� the design of a data-feature mapping M, a function
that defines visual features (such as color, texture, or
motion) to represent the data and 

� an analysis of a viewer’s interpretation of the images
M produces.

An effective M generates visualizations that let viewers
rapidly, accurately, and effortlessly explore their data.

One promising technique we discovered is using
results from human perception to predict the perfor-
mance of a particular M. The low-level visual system
identifies certain properties of what we see very quick-
ly, often in only a few tenths of a second or less. Perhaps
more importantly, this ability is display-size insensitive,
so visual tasks are completed in a fixed length of time

that’s independent of the amount of information being
displayed. Obviously, these findings are attractive in a
multidimensional visualization context. We can com-
bine different visual features to represent multiple data
attributes and pack large numbers of multidimension-
al data elements into an image. A viewer then rapidly
analyzes sequences of images in a movie-like fashion.

Figure 1 shows two example visualizations of multi-
dimensional weather data. We constructed the first
image by taking traditional visualizations of each
attribute, then compositing them. Hue represents tem-
perature (yellow for hot, green for cold), luminance rep-
resents pressure (bright for high, dark for low), directed
contours represent wind direction, and Doppler radar
traces represent precipitation. We built the second
image using simulated brush strokes that vary their per-
ceptual color and texture properties to visualize the
data. Here, color represents temperature (bright pink
for hot, dark green for cold), density represents pres-
sure (denser for lower pressure), stroke orientation rep-
resents wind direction, and size represents precipitation
(larger strokes for more rainfall). Although viewers
often gravitate toward the first image because of its
familiarity, any attempt to perform real analysis tasks
leads to a rapid appreciation of the careful selection of
colors and textures in the second image. Our experi-
ments showed that viewers prefer the second image for
the vast majority of the tasks we tested.

Using perceptual guidelines can dramatically increase
the amount of information we can visualize. We can’t
take advantage of these strengths with an ad-hoc choice
of M, however. Certain combinations of visual features
actively mask information by interfering with our abil-
ity to see an image’s important properties. A key goal,
therefore, is to build guidelines on designing effective
visualizations and to present these findings in a way that
makes them accessible to other visualization researchers
and practitioners.

During the last year, we asked ourselves, How can we
make our visualizations engaging or aesthetically pleas-
ing? Although this issue has only recently received atten-
tion in the visualization community, we feel it’s an
important factor worthy of study. An image regarded as
interesting or beautiful can encourage viewers to study
it in detail. We might use stylistic techniques that capture
and focus attention on certain areas of a painting to
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highlight important or unexpected
properties in the data. We expect the
lessons learned from studying the
work of master painters to have a
significant impact on the quality of
visualizations we produce.

Visual perception
At first glance, the areas of per-

ception and painting might appear
completely independent of one
another. However, we found an
important overlap between the
brush style properties in Impres-
sionist painting and the fundamen-
tal visual features detected by the
low-level visual system. This corre-
spondence between low-level visu-
al features and painterly styles is
critical for our work, because it lets
us design effective and aesthetic
visualizations.

One of the most important
lessons of the past 25 years of
research in psychophysics is that
human vision doesn’t resemble the
relatively faithful and largely passive
process of modern photography.
The goal of human vision isn’t to cre-
ate a replica or image of the seen
world in our heads. A much better
metaphor for vision is that of a
dynamic and ongoing construction project, where the
products being built are short-lived models of the exter-
nal world that are specifically appropriate for the view-
er’s current visually guided tasks. It would appear that
humans don’t have general-purpose vision. What we see
when confronted with a new scene depends as much on
our goals and expectations as it does on the array of light
that bombards our eyes.

Among the research findings responsible for this
altered view of seeing is a greater appreciation of the
following:

� Detailed form and color vision is only possible for a
tiny window of several degrees of arc surrounding
your current gaze location. Seeing beyond the single
glance therefore requires a time-consuming series of
eye movements.

� Eye movements required for seeing a whole scene—
such as the 180-degree view we often assume we
have—are discrete. Our eyes must make many move-
ments to see the detail in a large scene and we gain
almost no visual information during an eye move-
ment itself.

� Memory for information in one glance to the next is
extremely limited. At most, we can successfully mon-
itor the details from only three or four objects between
glances. Often perception is limited to only a single
object at a time. What we see therefore depends crit-
ically on which object(s) in a scene we’re looking for
and attending to.

� Human vision is designed to capitalize on the assump-
tion that the world is generally a quiet place, so we
only register differences. Objects that are different
from their surroundings, or that change or move, draw
attention to themselves because of the difference sig-
nals that emanate from these visual field locations.

� Few basic visual features exist that we can use to guide
attention. These features include differences in the
first order properties of luminance and hue and the
second-order properties of orientation, texture, and
motion. Effective third-order properties are limited
to simple properties of shape such as length, area, and
convexity.

We can illustrate the reality of each of these findings
through the so-called change blindness that affects us
all.1 It involves a task similar to a game that has amused
children reading comic strips for many years. Try to find
the difference between the two pictures in Figure 2 (next
page). (Hint: look at the bushes immediately behind the
Sphinx.) Many viewers have difficulty seeing any dif-
ference and often have to be coached to look carefully to
find it. Once they’ve found it, they realize that the dif-
ference isn’t subtle. Change blindness isn’t a failure to
see because of limited visual acuity; it’s a failure based
on inappropriate attentional guidance. Some parts of
the eye and the brain are clearly responding differently
to the two pictures. Yet, this doesn’t become part of our
visual experience until we focus our attention directly
on the objects that differ.
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1 Two exam-
ples of visualiz-
ing weather
conditions: 
(a) traditional
visualizations
for each
attribute com-
posited into a
single image
and (b) simulat-
ed brush strokes
that vary their
color and tex-
ture to visualize
the data.

(a)

(b)



Harnessing human vision effectively for data visual-
ization purposes therefore requires that we construct
displays that draw attention to their important parts.
Because the displays are typically novel, we can’t draw
on the expectations that might accompany viewing a
familiar scene. Rather, we must rely on an effective map-
ping between data values and features, so that differ-
ences in the visual features draw the eyes—and more
importantly, the mind—on their own. Luring the view-
er’s eyes to a particular object or location in the scene is
the first step in having the viewer form a mental repre-
sentation of that part of the scene that may outlast the
next glance or scene that comes into view.

Nonphotorealistic visualization
Our interest in artistic visualizations naturally led us

to explore in two directions: nonphotorealistic render-
ing in computer graphics and art history and art theory
discussions of known painterly styles.

Nonphtorealistic rendering converts pictures or 3D
geometric scenes into nonphotorealistic images. Rather
than trying to generate results that are indistinguish-
able from photographs of an equivalent scene (for exam-
ple, photorealistic rendering), nonphotorealistic
techniques draw their inspiration from artistic works
(see Figure 3) to produce pen-and-ink sketches; cartoon
cels; or paintings that simulate pencil and charcoal,
watercolor, and oil-based brush strokes.2 The proper use
of these strokes results in images that guide the eye
much more effectively than realistic photographs, in
part because artists can make large differences in visu-

al properties coincide with scene locations that they
wish to have the viewer spend the most time examin-
ing. Some visualization researchers have already start-
ed using these ideas as inspiration for painterly
visualization techniques.3,4 We’re focusing on methods
that use collections of simulated brush strokes to pro-
duce a nonphotorealistic image. We plan to visualize a
multidimensional data element with one or more brush
strokes, where the attribute values embedded in the ele-
ment control the stroke’s visual properties.

Our study of painterly styles from art history was ini-
tially restricted to the Impressionist movement. (This
term was attached to a small group of French artists—
initially including Monet, Dégas, Manet, Renoir, and
Pissarro, and later Cézanne, Sisley, and Van Gogh,
among others—who broke from the traditional schools
of the time to approach painting from a new perspec-
tive.) Our decision to study the Impressionists was moti-
vated in part by a need to narrow our initial focus to a
single painting style; in part by the Impressionists’ care-
ful study of color, light, and objects in their paintings;
and in part by a personal appreciation of these artists.
Properties of hue, luminance, and lighting were explic-
itly controlled and even studied in a scientific fashion
by some Impressionists.5 Other distinctive examples of
the artists’ painterly styles include the path of the brush
strokes (such as straight or curved), their length and
density, the brush used (which affected the strokes’
coarseness), and the weight of paint applied to each
stroke.

We observed that many of the styles we discovered
had a close correspondence to visual features from our
perceptual visualizations. For example, color and light-
ing in Impressionism have a direct relationship to the
use of hue and luminance in visualization. Other styles
like path, density, and length have partners like orien-
tation, contrast, and size in perception. Taking this into
account, we used the following strategy to produce an
effective and aesthetic visualization:

� Produce a data-feature mapping M that uses the per-
ceptual color and texture patterns that best represent
a particular dataset and associated analysis tasks.

� Swap each visual feature in M with its corresponding
painterly style.
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2 An example
of change
blindness, the
inability to
quickly identify
significant
differences
across separate
views of a com-
mon scene. Try
to identify the
difference
between 
the two pho-
tographs. C
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3 A close-up
view of an oil
painting that
demonstrates
various stroke
styles, such as
color, path, size,
and density. 
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� M now defines a mapping from
data to painterly styles that con-
trols the visual appearance of com-
puter-generated brush strokes;
apply this mapping to produce a
painted representation of the
underlying dataset.

This strategy successfully gener-
ated painterly visualizations of mul-
tidimensional data. However, we
were still left to wonder if our visual-
izations were effective or aesthetic.

Effectiveness
The guidelines we use to build our perceptual visual-

izations come from psychophysical experiments6 that
measure the absolute performance of different visual
features, and the interactions that occur between them.
We conducted a similar set of experiments but with sim-
ulated brush strokes substituted for the original per-
ceptual glyphs. This produced painterly images with
strokes that varied in their color, orientation, density,
and regularity of placement.

Figure 4 shows examples from the experiments we
ran. Half of the displays contained a randomly located
group of target strokes defined by a difference in a tar-
get style (such as color in Figure 4a and orientation in
Figure 4b). Some displays randomly varied a back-
ground style (such as orientation during the search for
a color target in Figure 4a, and color during the search
for an orientation target in Figure 4b). This let us test
for visual interference, a situation where variations in a
background style inhibit a viewer’s ability to identify the
target. We showed each display to a viewer for 200 mil-
liseconds, after which we cleared the screen. We then
asked the viewer to answer whether a target group of
strokes was present or absent in the display.

Our analysis of viewer accuracy mirrored the findings
from our original visual perception experiments (see
Healey et al.6 for a complete explanation of these
results). Salient features in our original perceptual visu-
alizations were salient in the painterly images.
Interference patterns were also identical. This suggests
we can use our existing rules of perception to build
painterly representations to effectively visualize values
in an underlying dataset. It also suggests that any new
guidelines we discover could be extended to our painter-
ly environment.

Aesthetics
Although our initial experiments showed that our

painterly visualizations are effective, we still had no evi-
dence of their aesthetic merit. We ran a new set of exper-
iments designed to investigate this property. With these
experiments, we asked three questions:

� How artistic do viewers judge our painterly visual-
izations relative to paintings by artistic masters?

� Can we identify any fundamental emotional factors
that predict when viewers will perceive an image as
artistic?

� Can we categorize individual viewers as preferring
different types of art (for example, Realism or
Abstractionism), and if so, how do these preferences
impact the emotional responses that predict artistic
rankings?

In our experiments, we asked viewers to order 28
images on a scale from 1 (lowest) to 7 (highest). We
presented seven images from four different categories:
master Impressionists (impressionism), master Abstrac-
tionists (abstractionism), nonphotorealistic renderings
(nonphotorealism), and painterly visualizations (visu-
alization).

Figure 5a shows an example of the painterly visualiza-
tions we tested. Although the visualizations were show-
ing real weather conditions (we represented temperature
by color, wind speed by coverage, pressure by size, and
precipitation by orientation), we provided the viewers
with no explanation about what they depict. We were
careful to zoom in to a point where viewers wouldn’t
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4 Example displays from our effec-
tiveness experiment: (a) green
target in orange strokes, random
background orientation, dense
packing, and irregular placement;
(b) 45-degree target in 30-degree
strokes, random background color,
very dense packing, and irregular
placement.

(a) (b)

5 Example
displays from
the aesthetic
judgment
experiment: 
(a) a painterly
visualization of
weather condi-
tions and 
(b) a nonphoto-
realistic render-
ing of a
photograph of
Lake Moraine in
Banff, Canada.

(a)

(b)



interpret the image as part of a map. We classified these
images as abstract in nature, because they had no obvious
relationship to a real-world object or scene. We paired
them against seven reproductions of real paintings by
master Abstractionists: one painting each by de Kooning,
Johns, Malevich, Mondrain, and Pollock, and two paint-
ings by Kline.

Because we derived many of our original painterly
styles from the Impressionists, we wanted to include
their works in our experiment. We picked seven paint-
ings: one each by Cézanne, Monet, Morisot, Pissarro,
Seurat, Sisley, and Van Gogh. We counterbalanced
these paintings with seven nonphotorealistic render-
ings. Figure 5b shows one of the renderings—a picture
of a mountain lake. We based these images on under-
lying photos and applied exactly the same brush strokes
and painting scheme that we used to generate our
painterly visualizations. This was easy to do because a
photo is also a dataset with three dimensions: red,
green, and blue.

We asked viewers to rank the 28 images for five dif-
ferent questions. The first asked about the images’
artistic merit. We designed the other four to probe a
viewer’s emotional responses. Each ranking was con-
ducted in a similar fashion. For example, during the
ranking of artistic merit, we asked viewers to look at
the images this way:

As a first step, I would like you to look through
this entire set of pictures in order to choose one
picture that you like the best. This is a picture that
you would like to place as art somewhere in your
house or at your place of work. It’s the one you
think is the best example of good art.

Now look through the remaining pictures and
choose the one that you think is the worst exam-
ple of art.

I would now like you to go through the rest of
these pictures in the order in which they come up
and assign each one a number from 1 to 7. If the
picture is as good as the one you chose to be best,
then give it a 7. If it is as bad as the one you chose
to be worst, give it a 1. If it is somewhere in-
between, then choose an appropriate number
between 1 and 7. Remember, 7 represents the best
art. Please use the whole range of numbers to the
best of your ability.

The remaining four questions asked viewers to do an
identical ranking based on how emotionally pleasing
the images were (emotionality), how active they were
(arousal), how much meaning they contained (mean-
ing), and how complex they were (complexity). We
selected the first two questions using the emotional cir-
cumplex, a theory that models eight basic human emo-
tions around the two orthogonal dimensions of pleasure
and arousal.7 We designed the second two questions to
measure composition around the two dimensions
abstract–real and visual complexity.

Although our results are still preliminary, we have
already discovered several interesting and exciting find-
ings. Of the 25 viewers we tested, 20 ranked the master

Impressionists as most artistic, followed by the nonpho-
torealistic renderings, then the master Abstractionists
and painterly visualizations. These viewers consistently
preferred realistic images over abstract ones. In fact, they
judged the nonphotorealistic images as more artistic, on
average, than the Abstractionist paintings. This wasn’t
because the viewers felt that abstract images were com-
pletely lacking in artistic merit (the abstract images
received an average rank of 2.97). They simply preferred
realism to abstractionism. Emotionality and meaning
predicted 90 percent of the variance in viewer respons-
es. If viewers who liked realism found an image pleasing
and meaningful, they felt it was highly artistic.

Five of our viewers had a different set of rankings.
They judged the painterly visualizations as most artistic,
followed by the master Abstractionists, then the master
Impressionists and nonphotorealistic renderings. These
viewers clearly preferred abstract images to realistic
ones, ranking the visualizations as more artistic than
the Impressionist paintings. For these viewers, arousal
was the most important predictor of artistic merit. When
they found an image active, they tended to feel it was
highly artistic.

One final point of interest is that our results show that
computer-generated images can be seen as highly artis-
tic. Those who preferred realism felt the nonphotoreal-
istic renderings were artistic. People who preferred
abstractionism felt the painterly visualizations were
artistic. We were initially concerned that viewers might
believe a computer-generated image could never be seen
as art. Our results suggest that this isn’t true.

Real-world visualizations
To tie these ideas together, we present a final painter-

ly visualization from the application testbed we’ve used
throughout much of this article: a dataset of monthly
environmental and weather conditions collected and
recorded by the Intergovernmental Panel on Climate
Change. This dataset contains mean monthly surface
climate readings in half-degree latitude and longitude
steps for the years 1961 through 1990 (for example,
readings for January averaged over the years 1961
through 1990, readings for February averaged over the
years 1961 through 1990, and so on).

We visualize temperature, wind speed, pressure, and
precipitation with a data-feature mapping M that
assigns brush stroke color, coverage, size, and orienta-
tion, respectively. We show temperature with colors
selected uniformly from a perceptually balanced color
path that runs from dark blues and greens (for cold tem-
peratures) to bright pinks (for hot temperatures). We
show wind speed with coverage (coverage is the amount
of an element’s spatial region covered by its brush
strokes). Coverages range exponentially from very small
(for little or no wind) to full (for strong winds). We show
pressure with sizes ranging from small (for low pres-
sure) to large (for high pressure). Finally, we show pre-
cipitation by orientations ranging from 0 degrees or
upright (for no precipitation) to 90 degrees or flat (for
heavy precipitation).

Figure 6a shows a visualization of data for February
across the eastern US. Figure 6b shows data for the same
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month along the west coast. Although it’s unlikely that
anyone might mistake these images for real
Impressionist paintings, we feel these images contain
important aesthetic qualities that make them stand out
from traditional visualizations. Color and texture pat-
terns representing different weather phenomena can be
seen within these images. For example, Figure 6a shows
the expected cold to hot temperature gradient (dark
blue strokes to bright pink strokes) running north to
south, light rain and strong winds (upright strokes that
fully cover the background canvas) in the center of the
country, and heavy rain and weak winds (tilted strokes
with low coverage) in the south and northeast of the
Great Lakes. Figure 6b highlights the warmer tempera-
tures and heavy rainfall (tilted pink and red strokes) typ-
ically found in the Pacific Northwest around Seattle and
Olympia during the winter months.

The ideas discussed in this article represent the first
steps in our investigation of the roles of perception and
aesthetics in scientific visualization. Our ongoing efforts
include new experiments to study how changing an
image along an emotional dimension affects a viewer.
For example, we’re testing visualizations with sharp dis-
continuities in the brush stroke properties (represent-
ing an increase in visual complexity), and we’re also
studying how an initial explanation of the visualizations
changes a viewer’s rankings (representing an increase in
meaning.) Results from these experiments will offer fur-
ther evidence on how variations in an image and its con-
text can affect a viewer’s aesthetic judgments.

We’re also pursuing other avenues of investigation.
For example, we’re searching for new brush stroke prop-
erties that might let us increase the expressiveness of
our nonphotorealistic visualizations. We’re discussing
how the dynamic properties of a computer screen can
be used to animate our paintings, hopefully in ways that
draw attention to important information in the dataset.
We’re optimistic that these ideas will promote further
interest in the relationship between effectiveness and
aesthetics in scientific visualization. �
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6 Painterly
visualization of
weather condi-
tions over the
continental US:
(a) weather
conditions for
February over
the eastern US
and (b) weather
conditions for
February over
the west coast.


