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Abstract
The coronavirus disease COVID-19 was first reported in Wuhan, China, on December 31, 2019. The disease has
since spread throughout the world, affecting 227.2 million individuals and resulting in 4,672,629 deaths as of Sep-
tember 9, 2021, according to the Johns Hopkins University Center for Systems Science and Engineering. Numer-
ous sources track and report information on the disease, including Johns Hopkins itself, with its well-known
Novel Coronavirus Dashboard. We were also interested in providing information on the pandemic. However,
rather than duplicating existing resources, we focused on integrating sophisticated data analytics and visualiza-
tion for region-to-region comparison, trend prediction, and testing and vaccination analysis. Our high-level goal
is to provide visualizations of predictive analytics that offer policymakers and the general public insight into the
current pandemic state and how it may progress into the future. Data are visualized using a web-based
jQuery+Tableau dashboard. The dashboard allows both novice viewers and domain experts to gain useful in-
sights into COVID-19’s current and predicted future state for different countries and regions of interest through-
out the world.
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Introduction
At the end of 2019, China alerted the World Health
Organization (WHO) of an outbreak of a novel strain
of coronavirus in the city of Wuhan.1 The WHO pub-
lished information on the outbreak on January 5.
Although we use the common name COVID-19 here,
the International Committee on Taxonomy of Viruses
classified the disease as ‘‘severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2)’’ on February 11,
the same day the WHO announced COVID-19 as the
name of the new disease. On January 13, the virus
first appeared outside China, in Thailand.

China shared the genetic sequence of COVID-19 on
February 12. By March 11, the virus had spread to 114
countries and caused 118,000 confirmed cases. At this
point, the WHO declared COVID-19 a global pan-
demic. The first case of COVID-19 within the United
States was reported in Snohomish County, Washing-
ton, on January 20, 2020.2 As of September 9, 2021,

the United States reported *41.8 million confirmed
cases of COVID-19, resulting in 670,128 deaths. World-
wide, COVID-19 has sickened 227.2 million individuals,
with 4,672,629 succumbing to the disease.

As COVID-19 expanded, numerous agencies began
publishing case counts both in text and visual format
to track the spread of the disease. The Johns Hopkins
University (JHU) Novel Coronavirus (COVID-19) Cases
Data dashboard3 provides up-to-date statistics on con-
firmed, recovered, and fatality cases, as well as detailed
information on location and other pertinent facts. We
use a modified version of JHUs data from data.world4

as one source for our dashboard.
Another similar effort is CovidNet, a real-time COVID

tracking project that presents information on both tempo-
ral and geographic trends.5 CovidNet focuses on reliable
timely data sources and provides a number of visualiza-
tions, including temporal epidemic curves and cross-
region comparison based on absolute case numbers.
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Other online dashboards also exist: 1Point3Acres
(case, test, and vaccination visualization),6 University of
California, Los Angeles (UCLA) Combating COVID-19
(peak date estimates),7 Los Alamos National Laboratory
COVID-19 Dashboard (case visualization),8 COVID
Analytics (effects of policies on cases),9 and COVID-19
Modeling (case and hospital bed usage and future week
predictions).10 Aggregators are also collecting URLs of
COVID-related websites, for example, the Shaman
Group’s COVID-19 Findings and Simulations list.11

Existing dashboards that track the current state of
COVID-19 and predict future case totals for a specific
region are useful, but they are mainly focused on data
reporting. We did not want to duplicate this func-
tionality since numerous sources exist with excellent
implementations. Instead, we focused on performing
sequence-based pattern matching, time series analysis,
regression, and unsupervised machine learning before
the application of perceptually optimal visualization
strategies to augment existing information with predic-
tive analytics. As noted in the Abstract, our high-level
goals are as follows:

(1) To apply predictive analytics to raw COVID-19
data to identify significant events related to
region* comparison, case curve ‘‘bend’’ estima-
tes, case trends, and testing, positivity, and vac-
cine analysis.

(2) To present results using visualizations that are
accessible to practitioners, policymakers, and the
general public at large.

To achieve these goals, we implemented a dashboard
with the following features:

� similarity of a target region’s case curves (either
fatalities or confirmed cases) to all other regions
reporting data, calculated with dynamic time
warping;
� estimated dates and maximum case counts for

when each region’s curve will ‘‘bend,’’ and its
rate of acceleration will begin to slow, calculated
with four-parameter logistic regression;
� week-over-week trend graphs for a target region’s

case curves, calculated by comparing the linear
regression line for adjacent weeks’ case totals for
direction and statistical significance;

� time series predictions for future estimates of tar-
get attributes such as fatalities based on existing
data;
� a web-based dashboard written with jQuery and

Tableau{ to visualize our results (Fig. 1) as well
as testing totals, case totals, and case maps to pro-
vide context for the current state of the pandemic,
without having to switch to a different environ-
ment; and
� visual representations selected based on our long-

standing knowledge of human visual perception
and its appropriate use in visualization.

This offers a window into current and potential fu-
ture events for the COVID-19 pandemic. Critically, the
presentation is specifically designed for interested viewers
in terms of complexity: standard charts, graphs, and
maps are employed; accessibility: the dashboard is web-
based to provide convenient access and dissemination
of results; and visual legibility: perceptual representations
are used that harness the strengths and avoid the weak-
ness of the low-level human visual system.12

Although we focus on analytics and visualiza-
tion for the COVID pandemic, the underlying ap-
proaches are not limited to this domain. The same
methodologies could be applied to issues such as vac-
cine testing and distribution, results from disease
mitigation strategies for different segments of the
population (e.g., divided by ethnicity, age, gender,
socioeconomic status), or how sociopolitical deci-
sions impact disease spread and effect. Given available
data, lessons learned from our current analytics and vi-
sualization dashboards can be quickly repurposed to
new situations.

Visual Analytics for Epidemiology
Analytics and visualization have been applied exten-
sively in the area of disease analysis and epidemiology.
COVID-19 is only the most recent disease to undergo
this type of investigation and presentation. Many re-
searchers consider John Snow’s cholera map of London
as the first scientific example of analytics and visualiza-
tion applied to disease investigation.13,14 Carroll et al.
summarized articles in epidemiological analytics from
January 1980 through June 2013, focusing on geo-
graphic information systems, molecular epidemiology,
and social network analysis.15

Visualizing epidemiology data for investigation is a
common theme throughout epidemiological dashboards.

*We use the term region to refer to geographic regions provided in the JHU data
set. This includes countries (e.g., France and Russia) and states or provinces
when available (e.g., New York, United States; or Hubei, China). {https://go.ncsu.edu/iaa-covid-viz
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https://go.ncsu.edu/iaa-covid-viz


FIG. 1. COVID visualizations: (a) trend graphs of fatalities (top) and confirmed cases (bottom) in the United
States; (b) normalized region–region similarities for U.S. fatalities (top) and confirmed cases (bottom) versus
other regions, to compare fatality and confirmed case time sequences between countries; (c) estimated fatality
(top) and confirmed case (bottom) bend dates to estimate when a country’s fatality or confirmed case curve
acceleration will slow.
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Epinome presents coordinated views of cases, case his-
tograms, and choropleth maps that allow practitioners
to track and evaluate early disease outbreaks.16 Hamid
et al.17 developed a dashboard that uses the WHOs
global FluMART database to visualize both seasonal
and novel influenza virus time series plots. Lee et al.18

built an R+Shiny dashboard to compare risk-standardized
mortality rates for sepsis patients in different states in the
United States. In recent months, numerous COVID-19
dashboards have been published online, including those
by JHU,3 Tableau,19 and SAS Institute.20

Although the visualization dashboards discussed
above offer excellent surveillance capabilities, most of
them do not perform analytics to derive new results
and insights from their source data sets. Examples of
analytics in epidemiology do exist. One study focused
on the lack of timely information dissemination related
to dengue fever.21 Researchers applied text analytics to
English-language newspaper articles on dengue fever
in India to estimate disease cases. This highlighted
increases, peaks, and decreases in annual dengue out-
breaks in near real time. A dashboard was built using
the results to allow practitioners to investigate differ-
ent aspects of the disease.

To validate their approach, the same technique was
applied to newspaper articles on flu in the United

States. Results were compared with the Centers for Dis-
ease Control and Prevention (CDC) data, showing an
85% accuracy in the estimates. This suggests that text
analytics can be used to track diseases through local
or social media articles in areas where timely data dis-
semination is unavailable.

Despite these successes, care must be taken to ensure
that analytic strategies perform well as disease character-
istics change over time. One well-known example of
this was Google Flu Trends.22 Google mined web search
data to predict peak flu levels in the United States.
Results pointed to an overwhelming success, producing
a mean correlation of 0.90 compared with the CDC data.
In subsequent years, however, peak levels were signifi-
cantly under- or overestimated.23 Although Google has
not publicly commented, researchers believe that pan-
demics such as H1N1 swine flu in 2009 and the severe
flu season in 2013 led to search patterns different from
those used to train Google’s algorithms.

Rather than considering this a failure, it identified
how models must be improved to deal with previ-
ously unanticipated information. For example, ARGO
(AutoRegression with GOogle search data) extends
the work of Google Flu Trends to better predict the pat-
tern of annual flu outbreaks using a self-correcting
autoregressive technique.24

Fig. 1. (Continued).
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Region–Region Similarity
One question many people ask is: ‘‘How similar is the
outbreak in my region to other regions worldwide?’’
Apart from general interest, an ordered list of regions
similar to a target region can offer important benefit.
For domain experts, it can highlight regions that may
offer clues about how and why the pandemic varies
over time in a way that is similar to the target region.
Mistakes, mitigation strategies, and policy decisions
made by regions with similar pandemic outbreak pat-
terns can offer important clues on how to most effec-
tively fight the pandemic in the target region. For a
more general audience, understanding which other re-
gions are similar to a person’s home region can high-
light where the pandemic is expanding similarly, and
where it is expanding in a different manner.

From a high-level view, region–region similarity
can be seen as comparing the times series of case totals
between pairs of regions. Due to the difference in the
onset of the disease around the world, we applied dy-
namic time warping (DTW),25 a well-known and robust
algorithm for this operation. Although other approaches
exist (e.g., pairwise alignment for DNA sequences or
progressive alignment construction for multiple se-
quences), DTW is still considered the most general and
computationally tractable approach for sequence pairs.

Consider a target time series S1 = s1, 1, . . . , s1, nf g and
a candidate time series S2 = s2, 1, . . . , s2, mf g. DTW
defines an optimal mapping s2, j ! s1, i, 1 � j � m,

1 � i � n between points on the two time series
with the minimum ‘‘cost,’’ where cost is defined asP

map s2, j� s1, i

�� ��, the sum of the absolute difference
in the values for each point-to-point mapping. DTWs
optimal mapping must satisfy four constraints.

(1) Every index in S1 must match one or more indi-
ces in S2.

(2) s2,1 must match s1,1.
(3) s2,m must match s1,n.
(4) Mappings from S1 must increase monotonically

through S2.

In terms of implementation, a naive approach to cal-
culating all possible DTW matching costs is expensive
but simple, running in O(n2) quadratic time for two
time series with a maximum length of n. Pseudocode
for this algorithm is readily available26 (Algorithm 1).
Once all DTW costs are calculated, the cost matrix
can be walked from left to right, choosing each column’s
minimum cost. Rows correspond to points in s1 and
columns to points in s2. Walking occurs right one

step or right and down one step to guarantee a mono-
tonic increase in mappings.

Modern implementations use approximation to
significantly reduce computational cost, for exam-
ple, FastDTW.27 Here, a DTW solution is recursively
refined from an initial coarse estimation. FastDTW
showed large improvements in accuracy and runs in
O(n) linear time and space complexity for two time se-
ries with a maximum length of n, making it the current
standard approach for computing DTW solutions on
large time series.

We use DTW to match case time series. Figure 2
shows fatality curves for the United States (top), Brazil
(middle), and the United Kingdom (bottom). Visually,
the U.S. and Brazilian curves appear more similar,
compared with the U.S.–U.K. curves. This matches
the similarity percentages DTW provides: 99% and
24% for the United States matched to Brazil and the
United Kingdom, respectively. DTW costs for each re-
gion are normalized to a range of 0 . 1 as follows, with
the United States used as an example target region.

1. Compute the DTW cost cj between the United
States and every other region.

Algorithm 1: Calculate DTW for time series s1 and s2

Result: The minimum moves needed to align two time series curves
DTW ) array[0..n, 0..m]

for i = 1 to n do������
for j = 1 to m do��� DTW [i, j])N
end

end
DTW [0, 0] ) 0

for i = 1 to n do��������

for j = 1 to m do���� cost ) j s2[i] � s1[j] j
DTW [i, j] ) cost + min(DTW [i� 1, j], DTW [i, j� 1], DTW [i� 1, j� 1])

end
end
return DTW [n, m]

2. Identify minimum and maximum costs cmin and
cmax to define cost range cr = cmax� cmin.

3. Use cmin and cr to calculate a normalized sim-
ilarity for every U.S.–region cost cj as simj = 1�

(cj � cmin)
�

cr
� �

.

Note that because of normalization, DTW costs are
not symmetric. For example, the U.S.–Brazil confirmed
case similarity is 99%, but the Brazil–U.S. similarity
is only 15%. This is because Brazil’s confirmed case
curve is more similar to India and Russia versus the
United States. An annotated line chart is well suited
to visualize these data since most viewers recognize it.
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A bar chart is also appropriate and can empha-
size that the data represent daily snapshots instead of
continuous readings. Perceptually, there are few con-
siderations other than ensuring the line–background
contrast is sufficient.

Estimated Curve Bend
Public discussion of the COVID-19 pandemic rou-
tinely discusses ‘‘bending the curve.’’ This is the point
where the rate of increase in cases{ begins to slow.
The initial expectation was that case curves would
follow a sigmoid-like shape with an initial rise in the
rate of increase in cases (the exponential region of the
curve), a stabilization in the rate of increase (the linear
region), and a fall in the rate of increase toward zero as
the curve flattens (the asymptotic region). Beyond this,
the hope is that the rate of increase becomes negligible
as the number of cases per day begins to fall.

Four-parameter logistic regression, or 4PL, is used to
fit a sigmoid curve to a time series point set. For exam-
ple, 4PL is commonly used in biology to identify and
measure target proteins in enzyme-linked immunosor-
bent assays. Our interest is in fitting a sigmoid curve to
a case time series and then identifying when the curve’s
rate of acceleration begins to slow. Critically, this can
be done on a partial curve, that is, before the bend oc-
curs. This allows us to predict when we expect the rate
of increase in cases to fall. 4PL curves are defined by the
following four parameters:

(1) a: the minimum value on the curve g(0).
(2) b: the steepness of the curve at its inflection

point.
(3) c: the point of inflection _gmax.
(4) d: the maximum value on the curve g(N).

Our interest is in c, the point of inflection, since this
defines the bend’s position in the curve. Suppose we
plot the independent variable time on the x-axis and
the dependent variable cumulative number of cases
on the y-axis. Then, the parameters a, b, c, and d define
x and y in the 4PL curve as follows:

x = c
a� d
y� b

� 1

� �1
b

, (1)

y = dþ a� d

1þ x
c

� �b : (2)

A simple way to derive a, b, c, and d from a time se-
ries of (x, y) points is to use least squares curve fitting to
minimize the error between the point set and the sig-
moid curve defined by a, b, c, and d, where error e is
measured as follows:

� = y� 4PL(x, a, b, c, d), (3)

4PL(x, a, b, c, d) = dþ a� d

1þ x
c

� �b : (4)

Once an optimal curve is found, c defines when the
case curve bends, and Equations 1 and 2 can be used to
calculate the time x and the number of cases y at the
bend.

In practice, identifying the inflection point is not as
simple as applying the 4PL equations to an entire case
time series. 4PL is extremely sensitive to the input point
set, especially when used to predict future points.
Changing the point set can change the position of c,
sometimes dramatically. To address this, we calculate
one or more estimates of cj and its corresponding po-
sition (xi; yi) as follows for a case time series
S = s0, . . . , snf g.

(1) Compute 4PL on the entire case time series to
date to define co and (x0; y0).

(2) Remove the first point from the time series
and then recompute a new c1 and corresponding
(x1; y1).

(3) Continue until y reaches 95% of the maximum
y-value of the time series.

(4) Use k-means to cluster all projected (xi; yi)

points, minimizing the sum of squared errors
within each cluster to determine the number
of clusters n.

(5) Each cluster forms an estimate of an inflection
point. Discard clusters with fewer than four
points.

(6) For the m surviving clusters j = 0, ., m � 1,
compute l(aj), l(bj), l(cj), l(dj), and r(cj)

from the points in cluster j.

For each region, the m positions xj, yj
� �

= 0, . . . ,

m� 1 define m estimates of the time and case count
of a region’s curve bend. r(cj) defines the confidence
in each estimate. The larger the standard deviation,
the larger the variation in the cluster’s inflection esti-
mates, and the less confidence we have in the cluster’s
estimated curve bend position.

{For example, if case curves are reported daily, a ‘‘bend’’ in the curve is the point
where the day-over-day case count begins to decrease.
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Figure 1c shows estimated curve bends, together
with the estimated number of fatality (top) and con-
firmed case counts (bottom) at the time of the bend.
If a region has more than one estimate, its name is
suffixed with�i to denote multiple estimates for the re-
gion. Size is used to represent uncertainty. Interest-
ingly, we conducted a short informal experiment to
determine whether intuition suggests larger means
‘‘more certain’’ or ‘‘more uncertain.’’ Results leaned
heavily to ‘‘more uncertain,’’ so this is the representation
used in the scatterplot. Regions with bend dates more
than 10 days in the past are not shown. Ten-day historical
estimates are visualized to allow comparison to known
data, to see whether the estimate was accurate or not.

Multiple inflection points
Although 4PL worked well initially, it assumes a single
inflection point in acceleration, followed by an acceler-
ation plateau. As the pandemic has continued, numer-
ous regions have experienced multiple ‘‘spikes’’ where
acceleration decreases and then increases again as ex-
ternal factors such as public holidays, school and uni-
versity openings, and reductions in safety mandates
occur. 4PL is not designed to properly analyze these sit-

uations. It can fail to correctly identify the most recent
curve bend, whether it has already happened or is esti-
mated to occur in the future.

To address this, we extended 4PL to preprocess a
case sequence in a way that determines the most recent
case subsequence to analyze. The proper case subse-
quence is identified through the following steps:

(1) Fit a cubic spline to the case sequence pointset.
This smooths the case sequence and also estima-
tes a functional form that underlies the pointset.

(2) Use the spline’s functional form to identify
second-derivative inflection points, which corre-
spond to positions where the sign of the acceler-
ation changes and the curve ‘‘bends.’’

(3) If fewer than two inflection points exist, the
curve is processed in its entirety.

(4) If the last two inflection points represent accel-
eration changes from � / + then + / �
(Fig. 3a), the final inflection point is the point
where the curve has most recently bent and
can be used directly.

(5) If the last two inflection points represent accel-
eration changes from + / � then � / +
(Fig. 3b), the curve’s acceleration is increasing.

FIG. 3. An extension of 4PL to handle multiple inflection points, � ! þ inflections shown as red upward
arrows, þ ! � inflections shown as blue downward arrows: (a) a cubic spline curve (orange) fit to a pointset
(blue) with decrease–increase–decrease inflection points; (b) a cubic spline curve (orange) fit to a more jagged
pointset (blue) with decrease–increase–decrease–increase inflection points.
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In this case, 4PL is applied to the curve subse-
quence starting from the second-last inflection
point to estimate the new curve bend position.

Trend Direction
Trend direction provides more localized informa-
tion on the rate of change in the cumulative number
of cases. Perhaps more importantly, a trend direction
graph provides a more ‘‘intuitive’’ view of how case
rates are changing week-over-week for each region.
To the best of our knowledge, this information is not
contained in any of the existing visualization dash-
boards. We use linear regression and regression coeffi-
cients to identify both significant and nonsignificant
increases and decreases in case rates to calculate this esti-
mate since they are simple and efficient to compute and
can be applied with as few as three available data points.

(1) Fit a linear regression line l1 to the first week’s
case counts using ordinary least squares (OLS).

(2) Fit a linear regression line l2 to the second week’s
case counts using OLS.

(3) Given the slope mi and its standard error ri for
each curve, calculate the t-value for the curves’
difference.

c =
m2�m1j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ r2
p : (5)

(4) Convert the t-value to a p-value to test for signif-
icance.

(5) Use the sign of t-value and the p-value to choose
between significant upward (t-value >0, p £
0.05), upward (t-value >0, p > 0.05), downward
(t-value <0, p > 0.05), significant downward (t-
value <0, p £ 0.05), or stable (t-value &0).

Weekly trends for a region are displayed as a graph
of line segments, with each segment colored and ro-
tated to differentiate between the five different catego-
ries (Fig. 4). The trend graphs for U.S. fatality and
confirmed cases are shown in Figure 1a. Upward trends
are displayed in shades of red, downward trends in
shades of blue, and a stable trend in gray. Perceptually,
we selected a red–blue double-ended color scale since
these hues are distinguishable to colorblind individuals.28

Variations in saturation are used to separate significant
from nonsignificant.

A secondary data property—the number of cases—is
represented with size (width) since experiments have

shown that color perceptually dominates size,29 and
we want viewers to see the trend direction first and
then the number of cases if this is important to them.

We build out the current week’s trend line day-by-
day as new case counts are reported. Although this
causes potential instability in the trend direction if
case counts vary from the current regression line, we
decided that individuals would rather see a par-
tial trend, rather than waiting a week to see the next
trend line. Three days of data are needed since this is
the minimum number of points required to calculate
the standard error of the slope r.

Another important constraint is that the sample sets
must be independent. This means if week 1 ends on a
Sunday, week 2 starts on the following Monday. It is
possible to abut the trend lines. Since this introduces
a common point that violates the independence re-
quirement, however, we need to change our signifi-
cance test method. This can be done using piecewise
linear regression. We are currently experimenting
with this approach to see if it provides enough value
to use as our standard implementation.

To further compare region to region, we provide a
second visualization that uses a scatterplot with the
most recent week’s rate of increase in cases on the
x-axis and the number of cases on the y-axis. Again,
this visual comparison is unique to our dashboard,
allowing viewers to determine the current state of pan-
demic spread in a given country or region. Both the
trend rate and the number of cases are scaled to the
range �1 . 1. We use this range rather than the tradi-
tional 0 . 1 to imply ‘‘low’’ in the negative area and
‘‘high’’ in the positive area. This divides the scatterplot
into four regions with intuitive meanings.

� managed: lower-left, low case count and slow case
rate increase
� danger of increase: lower-right, low case count but

accelerating case rate increase
� accelerating: upper-right, high case count and

rapid case rate increase
� recovering: upper-left, high case count but slowing

case rate increase

Two common patterns are regions that stay in the
lower-left ‘‘managed’’ region (e.g., South Korea) or
regions that move counterclockwise from the lower-
left to the upper-left region, passing through both the
lower-right and upper-right areas. An example is the
United States, which spent a significant amount of
time in the upper-right region, but has now moved
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into the upper-left ‘‘recovering’’ region for both fatali-
ties and confirmed cases. Figure 5 shows the distribu-
tion of regions throughout the four regions for both
fatalities (top) and confirmed cases (bottom) in the
middle of September 2021.

Time Series Prediction
Predictive analytics provides an understanding of what
future values are expected based on existing data. Due
to the complexity and volatility of the pandemic, we
chose to focus on short-term predictions. Understand-
ing predictive trends can help assess and prepare for
potential outcomes, such as increases in intensive
care unit admissions and fatalities.

We compared different time series prediction algo-
rithms to see which performed most accurately when

predicting fatalities 1 week forward based on a model
created using the previous 40 days of confirmed case
counts (explanatory variable) and corresponding fatal-
ities (response variable). We investigated three well-
known time series models: linear regression (linear),
autoregressive integrated moving average (ARIMA),
and ARIMA with explanatory variables (ARIMAX).

Another well-known class of time series algorithms
is ETS (error, trend, seasonal) exponential smoothing
model. We chose to focus on autoregression models
since they support multivariate inputs directly. Due
to certain regions having little to no variation per
week in fatalities at the beginning of the pandemic,
we started our analysis *150 days into the pandemic
(specifically, June 18, 2020). The algorithm ran as
follows:

FIG. 4. Weekly trend curve directions: significantly upward (red), upward (pink), downward (light blue),
significantly downward (dark blue), or stable (gray); line width represents the number of cases.
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(1) Starting on June 18, for each region, select the
next 40 days of (confirmed case, fatality) pairs
for model creation (‘‘training data.’’)

(2) Fit each algorithm to a region’s training set.
For linear regression, use a lag of 7 days for con-
firmed cases since this value is assumed to be
unknown when predicting values into the
future.

(3) Predict the next 7 days of fatalities and compare
them with the known fatality counts (‘‘test data’’)
to calculate an algorithm’s mean absolute error
(MAE).

(4) Combine the 7 days of test data with the last 33
days of training data to create the next training
set and build a new model. Rerun the model
to predict new fatality counts and a new MAE
score for the next 7 days.

(5) Repeat steps 2–4 until the end of the data set.

Our algorithms created 2458 separate runs of 40
daily sequences with corresponding weekly MAE val-
ues. This allowed us to characterize model performance
in three separate ways. First, as frequency counts of
MAEs between predicted and known fatalities from

the test set binned from 0–100, 100–200, ., 900–
1000, and >1000 over the 2458 runs. Second, as the al-
gorithms’ relative performance on a 1.0 (best) to 0.0
(worst) scale, to see how much better a winning algo-
rithm was to the others, as opposed to algorithm
order alone. Finally, as order of algorithm performance
for each run from lowest to highest based on MAE.
This generates a frequency count for how often an al-
gorithm was first, second, or third best for each of
the 2458 runs.

To provide context for readers unfamiliar with these
algorithms, we provide a brief explanation and refer-
ences to more detailed descriptions:

Linear: Linear regression (linear) finds the line of
best fit using 7-day lagged confirmed case counts
as the explanatory variable and fatalities as the
response variable for the 40 sample training set.
The line is extended to predict the next 7 days
of fatalities. This is similar to the simple drift
approach, where a line extends from the first
training set point to the last. Linear regression
minimizes the MSE from the line to each training
set sample to optimize its fit.

FIG. 5. A distribution of regions across the four trend areas: managed (lower-left), danger of increase (lower-
right), accelerating (upper-right), and recovering (upper-left), allowing viewers to identify a region’s current
pandemic state.
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Autoregressive integrated moving average: Box and
Jenkins developed ARIMA in the 1970s.30 In
the ARIMA model, a series must be stationary
(a constant mean and variance over time) to begin
the modeling process. If a series is not stationary,
differencing is applied to the series, which pro-
duces an ‘‘Integrated’’ series (the ‘‘I’’ in ARIMA).
Once a series is stationary, one can explore fitting
autoregressive terms (AR) and/or moving aver-
age terms (MA) to the series. We used auto.arima
function from Hyndman and Athanasopoulos31

to search for the best ARIMA model for each
training set by iterating through various AR and
MA terms, and differencing for the series. The
‘‘best’’ model is defined as the model with lowest
corrected Akaike information criterion.

ARIMA with explanatory variables: Incorporating
extraneous information in an ARIMA with lagged
explanatory variables (ARIMAX) combines the
two approaches described above. The explanatory
variables in this instance are the 7-day lagged
confirmed case counts. Errors from this regression
are assumed to follow an ARMA process.32 We
utilize the same auto.arima function from Hyndman
and Athanasopoulos31 with the inclusion of this
explanatory variable.

ARIMA and ARIMAX performed well, with MAE
scores clustering in the 0–200 range. Very few scores
fell outside an MAE of 1000: ARIMA and ARIMAX
had 9 and 27 MAEs over 1000, respectively. Due to
its simplicity, linear performed worse than the ARIMA-
based models, producing MAEs on the 0–2000 range,
with 81 MAE values over 1000 and 24 over 2000,
respectively.

We plotted relative MAE performance for the algo-
rithms to highlight which algorithms perform best
most often and visualize how much better they are
than their competitors. Figure 6a–c show the same
data, but sorted best-to-worst for each of the three
algorithms: linear as the green line in Figure 6a,
ARIMA as the purple line in Figure 6b, and ARIMAX
as the orange line in Figure 6c.

Linear scored first in only two cases and tied with
ARIMAX in two cases. Even when it was first, it was
not markedly better than either ARIMA or ARIMAX.
This is clear from the almost immediate and sharp
drop to zero in the green line in Figure 6a. ARIMA
(purple line, Fig. 6b) did much better, maintaining a
large relative advantage over both linear and ARIMAX

for numerous regions. It placed first for 102 regions.
ARIMAX (orange line, Fig. 6c) also performed well,
scoring first for 55 regions and showing a large im-
provement in MAE over the other algorithms in nu-
merous cases.

Figure 7 shows side-by-side bar graphs visualizing
the number of times each algorithm placed first, sec-
ond, or third over the 2458 runs we tested. ARIMA
had the most first-place runs (1302), followed by ARI-
MAX (965), and linear (457). Linear also had the most
third-place runs (1595), which is not surprising given
the model’s simplicity. Alternatively, if we award an al-
gorithm three points for a first-place run, two points
for a second place run, and one point for a third place
run, then ARIMA and ARIMAX score nearly identical-
ly: 2.22 and 2.2, respectively. Linear scores 1.58. Based
on these metrics, we chose to use ARIMA since it is
fairly simple, well known, and consistently scores best
in our experiments.

As an example of our predictions, Figure 8 shows fa-
tality over time in the United States. The most recent 40
days of confirmed case counts and fatalities (the time
window shown in light blue) were used to construct
an ARIMA model that was then applied to predict
the next 1 week of fatalities. This is visualized as the
orange line with gray upper and lower boundaries rep-
resenting the 95% confidence intervals. The same ap-
proach can be applied to any region’s confirmed case
counts and fatalities to predict the number and direc-
tion of fatalities over the next 7 days.

Testing, Positivity, and Vaccination
The final analytic component for our work is testing,
test positivity rates, and vaccinations. We are currently
focused on infection testing, although we will add anti-
body testing when numbers become available. We are
also visualizing data from the U.S.–German Pfizer-
BioNTech,33 U.S. Moderna34 and Johnson & John-
son,35,36 U.K. Oxford-AstraZeneca,37 Russian Sputnik
V,38 and Chinese Sinopharm-CNBG vaccines.39,40 We
will add new candidates (e.g., Novavax41) when they
are approved for use.

As most epidemiologists have stated, testing is criti-
cal to managing the pandemic. First, testing is used in
conjunction with contact tracing to identify sick indi-
viduals and people they have interacted with, to avoid
new disease outbreaks. For example, Apple and Google
have proposed a novel method of contact tracing
that uses the iOS and Android cell phone operating
systems.42 Low-power Bluetooth will allow iPhones
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FIG. 6. Line graphs of relative MAE performance by region: (a) sorted by linear performance (green line), best
to worst; (b) sorted by ARIMA (purple); (c) sorted by ARIMAX (orange). ARIMA, autoregressive integrated
moving average; ARIMAX, ARIMA with explanatory variables; MAE, mean absolute error.
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and Android phones to record anonymously who their
owners interact with. If a person is diagnosed with
COVID-19, their phone can be asked to anonymously
send a text message to every person the phone recorded
over the last 14 days, informing the recipients that
someone they came into contact with has contracted
COVID-19.

Code to implement this strategy is included in the
recent iOS 13.5, although privacy arguments are still be-
ing addressed. Second, testing is meant to inform peo-
ple if they may have immunity to the disease. This
would, for example, allow them to return to work or in-
teract with the public securely. However, it is important
to note that there is currently not enough evidence to
guarantee immunity if an individual has had COVID-
19, nor to know how strong the resistance is, or how
long it will last.43

Testing data are less readily available, and less com-
plete, than case data. We are currently obtaining daily
updates from the Humanitarian Data Exchange (Hum-
Data), managed under the United Nations Office for
the Coordination of Humanitarian Affairs.44

We visualize total tests by region as ordered bar
graphs. In addition to the absolute number of total
tests, we also include tests per 1000 citizens. This allows
us to normalize for a region’s size. The United States
has performed the most tests of any region (547 milli-

on), but Cyprus has delivered the most tests per 1000
citizens (13,926). The United States falls somewhere
in the top third of regions reporting testing data per
1000 citizens (1644). Because regions such as the
United States and Luxembourg present as outliers, we
also overlay a line graph representing log10-corrected
test values. This allows a much easier comparison of
regions with smaller numbers of tests.

Although testing data are critical, they are influenced
by the rate of testing a particular region performs. More
tests can result in more confirmed cases, providing a
potentially skewed interpretation of the spread of the
disease. Experts suggest that positivity rate is a more
accurate measure of disease prevalence since it normal-
izes over number of tests performed, reporting the
percentage of tests that report positive COVID-19 in-
fection. Figure 9 shows the total number of tests per-
formed for the United States over time as a blue bar
graph, with an orange line graph overlaid to track the
7-day moving average of positivity rates for the same
time period. The positivity rate y-axis runs from 0%
to 50%, so any rates above this threshold appear as a
positivity line leaving the top of the graph.

Figure 9 shows that the United States has performed
551.1 million tests as of September 13, 2021. The pos-
itivity rate showed a spike at the beginning of the pan-
demic as testing procedures were implemented and

FIG. 7. Side-by-side bar charts shows how often each algorithm placed first, second, and third in our 2548
test runs.
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refined. Positivity rates began to stabilize around the
beginning of March, reaching a low of 4.3% in the mid-
dle of June, then spiking in August 2020, December
2020, and August 2021. The most recent positivity
rate for the United States is 6.4%, with a 7-day moving
average of 10.9%. This represents the current rapid
spread of the disease, thought to be a combination of
vaccine concern coupled with new, more transmissive
variants of COVID-19 identified in the United King-
dom, South Africa, and India, and now spreading
throughout the world.

Numerous vaccine research projects have been ini-
tiated to search for safe and effective vaccines for
COVID-19. In the United States and Europe, the
Pfizer-BioNTech, Moderna, Oxford-AstraZeneca, and
Johnson & Johnson vaccines have been approved for
use and were administered starting in mid-December
2020. Russian, Chinese, Latin American, and Middle
Eastern countries have started administering the Sput-
nik V and Sinopharm-CNBG vaccines. Promising late-
phase three trials are ongoing for Novavax. Third dose
booster shoots have recently been approved or recom-
mended in Israel and for certain groups in the United
States. Vaccine distribution is currently focused on

non-Western countries, vaccine-hesitant individuals,
and children younger than 16 years.

Our interest is in analyzing the distribution of vac-
cinations by region along three-related dimensions:
total number of vaccines administered, vaccines per
1000 citizens, and vaccines per day. The first metric
tracks absolute vaccine distribution, the second nor-
malizes for region populations, and the third mea-
sures how quickly vaccines are being released to the
general public.

Figure 10a shows the three measures represented as
individual bar graphs by region: total vaccinations in
the top graph, vaccinations per 1000 citizens in the
middle graph, and vaccinations per day in the bot-
tom graph. Not surprisingly, the order of countries in
each graph varies, often significantly. Although larger
countries are more likely to have the capability to re-
lease larger numbers of vaccines (e.g., the United States
and China), this does not guarantee a corresponding
high degree of coverage of the general population.

Pandemic State
In addition to testing and vaccination, we provide a line
graph plotting the total daily tests and tests per 1000

FIG. 9. Line and bar graph of positivity rates and COVID tests administered in the United States, the line
graph represents 7-day moving average positivity percentage, the bar graph represents cumulative tests
administered, graphs allow viewers to track rate of testing and pandemic spikes.
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FIG. 10. Pandemic state by region: (a) vaccines administered total (top), per 1000 citizens (middle), per day
(bottom); (b) bar graph of total fatalities (top) and confirmed cases (bottom); (c) thematic map of total fatalities,
blue for below the median, red for above, all three visualizations are designed to allow viewers to identify and
compare pandemic state by region.
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citizens for a target region. This is similar to the region
total line graph (Fig. 2) and allows investigation of
when and how a region’s testing has progressed.

Two additional dashboard visualizations are provid-
ed: a bar graph of total fatalities and confirmed cases by
region, and a world map that allows viewers to switch
between fatality and confirmed case totals. Both visual-
izations represent current state information without
any underlying analytics. They provide context, partic-
ularly as a basis for evaluating other visualizations such
as trend graphs or region comparisons.

The total case bar graph (Fig. 10b) shows bars or-
dered by fatalities (top) and confirmed cases (bottom).
As with the testing bar graph, a log10-corrected line is
overlaid in orange to allow comparison of smaller totals
due to outliers such as the United States and the United
Kingdom.

The geographic map plots circles over each region,
using a red–blue double-ended color scale to repre-
sent case totals (Fig. 10c). As in the trend graph, red
and blue were chosen to support colorblind viewers.
Totals below the median are colored blue, with satura-
tion increasing as a region’s total moves farther from
the median. Totals above the median are colored red,
with saturation increasing past the median. Choosing
a center point based on the median allows us to avoid
bias due to outliers. Perceptually, work in both our
laboratory and in cartography has shown that double-
ended color scales are best suited to visualizing
thematic maps with a semantically meaningful center
point.45,46

Conclusions and Future Work
This article presents an analytics and visualization frame-
work designed to provide future predictions and the
current state for different aspects of the coronavirus
COVID-19 pandemic. Our overarching goals were to
include both predictions and state information and
present results in ways that are accessible to individuals
who are not analytics or visualization experts. We
apply dynamic time warping, four-parameter logistic
regression, linear regression curve comparison, ARIMA,
and knowledge of human visual perception to build a
dashboard that includes comparisons between regions,
information on case trends, testing, vaccinations, and
overall case totals.

To place our work in the context of COVID-19 visu-
alizations, Table 1 enumerates the visualizations in
our dashboard, as well as the visualizations in three
other well-known dashboards: JHUs Novel Coronavirus

Cases Data dashboard,3 UCLAs Combating COVID-
19,7 Los Alamos’s COVID-19 dashboard,8 and Covid-
Net.6

Numerous avenues of future work exist, and in fact,
the dashboard continues to be rapidly updated as pan-
demic conditions change. For example, during the
writing of this article, we added testing and vaccination
data and removed some of the curve bend visualiza-
tions that were no longer relevant due to the current
stage of the pandemic.

One addition we are keenly interested in is incorpo-
rating some of the more sophisticated models currently
being used to predict the long-term future state of the
pandemic, for example, the University of Washington’s
Institute for Health Metrics and Evaluation (IHME)
COVID-19 Projections,47 the CDCs COVID-19 Fore-
casts,48 Imperial College London’s forecasts,49 and Co-
lumbia University Epidemiology and Environment
Health Sciences’ Severe COVID-19 Risk Mapping.50

A second area of interest is in applying predictive
analytics to testing data. Since these data have only
recently become available, we are still considering

Table 1. A comparison of visualizations included in our
proposed dashboard, Johns Hopkins University’s
coronavirus dashboard, University of California,
Los Angeles’s combating COVID-19 dashboard,
Los Alamos National Laboratory’s COVID-19 dashboard,
and the CovidNet dashboard

Proposed JHU UCLA LANL CovidNet

Case trend graph U U U

Case trend scatterplot U

Estimated curve bend U U U

Hospital/ICU rates U U

Hubei, China, graph U

Maps by ethnicity U

Region case totals U U U

Region progression
comparison

U

Region progression totals U U U

Region testing
comparison

U U

Social distancing graph U

Supplies U

Tests/% positive U U

Testing progression U

U.S. map current cases U U U U U

Vaccine map U U

Vaccine concern map U

World map current cases U U U

Although our proposed dashboard often includes a significantly wider
geographic coverage (e.g., U.S. states and counties, Canadian and Chi-
nese provinces, and both U.S. and worldwide cases) and data analytic
preprocessing, we have credited every dashboard that provides a subset
of the given visualization type.

ICU, intensive care unit; JHU, Johns Hopkins University; LANL, Los Ala-
mos National Laboratory; UCLA, University of California, Los Angeles.
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possible strategies. One obvious approach that we
could quickly include would apply 4PL to test and
vaccination curve time series, similar to a case time
series. In theory, this would identify the peak of the
test and vaccination curves, identifying how many
tests and vaccinations total and per 1000 citizens
each region was on track to achieve. If information
on antibody testing and contact tracing becomes avail-
able, these would also be valuable to include in the test-
ing section of our dashboard.

Another potential source of valuable information is
the use of mitigation strategies such as masks, social
distancing, and limitations on mobility. The challenge
here is to identify a source of information for these
data that cover a reasonable subset of the countries
we are studying. Since different countries have different
interpretations of the mitigation strategies, these would
need to be considered. Finally, strategies change over
time. For example, the CDC in the United States re-
cently reduced the required social distancing for stu-
dents in K-12 schools from six feet to three feet, with
conditions.51 Care would need to be taken to track
these changes and update our models accordingly.

Finally, no visualization can be claimed to be rele-
vant without end user testing. We have received anec-
dotal feedback on our dashboard’s value, for example,
during its evaluation as part of the U.S. Health and
Human Services COVID-19 design competition.52

We plan to collaborate directly with epidemiologist
colleagues from our dengue fever research, policy-
makers, and members of the general public, to obtain
feedback on the strengths and limitations of the current
visualizations. We expect that, since each group has dif-
ferent skill sets and motivations, their feedback will not
be identical nor necessarily even similar. Understand-
ing what each group can use and what they need will
answer two important questions: (a) Is the dashboard
useful, and how can it be modified to improve its im-
pact? and (b) Can a single set of visualizations serve a
diverse group of individuals with different domain ex-
pertise and questions of interest? The second question,
in particular, is one of significant interest to the visual-
ization community.
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