
Computers & Graphics 78 (2019) 64–75

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on Graphics Interface 2018

A system for generating storyline visualizations using hierarchical task

network planning

Kalpesh Padia, Kaveen Herath Bandara, Christopher G. Healey

∗

Department of Computer Science, North Carolina State University, USA

a r t i c l e i n f o

Article history:

Received 2 September 2018

Revised 2 November 2018

Accepted 5 November 2018

Available online 17 November 2018

Keywords:

HTN planning

Narratives

Storyline visualization

a b s t r a c t

Existing storyline visualization techniques present narratives as a node-link graph where a sequence of

links shows the evolution of causal and temporal relationships between characters in the narrative. These

techniques make a number of simplifying assumptions about the narrative structure, however. They as-

sume that all narratives progress linearly in time, with a well-defined beginning, middle, and end. They

assume that the narrative is complete prior to visualization. They also assume that at least two partic-

ipants interact at every event. Finally, they assume that all events in the narrative occur along a sin-

gle timeline. Thus, while existing techniques are suitable for visualizing linear narratives, they are not

well suited for visualizing narratives with multiple timelines, non-linear narratives such as those with

flashbacks, or for narratives that contain events with only one participant. In our previous work we pre-

sented Yarn, a system for automatic construction and visualization of narratives with multiple timelines.

Yarn employs hierarchical task network planning to generate all possible narrative timelines and visualize

them in a web-based interface. In this work, we extend Yarn to support non-linear narratives with flash-

backs and flash-forwards, and non-linear point-of-view narratives. Our technique supports both single-

participant as well as multi-participant events in the narrative, and constructs both linear as well as

non-linear narratives. Additionally, it enables pairwise comparison within a group of multiple narrative

timelines.

© 2018 Published by Elsevier Ltd.

t

e

f

a

t

t

l

a

p

e

e

i

t

t

t

1. Introduction

A story or a narrative is an ordered sequence of connected

events in which one or more characters (or entities) participate

[1] . The events in the narrative take place at various locations, and

together with the entities define the relationships that shape the

course of the narrative. Understanding the evolution of these en-

tity relationships is key to comprehending and analyzing how the

narrative unfolds. To this end, storyline visualizations have been

developed to represent a narrative based on the causal and tem-

poral patterns of the entity relationships.

Existing storyline visualization techniques, inspired by Munroe’s

movie narrative charts [2] , represent narratives as node-link

graphs. These techniques lay out narrative events chronologically,

from left to right, with each entity represented as a line running

from one event to another. Events are shown as nodes in the sto-

ryline, and a link between a pair of nodes represents an entity that

participates chronologically in both events.
∗ Corresponding author.

E-mail address: healey@ncsu.edu (C.G. Healey).

c

r

i

n

https://doi.org/10.1016/j.cag.2018.11.004

0097-8493/© 2018 Published by Elsevier Ltd.
Initial storyline visualization techniques [3–5] produced an aes-

hetically pleasing visualization, but at the expense of time. Liu

t al. [1] described an optimization strategy, called StoryFlow, for

ast generation of storyline visualizations. StoryFlow creates a visu-

lization using a four stage pipeline that generates an initial layout,

hen performs ordering and alignment of nodes, and compaction of

he overall layout to improve its appearance.

While these techniques can produce aesthetically pleasing and

egible storylines, they do so by making simplifying assumptions

bout the narrative structure. Because of this they may not sup-

ort more complex, real-world storytelling and analysis tasks. First,

xisting techniques assume that at least two entities participate at

very event in the timeline. However, many real world narratives

nvolve situations where the entities generate events without in-

eraction, or by interacting with entities that are not present at

he same location. This creates single-entity events in the narra-

ive that are not supported by existing techniques.

Second, many narratives involve character entities making

hoices. These choices directly influence the evolution of the causal

elationships that shape the outcome of the narrative. The real-

ty timeline of a narrative consists of events that transpire as the

arrative unfolds over time. Events along the reality timeline in a

https://doi.org/10.1016/j.cag.2018.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.11.004&domain=pdf
mailto:healey@ncsu.edu
https://doi.org/10.1016/j.cag.2018.11.004

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 65

c

t

n

t

l

v

l

s

t

n

d

l

W

n

n

n

p

a

s

e

c

o

t

f

p

i

t

o

t

2

a

t

2

i

f

t

l

n

t

m

s

r

p

d

t

e

s

b

o

m

t

t

i

l

f

fl

c

d

a

i

e

i

o

i

o

o

c

t

n

e

i

s

t

V

t

t

t

d

s

i

l

s

a

T

u

a

S

a

r

m

i

a

A

c

[

g

c

r

t

l
hoice-based narrative represent exactly one outcome for each of

he choice points in the narrative. Alternative choices lead to alter-

ate outcomes for the narrative timeline, creating distinct diegetic

imelines. For many real-word analysis tasks, it is important to

ook at a choice point in the reality timeline and examine how it

aries the future outcomes of the narrative. It is also important to

ook at a different choice in the past and examine what narrative

tates this makes available. Therefore, we visualize both the reality

imeline as well as diegetic timelines in a narrative. Existing tech-

iques visualize only reality timelines. They provide no support for

iegetic narratives.

Third, existing techniques assume that the narrative progresses

inearly in time and has a well defined beginning, middle and end.

hile this makes them suitable for visualizing traditional, linear

arratives such as a movie’s plot, they cannot visualize non-linear

arratives such as narratives with flashbacks and flash-forwards,

arratives with parallel distinctive plot lines, or narratives that

resent events from their characters’ point of view.

In our previous work [6] we presented Yarn, a new system for

utomatic narrative construction and visualization. Unlike existing

ystems based on Hierarchical Task Network (HTN) like Cavazza

t al. [7] , our system generates all possible narratives, rather than

onstructing individual alternative narratives “on demand” based

n user interaction with an initial reality timeline.

In this work we present an updated layout pipeline for Yarn

o add support for non-linear narratives with flashbacks and flash-

orwards, and non-linear point-of-view narratives. Our approach

rovides three advantages:

1. Diegetic timelines are available for a user to examine, select

from, and visualize immediately.

2. Reality and diegetic timelines can be visually compared to

search for similarities and differences.

3. In addition to linear narratives, our system can generate visual-

izations for non-linear narratives.

Finally, our use of the new WebWorker-based parallelism signif-

cantly improves overall performance during the narrative genera-

ion stage. Our HTNs were specifically designed to take advantage

f this capability.

Based on the above, our work makes the following novel con-

ributions:

1. An efficient method for generating all possible timelines in a

narrative using HTN planning.

2. A storyline layout for visually depicting and comparing non-

linear narratives with multiple timelines.

3. A web-based interactive visualization tool to allow users to ex-

amine, discover, and explore different real and potential narra-

tions within a story domain.

. Related work

In this paper, we discuss a new system for narrative generation

nd visualization. Here, we present some of the related work in

hese fields.

.1. Automated narrative construction

Researchers in the field of narrative theory draw ideas from var-

ous fields, including literary theory, linguistics, cognitive science,

olklore, and gender theory to define what constitutes a narra-

ive and how it is different from other kinds of discourse, such as

yric poems, arguments, and descriptions [8–12] . They have studied

arratives using numerous approaches such as rhetoric (discourses

hat inform, argue with, convince or motivate audiences), prag-

atic (discourses that convey, request or perform social actions
uch as complaints, suggestions, compliments, requests, apologies,

efusals, and warning), and antimimetic (discourses that are ex-

ressed or conveyed in non-traditional forms) to give multiple

efinitions, all of which structure a narrative to be composed of

wo parts. The first is the fabula or story comprising a chain of

vents and its existents, defined as characters and settings. The

econd is sjuz ̆het or discourse, which is the expression or means

y which the story is communicated. While fabula deals with the

rganization of the content of a narrative, sjuz ̆het deals with the

anifestation—appearance in a specific material form: oral, writ-

en, musical, cinematic, and visual—and transmission of the narra-

ive.

Events in a narrative tend to be related and mutually entail-

ng. They appear in a specific order and events that happen ear-

ier can influence later events, but not the other way around. Even

or non-linear narratives, such as flashbacks where time does not

ow linearly from a narrative’s start to finish, the order of events is

onsistent within each segment, and the different segments are or-

ered to make the narrative comprehensible. A narrative can thus

lso be defined as the organization of spatial and temporal data

nto a cause–effect chain of events with a beginning, middle, and

nd.

The ordering of events presented by a narrative’s sjuz ̆het forms

ts reality timeline. Each event along this timeline results in exactly

ne outcome that progresses the narrative towards its end. Events

n choice-based narratives, however, can result in more than one

utcome in response to a character making choices. Each event

utcome that is not a part of the reality timeline modifies the

ourse of the narrative, forming an alternate (diegetic) narrative

imeline. All narratives have one reality timeline, and choice-based

arratives have one or more alternate (diegetic) timelines.

In recent years narrative theory has generated significant inter-

st among computer scientists, especially in the field of artificial

ntelligence (AI), computational linguistics, and game design. Re-

earchers have proposed numerous systems for automatic genera-

ion of narratives, such as Tale-Spin [13] , Minstrel [14] , Mexica [15] ,

irtual Storyteller [16] , Fabulist [17] , and Suspenser [18] . These sys-

ems identify a thematic pattern in a pre-existing corpus of fabula

o generate narrative text, by selecting and ordering fabula events

o create a linear progression of the story.

Significant research efforts have also been directed towards

eveloping narrative engines which can automatically generate

juz ̆het (and thus, the narrative) based on the end goals specified

n the fabula [19–21] . These systems represent the fabula as a col-

ection of state spaces that are searched to find a sequence that

atisfies the end goal. The systems model fabula semantics such

s timelines, states, events, characters, and goals as data objects.

hese objects can be queried, manipulated, and arranged using

ser-defined sjuz ̆het assertions to generate the narrative text.

Two approaches are commonly used to represent fabula in such

utomatic narrative generation systems. In the first approach, a

TRIPS-like [22] formalism is adopted to represent the fabula as

 collection of world models for all possible scenarios in the nar-

ative. A world model is constructed as a set of well-formed for-

ulas using first-order predicate calculus. A well-formed formula

s also used to state the goal condition. A set of operators enumer-

te possible actions and their effect on the world models. Various

I planning techniques apply these operators to the world model

ollection to find a model that achieves the stated goal condition

20,21,23] . The sequence of events described in the solution model

enerate a narrative that achieves the goal condition.

In the second approach, the fabula is represented using a hierar-

hical task network (HTN) formalism. HTNs are networks that rep-

esent ordered task decomposition, based on the idea that many

asks in real life have a built-in hierarchical structure. The top-

evel task in an HTN is typically the main goal. Each task can be

66 K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75

Fig. 1. A hierarchical task network decomposing the task “Build House”. Rectangular nodes represent primitive actions, and circular nodes represent (sub-)tasks in the

decomposition. Red lines show decomposition for an OR node, while blue lines show decomposition for an AND node. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

e

c

o

t

d

T

r

s

i

E

t

p

t

a

s

i

b

i

f

r

s

u

c

[

o

a

o

t

T

t

t

o

i

n

t

s

i

g

s

a

l
decomposed into sub-tasks, which can be further decomposed into

smaller tasks until all tasks are represented as primitive actions.

HTNs are commonly built using AND–OR graphs. The root node

in an HTN depicts the goal task. Each child node can be either

a primitive action or a sub-task. When a task can have several

possible decompositions, it is represented using an OR node. Each

sub-task is a valid decomposition for the parent task. When a task

has several decompositions that can be ordered in some fashion to

complete the task, it is represented as an AND node. Thus, an HTN

can be seen as an implicit representation for the set of possible

solutions for a task [24] .

Fig. 1 shows an HTN for the task “Build House”. Goals in the

HTN are represented using circles and actions are represented us-

ing rectangles. AND and OR nodes are connected to their decompo-

sition using blue and red links, respectively. The main goal, repre-

sented by the root node, is achieved by decomposing the sub-goals

and performing actions in order.

As narrative descriptions can be naturally represented as task

decompositions [25,26] , they are well suited for representation

using HTNs. Based on this idea, a number of techniques [7,26–

28] have been developed that employ HTN planning to generate

a narrative. These techniques first define a narrative goal, then de-

compose it to find a sequence of primitive actions that describe

events in a narrative timeline. Further, unlike STRIPS-like planning,

HTN planning allows compound goals that are structured as a col-

lection of multiple goals or primitive tasks.

Existing techniques, however, generate only one narrative time-

line even when the narrative goal could have multiple possible de-

compositions, each representing a possible alternate timeline. Our

approach builds on existing techniques to improve them to sup-

port efficient generation of all possible narrative timelines, provide

a method to visualize multiple timelines simultaneously, and sup-

port a subset of non-linear narratives.

2.2. Visualizing narratives

Static visualizations have long been used to support storytelling,

usually in the form of diagrams and charts embedded in a larger

body of text. In this format, the text conveys the story, and the im-

age typically provides supporting evidence or related details. More

recently, visualizations have been designed with the purpose of

conveying a “data story,” and guiding the viewer through the nar-

rative generated from analysis of the data [29] . These visualizations

have been termed “narrative visualizations” [30] , and have been
xtensively studied to explore how elements of narrative theory

an be applied to identify patterns in visual layout to provide rec-

mmendations, or to evaluate the effectiveness of the visuals in

he presentation and analysis [30–32] .

Recently, a new technique has emerged to help users better un-

erstand and analyze a complex story by presenting it visually.

his technique, called storyline, is inspired by Munroe’s Movie Nar-

ative Charts [2] and represents narratives as node-link graphs. As

hown in Fig. 2 , events in the narrative are represented as nodes

n the storyline and are laid out chronologically from left to right.

ach character, or entity, is shown as a line running from one event

o another. A link between a pair of nodes represents an entity that

articipates chronologically in both events. Spatial proximity iden-

ifies where characters participate in a common event. Interactions

mong the entities during different events define entity relation-

hips.

Storyline visualizations differ from narrative visualizations in

mportant ways. As noted, narrative visualizations emphasize com-

ining a data story with graphics. They present related content,

n blocks, to provide clear and logical transitions without regard

or temporal ordering of events. Narrative visualization, therefore,

efers to the genre of visualization that focuses on generating “vi-

ual data stories” from a set of story pieces (specific facts backed

p by data) presented in a meaningful order to support a high level

ommunication goal, such as educating or entertaining the viewer

29] . Storyline visualizations, on the other hand, refer to the genre

f visualization that focuses on generating “visual summaries” for

 text narrative—either pre-existing, or constructed from a corpus

f fabula elements—using a storyline technique. These visualiza-

ions present an alternative manifestation of a narrative’s sjuz ̆het .

hey depict narrative events on a temporal timeline that follows

he narrative’s progression. This allows users to better understand

he evolution of entity relationships from the beginning to the end

f a story. This can be very important in many applications such as

nformation exploration and understanding, interpersonal commu-

ication and storytelling, and media analysis [33,34] .

When visualizing a real-world narrative, storyline visualiza-

ions are generally simplified by imposing application-specific con-

traints, thereby achieving success at the cost of loss of general-

ty [1] . More recent research efforts have focused on developing a

eneric storyline visualization tool. Tanahashi and Ma presented a

toryline layout technique [3] based on a genetic algorithm. They

lso presented an extension of their technique to generate story-

ine visualization for evolving narratives [35] . While their approach

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 67

Fig. 2. Munroe’s movie narrative chart for Jurassic Park [2] .

c

t

[

fi

m

s

s

c

a

t

t

n

r

a

t

s

l

c

n

o

t

t

t

i

t

t

e

w

3

a

H

t

s

g

g

e

c

d

b

t

o

H

n

p

t

T

t

n

w

t

i

t

4

f

g

4

e

t

l

e

R

e

a

t

t

j

p

b

f
reates an aesthetically appealing and legible storyline visualiza-

ion, it takes considerable time to create the layout. Liu et al.

1] presented a strategy called StoryFlow that formulates the dif-

cult problem of creating an effective storyline layout as an opti-

ization problem, creating an aesthetically appealing visualization

ignificantly faster than Tanahashi and Ma.

Still, these techniques make simplifying assumptions about the

tructure of the narrative. They may not be able to support more

omplex, real-world storytelling and analysis tasks. The techniques

ssume that at least two entities participate at every event in the

imeline, so they are not suited for visualizing real world narratives

hat contain single-entity events. Further, these techniques provide

o support for narratives with diegetic timelines.

Additional techniques have been developed for visualizing nar-

atives with multiple timelines. SemTime [36] is a temporal visu-

lization technique that uses distinct types of directed edges and

ime independent stacking of multiple timelines to show relation-

hips between events. However, it is not well suited for visualizing

arge narratives due to the amount of visual clutter created by line

rossings. World Lines [37] is a technique for visualizing different

arrative timelines generated by performing a “what-if” analysis

n the narrative. It uses a combination of simulation techniques

o generate multiple timelines, then visualizes them in a “horizon-

al tree-like visualization” that depicts the causal relationships be-

ween different timelines. However, the lack of a representation of

ndividual entities means it is difficult to identify interactions be-

ween entities within a timeline. This makes the technique bet-

er suited for visualizing how the narrative timelines branch from

ach other rather than visually summarizing and comparing events

ithin the timelines.

. Yarn overview

We have developed Yarn for automatic construction and visu-

lization of multiple narrative timelines. In our approach we use

TN planning for automatic generation of all possible narrative

imelines. Compared with existing HTN-based narrative generation

ystems like Cavazza et al. [7] , no user interaction is required for

eneration of diegetic timelines. Our approach also visualizes the

enerated timelines using a storyline layout that represents all

vents in the timeline. To achieve this, we:

1. Represent the narrative as a collection of entity HTNs, one for

each character in the narrative.

2. Use a WebWorker-based HTN planner for decomposing the en-

tity HTNs in parallel to evaluate all possible choices available to

the entities and their corresponding outcomes identifying the

reality timeline and possible diegetic timelines in the narra-

tive. This is efficient and allows representation of both single

and multi-entity events. Our HTN planner also supports causal
events in the narrative, where past actions affect future out-

comes.

3. Visualize each timeline by creating a storyline layout with min-

imal line crossings.

4. Allow pairwise comparison of narrative timelines for better

comprehension of a timeline’s progression and event outcomes.

5. Allow visual depiction and exploration of flashback and flash-

forward events in a narrative timeline.

Yarn’s narrative construction and visualization pipeline (Fig. 3)

onsists of four stages: HTN generation, planning, layout and or-

ering, and visualization. Yarn is designed to run within a web

rowser, and each stage is fully implemented using JavaScript. In

he first stage, Yarn generates an in-memory HTN representation

f the narrative from the input functions. Next, a multi-threaded

TN planner concurrently generates plans for each entity in the

arrative. An initial node-link graph layout is generated from these

lans in the Layout and Ordering stage. An ordering algorithm is

hen run to compute a final layout with minimum line crossings.

he output from this stage represents one narrative timeline. These

wo stages are repeated to generate all possible timelines in the

arrative. Finally, the timelines are sent to the Visualization stage

here we merge flashback and flash-forward events in the narra-

ive sjuz ̆het with event nodes in the selected timeline, then visual-

ze the narrative in a web browser. Two timelines can be displayed

o enable visual comparison of the events in each timeline.

. Narrative generation and visualization

As illustrated in Fig. 3 , Yarn begins by generating HTN functions

or the input narrative, followed by narrative planning, timeline

eneration, and visualization.

.1. HTN generation

The input to our system is a collection of entity HTNs, one for

ach character in the narrative, expressed in a JSON format where

he root of the JSON tree represents the HTN goal node, and each

eaf node in the JSON tree represents a primitive action storing rel-

vant meta-data such as narrative fabula and event pre-requisites.

emaining nodes in the JSON tree represent AND/OR nodes in the

ntity HTN.

In order to use the collection of input JSONs for timeline gener-

tion, we need to first convert them into alternate representations

hat our JavaScript HTN planner can use.

We start by expressing the narrative’s fabula —domain descrip-

ion and initial state information—using a JavaScript map. Each ob-

ect in the map is a key–value pair where the key is any entity,

rop or trigger condition, and the value represents its state at the

eginning of the narrative. A complete map with all initial state in-

ormation represents a narrative state map which can be accessed,

68 K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75

Fig. 3. Overview of Yarn’s four stage pipeline: (1) Hierarchical Task Network functions for each character entity in the narrative; (2) HTN planning to generate timelines; (3)

compute layout and ordering of entities in each timeline; and (4) create visualizations inside a browser window.

w

t

4

t

p

e

r

o

b

H

i

t

p

e

s

o

d

p

i

D

B

l

t

s

t

w

v

o

e

i

l

p

t

i

e

i

t

e

o

I

e

p

S

t

L

e

i

modified and updated by the operator functions during the plan-

ning stage.

Next, we express the task (end-goal), sub-tasks and primitive

actions in each entity HTN using JavaScript functions. We catego-

rize these functions into three types.

1. Operator functions : Each primitive action in the HTN, when exe-

cuted, represents an event in the narrative. An action may also

have certain pre-requisites which must be met for the action to

return successfully after execution. Both successful and unsuc-

cessful executions of the primitive action create events in the

narrative.

We define operator functions as JavaScript functions that are

a manifestation of primitive actions, complete with conditional

checks to detect fulfillment of pre-requisites, and if required,

wait loops to wait for pre-requisite fulfillment. Execution affects

the narrative state by creating an event upon completion.

2. Method functions : Each AND/OR node in the HTN represents a

sub-task. AND sub-tasks can be completed in exactly one way

by performing all of the sub-tasks/primitive actions directly be-

neath it. OR sub-tasks can be performed in more than one

way, since execution of any sub-task/primitive action directly

beneath an OR node is a valid decomposition for the sub-task.

We define method functions as JavaScript functions that are a

collection of AND/OR nodes in the HTN. When a method func-

tion represents an AND node, it calls subordinate method or

operator functions in a specific order as specified by the HTN.

Each of the functions must return successfully for the method

function to return success. When a method function represents

an OR node, it calls each subordinate method function or opera-

tor function specified by the HTN. If a function returns success-

fully, the method function itself returns success. If all functions

return unsuccessfully, the method function returns a failure to

find a (sub)plan.

In our implementation of method functions for OR nodes, we

use a random order to call subordinate functions. Normally

each subordinate function is assigned an equal probability, and

a random number r , 0 ≤ r ≤ 1, governs which of the functions is

selected for execution. We could, however, assign the functions

different probabilities to simulate the probabilistic occurrence

of narrative events. Additionally, by affecting the probability of

execution of the possible subordinate functions, we can imple-

ment causal relationships in the narrative.

3. Task functions : Each goal node in the HTN is an AND/OR node

that represents the task we are trying to decompose. We de-

fine task functions as special method functions that only call

other method or operator functions and cannot be called by any

other function. A task function serves as the entry point for our

planner when finding a plan decomposition for an HTN. A plan

is identified successfully only if all functions called by a task

function return successfully.

After representing nodes in each entity HTN using the functions

described above, we create a task list as a JavaScript array of task

functions, one for each entity in the narrative. This task list, along
ith the narrative state map and the operator and method func-

ions serve as input for the planning stage.

.2. Planning

Character entities in real-world narratives follow unique paths

o accomplish their individual goals. Along the way they partici-

ate in events with other entities (multi-entity events), or create

vents independently. To mimic this method of event creation, we

un our HTN planner concurrently for each task in the task list. In

ur implementation, the planner finds the decomposition of a task

y performing a left-to-right depth-first search of the associated

TN, further decomposing any sub-tasks encountered, and execut-

ng any primitive actions in the process. If a primitive action fails,

he algorithm backtracks to find a suitable alternative. The com-

lete decomposition of a task contains an ordered sequence of ex-

cution for primitive actions where a primitive action on the left

ub-tree of a node in the HTN appears before a primitive action

n its right sub-tree. Each unique sequence represents an alternate

ecomposition for the task. For example, one of the four possible

lan decompositions for the task “Build House” in the HTN shown

n Fig. 1 is made up of the primitive actions: Obtain Permit, Check

irectory, Build Foundation, Concrete Frame, Build Interior and Pay

uilder .

In order to perform concurrent planning of tasks in the task

ist, we use JavaScript WebWorkers to create background worker

hreads that do not interfere with the main program thread. We

pawn threads, one for each task function in the task list, that call

he planner concurrently to decompose the task functions. These

orker threads, however, do not have access to global or shared

ariables. This is problematic because during task decomposition

perator functions must update the state map to generate narrative

vents.

To solve this, we use IndexedDB, a type of browser storage that

s accessible by WebWorkers. IndexedDB allows us to store both

ocal and session related data within a browser session. In our im-

lementation, we use it to store the state map. An operator func-

ion called by one thread can change the state map in a way that

s visible to operator functions in other threads. To store narrative

vents we create an event list record in IndexedDB. After updat-

ng the state map, the operator functions store an event ID, en-

ity name, event label and optional text to describe the narrative

vent, in the event list record. In order to ensure atomicity of all

perations we implement mutex locks for reading and writing the

ndexedDB using JavaScript Promises. After all threads finish their

xecution, the state map and the event list record are the final out-

ut of the planner, representing one narrative timeline.

To calculate the time complexity for our planner, let G =
(S, A, L) be the graph representation of an HTN for an entity, where

 is the set of (sub-)task nodes represented as AND/OR nodes in

he graph, A is the set of primitive action nodes in the graph, and

 is the set of links in the graph. Let n be the number of fabula el-

ments that are represented as keys in the key–value pairs stored

n the narrative state map.

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 69

Fig. 4. Illustration of various steps of the layout and ordering stage applied to a timeline for the example narrative in Section 5.1 .

o

w

t

i

a

f

m

f

E

i

r

c

A

i

4

a

c

o

c

l

t

v

i

n

i

b

t

p

n

i

t

p

l

e

g

w

W

f

i

p

o

i

(

t

m

b

o

y

a

(

o

c

T

t

i

t

g

r

i

T

t

e

i

s

u

4

a

a
In the worst-case we perform a recursive depth-first traversal

f the entire HTN graph to generate a plan decomposition, where

e visit every node in S and A , and execute the associated func-

ions. Visiting a node in S or A is the same as traversing an edge

n the graph and can be performed in O (1) for each edge. Visiting

ll nodes, therefore, can be performed in O (1) ∗ | L | = O (| L |) .
Executing a function for a node in S involves removing it

rom the stack of functions to be called and adding a subordinate

ethod or operator function. Both these operations can be per-

ormed in O (1) allowing the function itself to be performed in O (1).

xecuting functions for all nodes in S , therefore, can be performed

n O (1) ∗ | S| = O (| S|) .
Executing a function for a node in A involves updating the nar-

ative state map stored in IndexedDB to create a new event. This

an be performed in O (log (n)). Executing functions for all nodes in

 , therefore, can be performed in O (log(n)) ∗ | A | = O (| A | · log (n)) .

The time complexity for generating a plan decomposition, then,

s O (| L |) + O (| S|) + O (| A | · log (n)) = O (| L | + | S| + | A | · log (n)) .

.3. Layout and ordering

After running the planner we obtain a narrative timeline as

 list of events (both single-entity and multi-entity events) in

hronological order and a list of associated entities. During the lay-

ut and ordering stage, we first use the event and entity lists to

reate an initial arrangement where events are positioned chrono-

ogically along the x -axis with entity lines moving from one event

o another, and events sharing the same time step are positioned

ertically along the y -axis.

Next, we order the events and entities at each time step to min-

mize the number of line crossings. To do so, we convert the con-

ections between event nodes at each pair of successive time steps

nto a matrix, creating a list of matrices. If there is a connection

etween event nodes in a pair of non-successive time steps t i and

 j , we introduce dummy event connections in the matrices for each

air of successive time steps between t i and t j , preserving the con-

ection between the events. Fig. 4 (a) shows the layout created us-

ng this matrix representation. Events in the planner output from

he previous stage are shown as nodes labeled with the names of

articipating entities. Dummy events are shown as nodes without

abels. Links between a pair of nodes represent the participation of

ntities between the two events.
We next implement a well-known barycentric graph layout al-

orithm by Sugiyama et al. [38] to rearrange the matrices, starting

ith the first, flipping rows/columns of the matrices as required.

e then perform the same rearrangement of matrices starting

rom the last. This is repeated until the number of line crossings

s minimized, or a set number of iterations is reached. In our im-

lementation we iterate up to ten times. This process creates a lay-

ut with minimum line crossings between event nodes as shown

n Fig. 4 (b).

Following this we remove all dummy nodes from the layout

 Fig. 4 (c)) before modifying the matrices to include entity connec-

ions between event nodes. We repeat the process of rearranging

atrices to re-order the entities. This further reduces line crossings

etween entity lines. Fig. 4 (d) shows the layout created at the end

f this step. Event are represented as clusters of nodes along the

 -axis and colored lines trace the path of entities between nodes.

A final layout is then created using the rearranged matrices

s a list of event nodes. Each node in the layout list contains an

 x , y) location, entity name, an event tag, an event label, and a list

f target nodes, where a target node is a node for an event that oc-

urs after the current node and is connected to the current node.

his layout list is used in the final stage to visualize the narrative

imelines created from the event nodes.

The time complexity of the algorithm we are using for rearrang-

ng matrices is O (| V | · | E |) [39] where V is the number of nodes in

he graph being optimized, and E is the number of edges in that

raph. Creating the final layout list from the rearranged matrices

equires examining every element in each matrix to identify links

n the final layout. This also has a time complexity of O (| V | · | E |).

he overall time complexity for generating the final layout for a

imeline, then, is O (| V | · | E|) + O (| V | · | E|) = O (| V | · | E|)
Each iteration of the planning, layout, and ordering stages gen-

rates one narrative timeline. The event list in the output of each

teration is compared against those from previous iterations to en-

ure that we only store unique timelines. This process is repeated

ntil we generate all possible timelines in the narrative.

.4. Visualization

The timeline generation phase of Yarn generates layout lists for

ll possible narrative timelines for a given narrative. This serves

s an input to the final stage in our pipeline where we create a

70 K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75

Fig. 5. Yarn visualization depicting both actual (reality) and alternate (diegetic) timelines. Narratives progress over time along the x -axis. Nodes on the y -axis represent

character sub-goals, and vertical node clusters represent events. Solid colored nodes represent current time actions, while white nodes with black border represent flashbacks

in the narrative timeline. Hovering over a flashback node shows all events that occur during the flashback by grouping them inside a dashed box. Solid and dashed lines

trace the path of the main characters through the events on the reality and diegetic timelines, respectively.

c

t

s

d

v

w

v

u

r

t

W

u

t

t

l

O

e

c

t

l

t

s

t

v

5

a

b

s

i

c

n

5

u

t

c

O

s

t

e
visualization using D3.js [40] . Before we can visualize the narrative

timelines, however, we need to update the visual layout to include

nodes for any flashback/flash-forward events in the narrative. This

enables us to visually depict when they occur in the narrative’s

sjuz ̆het .

The visualization of a narrative timeline allows us to visu-

ally explore and comprehend how the narrative fabula evolves as

the narrative unfolds over time. Visualizing flashback/flash-forward

events further aids in understanding how the narrative’s sjuz ̆het is

presented.

An optional JavaScript array of flashback/flash-forward events

can be provided to update the layout lists to include the events

in the narrative. Each element in the array is represented as a

JavaScript map with the following information:

• A unique identifier for the flashback/flash-forward event.
• A number t , 1 < t ≤ n where n is the number of timesteps,

representing when the flashback/flash-forward occurs in the

sjuz ̆het .
• An array of event identifiers representing all events that are

part of the flashback/flash-forward.
• The name of the character/entity who triggers the flashback/

flash-forward in the narrative timeline.
• An array of character/entity names that participate in events

during flashback/flash-forward.

We first process all available flashback/flash-forward events to

compute the location of their corresponding nodes in the layout

and update the layout list. Next, we draw the event nodes at the

locations specified in the layout list and draw lines from the nodes

to all their target nodes to indicate participation of the entity in

both events. Lines for each entity are colored uniquely, with the

same color used for their event nodes and event labels. Finally, we

draw flashback/flash-forward nodes as white nodes with a black

border at the locations specified in the layout list to distinguish

them from other event nodes in the visualization. Hovering over

a flashback/flash-forward node identifies all events that occur dur-

ing the flashback/flash-forward by grouping them inside a dashed

box.

Fig. 5 shows the visualization of two timelines for the movie

Looper (Section 5.3), with events that occur during a flashback en-

closed in a dashed rectangle in one of the timelines.

When creating the visualization, one layout list is identified as

the reality timeline and is drawn automatically. The diegetic time-

lines are drawn on-demand by selecting from a drop-down menu

(Fig. 5). At any point the user can choose to draw either a real-

ity timeline, a diegetic timeline, or both. This not only visualizes

each timeline independently, but also enables a visual compari-

son of timelines. Comparison is useful to determine how different
hoices, either in the past or in the future, affect how a narrative

imeline proceeds. For example, if we visualized actions by a per-

on over time, we could vary choices they made in the past to see

iegetic timelines where they decided differently. We could also

ary choices in the future (if known) to see which choices lead to

hich future outcomes. This would identify individuals of interest

ersus individuals whose potential future states are not of concern.

Any timeline can be chosen to represent the reality timeline,

sing the drop-down menu in the interface, automatically catego-

izing other timelines as diegetic. When visualizing only the reality

imeline, we depict entity links using solid lines at 100% opacity.

hen visualizing only the diegetic timelines, we depict entity links

sing dashed lines at 100% opacity. When both reality and diegetic

imelines are visualized, we depict entity links from the reality

imeline using solid lines at 66% opacity, and overlay the entity

inks from the diegetic timeline using dashed lines at 100% opacity.

verlaying the timelines with different opacities offers two ben-

fits over side-by-side comparison: (1) by expanding the area of

omparison, overlaying reduces the cognitive effort required to de-

ect changes and prevents change blindness [41,42] ; and (2) over-

aying allows ad-hoc inspection of the events that differ between

he two timelines. Overlaying, therefore, allows us to efficiently vi-

ualize and compare both timelines simultaneously. More than two

imelines could be visualized but only at the expense of additional

isual clutter and line crossings.

. Examples

In this section, we show how our system can be used to visu-

lize and compare multiple narrative timelines, first, in a choice-

ased role playing video game; second, in a fictional narrative

cenario; and third, in a movie with a non-linear timeline contain-

ng flashbacks. Finally, we also visualize a movie narrative with a

ircular timeline to demonstrate how our system handles complex

on-linear narratives.

.1. Example: Witcher

For our first example we use a narrative adapted from the pop-

lar role playing video game Witcher 2 to demonstrate how mul-

iple timelines can be visualized and compared in Yarn.

In our example narrative, the hero, Geralt of Rivia needs to res-

ue his friend, Triss Merigold, who has mysteriously disappeared.

n his journey to find her he must first determine where she was

een last, talk to multiple friends, and resolve a conflict between a

roll couple before he can meet her.

There are two choice points in this narrative: first, Margot can

ither choose to help Geralt or refuse to provide help; second, the

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 71

Fig. 6. Visualization of Witcher narrative depicting the favorable outcome as the reality timeline.

Fig. 7. Visualization of Witcher narrative depicting the favorable outcome as the reality timeline, and the unfavorable outcome as the diegetic timeline. Note the diegetic

timeline represented using dashed lines overlaid on reality timeline in 66% opacity.

t

c

c

t

G

i

W

k

b

w

w

t

c

a

m

l

t

o

o

i

t

5

b

i

e

s

o

a

h

P

i

a

h

h

i

r

c

b

a

t

R

t

l

R

c

o

l

r

c

t

e

e

n

s

t

h

roll couple can either accept or reject Geralt’s solution to their

onflict. Each of these choices affects the outcome of the narrative

reating three possible timelines.

The first timeline contains events favorable to Geralt. In this

imeline, Margot agrees to help Geralt and the troll couple accept

eralt’s solution leading him to find Triss. Fig. 6 shows a visual-

zation of this outcome as the reality timeline for our narrative.

e can see that Geralt was able to successfully track Triss’s last

nown location, gather information from friends, resolve a conflict

etween the trolls, and meet Triss. Note that in this visualization

e are showing the default, reality timeline and all links are drawn

ith 100% opacity. We can also observe all single-entity events in

he narrative in this visualization.

In the second timeline, the trolls reject Geralt’s solution to their

onflict. Fig. 7 shows a visualization of this unfavorable outcome

s diegetic timeline overlaid on top of the reality timeline. While

ost of the events are same in both timelines, the diegetic time-

ine ends at the event “Speak to She-Troll.” The reduced opacity of

he reality timeline allows the user to compare common sections

f the two timelines, even when one of them is smaller than the

ther.

In the third timeline, Margot refuses to help Geralt prevent-

ng him from progressing further on his quest. This is the shortest

imeline in our narrative.

.2. Example: Friends

For our second example we use a fictional narrative scenario

ased on the popular sitcom Friends to demonstrate that Yarn can

dentify and visualize timelines in narratives that contain causal

vents.

In this narrative, Ross’s plan is to take Rachel on a date. To do

o, he must acquire more information about her, find some way
f talking to her, ensure she is positively disposed towards him,

nd eventually ask her out. He can acquire more information about

er in a number of ways including calling her mother, or asking

hoebe about her by either call or text. To ensure she is in a pos-

tive mood, he can either give her a gift or say nice things to her,

nd finally he can either ask her out himself or ask for Phoebe’s

elp. To illustrate causality of events in the narrative timeline, we

ave set up the operator functions for Rachel such that she is more

nclined to say yes to Ross if he talks to her mother rather than

equesting Phoebe’s help. Additionally, Rachel’s probability of ac-

epting Ross’s proposal is also dependent on how impressed she is

y him when he asks her.

There are four choice points in this narrative: three for Ross,

nd one for Rachel. The choices made by Ross create 12 alternate

imelines, each illustrating a different way in which he can ask

achel out. Towards the end of each timeline Rachel can decide

o either reply yes to Ross, or reply no, creating a total of 24 time-

ines.

Fig. 8 shows a visualization where Rachel agrees to go out with

oss in both timelines. While the timelines result in the same out-

ome, and visually look the same, we can inspect the labels on top

f the events in Ross’s timeline to identify the differences. Lighter

abels correspond to the reality timeline, while darker labels cor-

espond to the diegetic timeline. In the reality timeline, Ross de-

ided to give a gift to Rachel after talking to her mom, while in

he diegetic timeline he decided to act friendly with her.

Fig. 9 shows another visualization for the same narrative. In this

xample we can see the effect of causal conditions set in the op-

rator functions for Rachel. In the reality timeline, Rachel decided

ot to go out with Ross because he asked Phoebe for help by mes-

aging her. On the other hand, she agreed to go out with him in

he diegetic timeline because in this case Ross decided to talk to

er mother.

72 K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75

Fig. 8. Visualization of Friends narrative where Rachel agrees to go out with Ross in both reality as well as diegetic timelines.

Fig. 9. Visualization of Friends narrative where Rachel agrees to go out with Ross in the diegetic timeline but not the reality timeline.

t

t

t

t

m

C

n

t

p

J

i

t

o

t

d

b

J

k

i

c

i

w

C

d

w

d

t

v

d

are able to visualize where the flashback occurs in the narrative
5.3. Example: Looper

As our third example we demonstrate the application of Yarn to

generate and visualize timelines in the movie Looper, a movie that

has multiple potential endings and contains one major flashback

event.

In this narrative, four main characters Joe (as both Young Joe

in the present and Old Joe from the future), Sara, and Cid (Sara’s

son) interact to generate eight possible timelines. Time travel has

been invented in the future, but is immediately outlawed. At the

same time, advances in tracking technology used by law enforce-

ment have made it difficult to dispose of dead bodies. This forces a

Kansas City crime syndicate, headed by Rainmaker, to send victims

back in time to be killed by “loopers” before the tracking tech-

nology was invented. Victims have their faces covered to prevent

loopers from knowing their identities. Joe Simmons (Young Joe) is

a looper fascinated by telekinesis, an ability that some of the fu-

ture population has acquired through a genetic mutation. He also

learns that retired loopers are sent back in time to be killed. Dur-

ing one mission his older self (Old Joe) arrives as a victim with

his face uncovered. Old Joe reveals to Young Joe that in his future

he marries, but after retirement he is kidnapped to be sent back

in time to be killed. His wife dies saving him, and Old Joe decides

to save his wife by killing Rainmaker when he is a child named

Cid. Young Joe finds the farm where Sara and Cid live. When Old

Joe arrives, Young Joe can let Old Joe attempt to kill Cid, resulting

in Sara’s death and Cid becoming Rainmaker. Alternatively, Young

Joe can commit suicide, killing Old Joe and saving Sara and Cid.

If Sara survives Old Joe’s attack but dies before Cid reaches adult-

hood, Cid cannot cope with his loss and becomes Rainmaker to

avenge her death by killing all loopers in the future. If Sara sur-

vives, Cid controls his telekinesis with her support and does not

become Rainmaker. Finally, Young Joe can kill Old Joe as soon as
he latter arrives, preventing any further narrative events. Based on

his summary, there are four choice points: (1) Old Joe can decide

o kill his kidnappers before going back in time or go back directly

o find Cid; (2) Young Joe can either let Old Joe live or kill him the

oment he arrives; (3) Young Joe can decide to protect Sara and

id or let Old Joe attempt to kill them; and (4) Cid may or may

ot turn into Rainmaker if Sara escapes Old Joe’s attack. Each of

hese choices affects the outcome of the narrative, creating eight

ossible timelines.

Fig. 10 shows the visualization of the scenario where Young

oe closes his loop by killing Old Joe as soon as he arrives. This

s depicted as the reality timeline in our visualization. Although

he events in which Old Joe participates before dying at the hands

f Young Joe are not presented in the sjuz ̆het (movie) timeline for

his scenario, they are visualized in our storyline. This aids in un-

erstanding the timeline by providing context where Old Joe goes

ack in time to meet his younger self.

Fig. 11 shows the visualization of the scenario where Young

oe prevents the attack on Sara and Cid by sacrificing himself and

illing Old Joe in the process. In this scenario, which is visual-

zed as the reality timeline, Sara dies of natural causes before Cid

an reach adulthood. Having learned about telekinesis, Cid turns

nto Rainmaker in this timeline. In this visualization, the scenario

here Young Joe closes his loop is shown as the diegetic timeline.

Fig. 12 shows the visualization of the scenario where Sara and

id survive the attack because Young Joe sacrifices himself and Cid

oes not turn into Rainmaker. Hovering over the flashback node

here Old Joe talks to Young Joe about his past life reveals a

ashed box around the event nodes that previously occurred in

he narrative timeline. The chronological layout of events in the

isualization aids in understanding how the narrative unfolds. By

epicting the flashback nodes as part of the narrative timeline we

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 73

Fig. 10. Visualization of Looper narrative for the timeline where Young Joe kills Old Joe and closes his loop, depicted as reality timeline.

Fig. 11. Visualization of Looper narrative depicting Sara and Cid surviving the attack as the reality timeline and the closing of his loop by Young Joe as the diegetic timeline.

Note that Cid still turns into Rainmaker in this timeline.

Fig. 12. Visualization of Looper narrative for the timeline where Sara and Cid survive the attack, and Cid does not turn into Rainmaker, depicted as reality timeline. Events

that are presented in the movie (sjuz ̆het) during the flashback sequence at the diner are also highlighted in this visualization.

s

w

5

t

l

p

B

i

t

I

h

A

o

a

a

l

w

c

w

U

f

w

w

p

t

y

N

v

a

n

a

m

a

I
juz ̆het . Interactively highlighting event nodes allows us to depict

hich events were shown during the flashback in the sjuz ̆het .

.4. Example: Arrival

As our final example, we demonstrate the application of Yarn

o generate and visualize the timeline in the movie Arrival, a non-

inear timeline in which events are narrated from the protagonist’s

oint-of-view.

At the beginning of the narrative we are told that Dr. Louise

anks’ adolescent daughter, Hannah, has passed away due to an

ncurable illness. Twelve alien spacecraft appear at different loca-

ions across the globe. In the USA, Dr. Banks, a linguist, and Dr.

an Donnelly, a physicist, are recruited to find out why the aliens

ave arrived. They make contact with two aliens, whom they name

bbott and Costello, and begin researching their written language

f Logograms. As Louise studies the language she starts to dream

bout a child who seems to be her daughter. When she asks the

liens why have come, they answer “offer weapon”, which she be-
ieves means “offer tool”. China, however, translates this as “use

eapon”, prompting them to stop all communication with other

ountries and issue an ultimatum to the aliens to leave the Earth

ithin 24 h. Other countries follow the suit. Meanwhile, in the

SA, Louise learns that the aliens have come to help humanity,

or in 30 0 0 years, they will need humanity’s help in return. The

eapon/tool they are offering is their language, the Logograms,

hich change humans’ linear perception of time into a circular

erception, allowing them to experience “memories” of things yet

o happen. Dr. Banks’ dreams of a child are premonitions of her

et-to-be-born daughter. She then has a premonition of a United

ations event, in which Chinese General Shang thanks her for con-

incing him to abandon the attack by calling on his private number

nd reciting his dead wife’s last words. In the present, she calls the

umber she saw in her vision, and recites the words. The Chinese

nnounce that they are calling off the attack and share the infor-

ation they obtained from the aliens. Other countries soon follow,

nd the twelve spacecraft depart. In the aftermath, Louise accepts

an’s proposal and marries him, despite being aware that she will

74 K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75

Fig. 13. Visualization of the Arrival narrative as experienced from Louise’s point of view. Premonition events are depicted using flash-forward event nodes in the visualization

and corresponding flash-forward sequences are also highlighted in this visualization.

Table 1

Average execution time for the planning, and layout and ordering

stages for timelines of various lengths.

Timelines Average time (s)

Narrative Events Nodes Number Planning Layout

4 6 1 1.8169 0.0048

Witcher 7 12 1 6.4473 0.0051

8 14 1 6.5692 0.0059

Friends 9 13 18 1.3614 0.0055

10 15 6 1.7737 0.0062

7 12 1 0.8950 0.0049

8 14 1 0.9079 0.0059

Looper 9 17 1 0.9136 0.0063

10 19 3 0.9851 0.0070

11 21 2 1.0220 0.0076

Arrival 26 49 1 2.1320 0.0239

W

t

c

o

e

s

t

p

i

H

r

p

o

f

i

a

m

o

t

f

p

r

p

t

F

t

o

f
have a child who will die as an adolescent, and that Ian will leave

them after she reveals that she knew this all along.

In the narrative, once Louise gains the understanding of Lo-

gograms, just like the aliens, she perceives time in a circular fash-

ion. At any point in time, she only has memory of her past. How-

ever, since a circle is a closed loop, if she looks back far enough,

she can see events in the future as “recollections.” She can, there-

fore, comprehend all events: those in the past and the present, as

well as the future. This observation is key to unrolling the circular

timeline from Louise’s point-of-view into a linear timeline for vi-

sualization. Events that have transpired in the past and those that

will transpire in the future are positioned on either side of the

“current” event. Any future recollections are depicted at appropri-

ate locations in the timeline as flash-forward events.

Fig. 13 shows the visualization of this narrative as experienced

from Louise’s point-of-view, unrolled as a linear timeline. Since

Louise can experience memories, and not insights, she can per-

ceive events in future, but she cannot change them. In other words,

she can not make any choices, and therefore, there are no choice-

points in this narrative. All events belong to the reality timeline

only. Each “recollection” of a future event (a premonition) is rep-

resented as a flash-forward node in the visualization that appears

before the actual events of the premonition take place. Hovering

over a flash-forward node highlights all events that are part of the

corresponding premonition by grouping them inside a dashed box.

Two premonitions are present in this narrative: first, when

Louise dreams of a child, she perceives events in the future in

which she gives birth to Hannah, raises her alone, and sees her

struggle with her illness; and second, when Louise has a premoni-

tion about the UN event where General Shang thanks her. Events

belonging to each of these are highlighted and annotated in the

visualization shown in Fig. 13 . Also shown in the visualization is

the flash-forward event of Hannah’s death at the beginning of the

timeline. In addition to representing narrative events chronologi-

cally, this allows us to visualize where the flash-forward event oc-

curs in the narrative sjuz ̆het .

5.5. Runtime performance

Table 1 shows time required to execute Yarn on each of our

example narratives. Since the timeline generation phase (Fig. 3) is

computationally the most expensive phase in Yarn’s pipeline, we

only record the runtime for this phase. We ran our tests on a Mac-

book Pro with Intel Core i7-4850HQ CPU (2.3 GHz, 8 logical cores)

and 16GB of RAM. Each example narrative was constructed and vi-

sualized five times, and the execution times were averaged to pro-

duce the results shown.

For each narrative, we calculate the average execution time

for generating a timeline of a specific length. Each of the three
itcher timelines are of different lengths, while 18 timelines in

he Friends narrative consist of 13 entity nodes, and 6 timelines

onsist of 15 nodes. Three timelines in the Looper narrative consist

f 19 nodes, two timelines consist of 21 nodes and one timeline

ach consists of 12, 14 and 17 nodes. From the results, we can ob-

erve that as the number of nodes in each timeline increases, the

ime required to compute the layout also increases, as expected.

From Table 1 we can also see that while the time required for

lanning increases with the number of nodes in the timeline, it

s influenced heavily by the narrative structure. If an action in an

TN requires the output of an action in another HTN as a pre-

equisite, the planning for the first HTN is suspended until the

re-requisite is satisfied. Although this preserves the chronological

rder of events in the timeline, it increases the runtime because

ewer plans can be generated concurrently. The Witcher timelines,

ndividually, take longer to execute because most actions in Ger-

lt’s HTN serve as pre-requisites for other entities. Also, they have

ore fabula elements in the narrative state map than the Friends

r Looper narrative, making it more expensive to execute each ac-

ion.

Verdú and Pajuelo have shown that in many cases spawning

ewer worker threads results in a similar or slightly better runtime

erformance [43] . The higher planning time for the Witcher nar-

ative can be also attributed to the higher number of concurrent

lanners (six) than the Friends narrative (three).

Overall, narrative planning and layout takes ∼ 0.96 seconds per

imeline in the Looper narrative, ∼ 1.4 seconds per timeline in the

riends narrative, ∼ 2.1 seconds per timeline in the Arrival narra-

ive, and ∼ 5 seconds per timeline in the Witcher narrative. Based

n times reported by Liu et al. [1] , our system runs significantly

aster than the original work of Tanahashi and Ma (∼ 150 seconds

K. Padia, K.H. Bandara and C.G. Healey / Computers & Graphics 78 (2019) 64–75 75

p

p

6

t

a

t

p

n

n

n

t

n

a

a

l

A

p

n

e

s

b

i

p

a

a

m

e

t

i

S

f

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
er timeline), but somewhat slower than Liu et al. (∼ 0.16 seconds

er timeline).

. Conclusions and future work

In our previous work we presented Yarn, a novel system for au-

omatic narrative construction and visualization. Here, we present

n extension to Yarn to support non-linear narratives in addition

o linear narratives with multiple timelines. Through iterative ap-

lication of HTN planning we generate all possible timelines in a

arrative. These timelines are visualized using a storyline-like tech-

ique to make it easier for a user to summarize the events in the

arrative. We also support visual comparison of pairs of narrative

imelines.

While we have illustrated the usefulness of Yarn using example

arratives from a choice-based video game, a fictional situation in

 sitcom, and two movies with non-linear timelines, Yarn can visu-

lize other types of temporal relationships with one or more time-

ines, such as simulation results, news stories, and historical events.

s part of our future work we would like to demonstrate the ap-

lication of Yarn for visualizing news stories in a document corpus,

arratives depicting alternate timelines for historical events, and

valuate the performance of Yarn when visualizing large narratives

uch as those with a few dozen entities and hundreds of timelines.

Currently Yarn generates all possible timelines in the narrative

efore it visualizes them. This could limit its scalability in scenar-

os with hundreds of timelines. We would like to improve Yarn’s

ipeline to make the visualization of a timeline available as soon

s its layout is ready. We would also like to investigate the scal-

bility of our approach for: (1) construction and visualization of

ore complex narratives consisting of large numbers of character

ntities and timelines; and (2) comparing two extremely diverging

imelines. Finally, we would like to extend Yarn to support visual-

zation of streaming/evolving narratives.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.cag.2018.11.004.

eferences

[1] Liu S, Wu Y, Wei E, Liu M, Liu Y. Storyflow: tracking the evolution of stories.

IEEE Trans Visual Comput Gr 2013;19(12):2436–45. doi: 10.1109/TVCG.2013.196 .
[2] Munroe R. Xkcd #657: movie narrative charts. 2009. http://xkcd.com/657/ .

[3] Tanahashi Y, Ma K-L. Design considerations for optimizing storyline visualiza-
tions. IEEE Trans Visual Comput Gr 2012;18(12):2679–88. doi: 10.1109/TVCG.

2012.212 .
[4] Ogawa M, Ma K-L. Software evolution storylines. In: Proceedings of the 5th

international symposium on software visualization. SOFTVIS ’10. New York,

NY, USA: ACM; 2010. p. 35–42. ISBN 978-1-4503-0028-5. doi: 10.1145/1879211.
1879219 .

[5] Ogievetsky V. Plotweaver xkcd/657 creation tool. 2009. http://ogievetsky.com/
PlotWeaver/ .

[6] Padia K, Bandara K, Healey C. Yarn: generating storyline visualizations us-
ing htn planning. In: Proceedings of the Graphics Interface 2018. GI 2018.

Canadian Human-Computer Communications Society / Société canadienne du

dialogue humain-machine; 2018. p. 26–33. ISBN 978-0-9947868-3-8. doi: 10.
20380/GI2018.05 .

[7] Cavazza M , Charles F , Mead SJ . Interacting with virtual characters in interac-
tive storytelling. In: Proceedings of the first international joint conference on

autonomous agents and multiagent systems: part 1. ACM; 2002. p. 318–25 .
[8] Rimmon-Kenan S . Narrative diction: contemporary poetics. Routledge; 2003 .

[9] Branigan E . Narrative comprehension and film. Sightlines. Routledge; 2013.
ISBN 9781136129322 .

[10] Herman D , Phelan J , Rabinowitz PJ , Richardson B , Warhol R . Narrative theory:

core concepts and critical debates. Ohio State University Press; 2012 .
[11] Propp V . Morphology of the folktale. University of Texas Press; 1968. ISBN

9780292783768 .
[12] Chatman SB . Story and discourse: narrative structure in fiction and film. Cor-
nell University Press; 1980 .

[13] Meehan J . Tale-Spin, an interactive program that writes stories. In: Proceed-
ings of the Fifth international joint conference on artificial intelligence; 1977.

p. 91–8 .
[14] Turner SR . Minstrel: a computer model of creativity and storytelling. University

of California at Los Angeles, Los Angeles, CA; 1993. Ph.D. thesis .
[15] Pérez y Pérez R . Mexica: a computer model of creativity in writing. The Uni-

versity of Sussex, Falmer, UK; 1999. Ph.D. thesis .

[16] Theune M , Faas E , Nijholt A , Heylen D . The virtual storyteller: story creation
by intelligent agents. In: Proceedings of the technologies for interactive digital

storytelling and entertainment. Berlin: Springer; 2003. p. 204–15 .
[17] Riedl M . Narrative planning: Balancing plot and character. North Carolina State

University, Raleigh, NC; 2004 .
[18] Cheong Y-G , Young RM . Suspenser: a story generation system for suspense.

IEEE Trans Comput Intell AI Games 2015;7(1):39–52 .

[19] Elson DK , McKeown KR . A platform for symbolically encoding human narra-
tives. In: Proceedings of the AAAI fall symposium on intelligent narrative tech-

nologies; 2007 .
20] Magerko B , Laird J , Assanie M , Kerfoot A , Stokes D . AI characters and directors

for interactive computer games. Ann Arbor 20 04;10 01(48):109–2110 .
[21] Riedl MO , Young RM . An intent-driven planner for multi-agent story gen-

eration. In: Proceedings of the Third international joint conference on au-

tonomous agents and multiagent systems-volume 1. IEEE Computer Society;
2004. p. 186–93 .

22] Fikes RE , Nilsson NJ . Strips: a new approach to the application of theorem
proving to problem solving. Artif Intell 1972;2(3):189–208 .

23] Pizzi D , Cavazza M . Affective storytelling based on characters feelings. In: Pro-
ceedings of the AAAI fall symposium on intelligent narrative technologies;

2007. p. 111–18 .

24] Erol K , Hendler J , Nau DS , Tsuneto R . A critical look at critics in HTN planning.
In: Proceedings of the IJCAI-95. Citeseer; 1995 .

25] Kambhampati S , Hendler JA . A validation-structure-based theory of plan mod-
ification and reuse. Artif. Intell. 1992;55(2):193–258 .

26] Cavazza M , Charles F , Mead SJ . Planning characters’ behaviour in interactive
storytelling. J Visual Comput Anim 2002;13(2):121–31 .

[27] Avradinis N , Aylett R , Panayiotopoulos T . Using motivation-driven continuous

planning to control the behaviour of virtual agents. In: Virtual storytelling. Us-
ing virtual realityTechnologies for storytelling. Springer; 2003. p. 159–62 .

28] Thawonmas R , Tanaka K , Hassaku H . Extended hierarchical task network plan-
ning for interactive comedy. In: Intelligent agents and multi-agent systems.

Springer; 2003. p. 205–13 .
29] Lee B , Riche NH , Isenberg P , Carpendale S . More than telling a story:

transforming data into visually shared stories. IEEE Comput Gr Appl

2015;35(5):84–90 .
30] Segel E , Heer J . Narrative visualization: telling stories with data. IEEE Trans

Visual Comput Gr 2010;16(6):1139–48 .
[31] Hullman J , Diakopoulos N . Visualization rhetoric: framing effects in narrative

visualization. IEEE Trans Visual Comput Gr 2011;17(12):2231–40 .
32] Robertson G , Fernandez R , Fisher D , Lee B , Stasko J . Effectiveness of animation

in trend visualization. IEEE Trans Visual Comput Gr 2008;14(6) .
33] Frishman Y , Tal A . Online dynamic graph drawing. IEEE Trans Visual Comput

Gr 2008;14(4):727–40 .

34] Burch M , Vehlow C , Beck F , Diehl S , Weiskopf D . Parallel edge splat-
ting for scalable dynamic graph visualization. IEEE Trans Visual Comput Gr

2011;17(12):2344–53 .
35] Tanahashi Y , Hsueh C-H , Ma K-L . An efficient framework for generating

storyline visualizations from streaming data. IEEE Trans Visual Comput Gr
2015;21(6):730–42 .

36] Jensen M. Visualizing complex semantic timelines. Derived from the World

Wide Web: http://newsblipcom/tr 2003.
[37] Waser J , Fuchs R , Ribicic H , Schindler B , Bloschl G , Groller E . World lines. IEEE

Trans Visual Comput Gr 2010;16(6):1458–67 .
38] Sugiyama K, Tagawa S, Toda M. Methods for visual understanding of hier-

archical system structures. IEEE Trans Syst Man Cybern 1981;11(2):109–25.
doi: 10.1109/TSMC.1981.4308636 .

39] Frick A . Upper bounds on the number of hidden nodes in Sugiyama’s algo-

rithm. Berlin, Heidelberg: Springer; 1997. p. 169–83. ISBN 978-3-540-6 804 8-2 .
40] Bostock M , Ogievetsky O , Heer J . D 3 data driven documents. IEEE Trans Visual

Comput Gr 2011;17(12):2301–9 .
[41] Healey C, Enns J. Attention and visual memory in visualization and computer

graphics. IEEE Trans Visual Comput Gr 2012;18(7):1170–88. doi: 10.1109/TVCG.
2011.127 .

42] Nowell L, Hetzler E, Tanasse T. Change blindness in information visualization:

a case study. In: Proceedings of the IEEE symposium on information visualiza-
tion, INFOVIS 2001; 2001. p. 15–22. doi: 10.1109/INFVIS.2001.963274 .

43] Verdú J , Pajuelo A . Performance scalability analysis of javascript applications
with web workers. IEEE Comput Archit Lett 2016;15(2):105–8 .

https://doi.org/10.1016/j.cag.2018.11.004
https://doi.org/10.1109/TVCG.2013.196
http://xkcd.com/657/
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1145/1879211.1879219
http://ogievetsky.com/PlotWeaver/
https://doi.org/10.20380/GI2018.05
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0005
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0006
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0007
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0008
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0009
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0010
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0011
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0012
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0013
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0014
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0015
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0016
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0017
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0018
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0019
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0020
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0021
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0022
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0023
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0024
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0025
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0026
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0027
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0028
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0029
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0030
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0031
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0032
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0033
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0033
https://www.newsblipcom/tr
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0034
https://doi.org/10.1109/TSMC.1981.4308636
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0036
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0037
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0037
https://doi.org/10.1109/TVCG.2011.127
https://doi.org/10.1109/INFVIS.2001.963274
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0040
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0040
http://refhub.elsevier.com/S0097-8493(18)30182-1/sbref0040

	A system for generating storyline visualizations using hierarchical task network planning
	1 Introduction
	2 Related work
	2.1 Automated narrative construction
	2.2 Visualizing narratives

	3 Yarn overview
	4 Narrative generation and visualization
	4.1 HTN generation
	4.2 Planning
	4.3 Layout and ordering
	4.4 Visualization

	5 Examples
	5.1 Example: Witcher
	5.2 Example: Friends
	5.3 Example: Looper
	5.4 Example: Arrival
	5.5 Runtime performance

	6 Conclusions and future work
	Supplementary material
	References

