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Figure 1: A Stevens-based dot pattern visualizing flow orientations in a 2D slice through a simulated supernova collapse

Abstract

This paper describes a new technique to visualize 2D flow fields
with a sparse collection of dots. A cognitive model proposed by
Kent Stevens describes how spatially local configurations of dots
are processed in parallel by the low-level visual system to perceive
orientations throughout the image. We integrate this model into a
visualization algorithm that converts a sparse grid of dots into pat-
terns that capture flow orientations in an underlying flow field. We
describe how our algorithm supports large flow fields that exceed
the capabilities of a display device, and demonstrate how to include
properties like direction and velocity in our visualizations. We con-
clude by applying our technique to 2D slices from a simulated su-
pernova collapse.

CR Categories: H.1.2 [Models and Principles]: User/Machine
Systems—Human factors, human information processing;I.3.3
[Computer Graphics]: Picture/Image Generation—Display algo-
rithms

Keywords: color, flow, motion, multidimensional, orientation,
perception, vision, visualization

1 Introduction

This paper describes a new technique to visualize two-dimensional
flow fields using individual points (or dots). Our goal is a tech-
nique that minimizes the amount of on-screen information needed
to encode flow orientation. Much of the motivation for our work
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comes from perceptual experiments designed to study how the hu-
man visual system “sees” local orientation in a sparse collection of
dots. Initial work by Glass suggested that a global autocorrelation
is used to identify orientation [Glass 1969; Glass and Perez 1973].
Later work by Stevens hypothesized that the orientation of virtual
lines between pairs of dots around a target position defines the lo-
cal orientation we perceive at that position [Stevens 1978]. This
distinction is important, because it implies that different types of
flow patterns can be rapidly perceived in different parts of a single
image (Fig. 1). Stevens presented both experimental results and a
software system to support his vision model.

When we saw the Glass and Stevens images, we were struck by
their similarity to a flow visualization. We wondered if it was possi-
ble to reverse the process, that is, rather than using Stevens’s model
to determine the perceived local orientation at each dot, could we
position a small collection of dots to produce perceived local ori-
entations that match an already-existing flow pattern? This paper
describes how we achieved this goal.

A number of issues motivated our interest in pursuing this tech-
nique. First, since a Stevens-based flow visualization is built on a
strong perceptual foundation, it may allow us to make certain guar-
antees about a viewer’s ability to see the information (i.e., the flow
orientations) we are visualizing. Second, the sparse nature of the
dot patterns allows information to be placed in the background, yet
still be visible. Colleagues who are studying methods for extending
line integral convolution (LIC) techniques to visualize multidimen-
sional flow data are excited about this possibility. Finally, we were
inspired by the simplicity and effectiveness of Stevens’s algorithm,
which describes how a seemingly random collection of dots can
combine with one another to form intricate flow patterns.

The remainder of this paper is organized as follows. First, we
present a short background review of related flow visualization
techniques. Next, we describe Glass and Stevens dot patterns, and
discuss Stevens’s local orientation model in detail. We present a
hierarchical visualization algorithm that converts a sparse grid of
dots into a Stevens dot pattern that captures flow orientations in a
user-selected flow field. We discuss methods for including flow di-



rection and velocity in our images, and demonstrate our technique
with real-world flow datasets. Finally, we conclude with a summary
of our findings and directions for future research.

2 Background

Numerous methods have been proposed to visualize vector fields
in general, and flow data in particular. We briefly discuss previous
work that is most directly related to our proposed technique, with
specific effort made to highlight areas where we may be able to
offer improvements over existing methods.

Streamlines and streaklines.A well known technique for visualiz-
ing flow direction is to place dye sources within the flow field, then
advect the dye either in the direction of flow (in a steady field) or
dynamically over time (in an unsteady field). This produces stream-
lines or streaklines that visualize the shape of the flow field. One
requirement is the need to correctly select the dye source positions
without overpopulating the display. Interesting regions in the flow
field will be missed if no dye passes through the given phenomena.

Glyphs. Another common way to visualize flow fields is to use ge-
ometric elements or glyphs that “point” in the flow orientation at
set locations in the flow field (e.g., arrows as shown in [Kirby et al.
1999; Turk and Banks 1996]). Normally, the entire field is seeded
with a systematic distribution of glyphs to visualize flow through-
out the field. The appearance of each glyph can be augmented to
display additional data values, for example, scaling to show mag-
nitude, or coloring to show field potential. One disadvantage of
glyphs is the amount of screen space they require. Numerous pix-
els are normally needed to position and render each glyph. This can
reduce the number of flow samples that can be visualized simulta-
neously on a single screen.

Dense textures. A number of powerful flow visualization tech-
niques based on dense texture representations have been proposed.
Original work in this area includes spot noise [van Wijk 1991],
where ellipsoid-shaped kernels are seeded within a flow field and
convolved with white noise to produce a luminance pattern that
highlights flow orientations, and line integral convolution (LIC)
[Cabral and Leedom 1993], a texture-based method that advects
target positions through the flow field to build streamlines that are
convolved with a noise pattern to produce thread-like textures that
follow flow orientations. More recent work improves algorithm ef-
ficiency (e.g., Fast LIC [Hege and Stalling 1998]) and extends the
techniques to unsteady flow fields (e.g., time-dependent spot noise
[de Leeuw and van Liere 1997] or Unsteady Fast LIC [Shen and
Kao 1997]). Real-time, interactive algorithms have also been pre-
sented, for example, image-based flow visualization (IBFV) [van
Wijk 2002], where small quadrilaterals are advected and decayed
at each timestep, then blended with a warped image of the previous
timestep. Warping is based on flow direction. Blending occurs on
the GPU, further improving IBFV’s execution time.

Although our algorithm produces results that are glyph-like in ap-
pearance, we differ from existing methods, both in how we con-
struct our patterns, and in the end result that we generate. The posi-
tions of the dots in our visualizations are based on a model of how
we perceive local orientations within a sparse dot field. Rather than
constructing a texture that fills the screen, we try to minimize the
amount of information (i.e., the number of dots) we need to display
to visualize the underlying flow orientations. Our technique was
specifically designed to handle large flow fields that cannot fit on
a single screen. Hierarchies of dot patterns form multiple levels of
detail that allow us to show both an overview of a flow field, and
fine-grained context contained in individual sample points.

Stevens dot patterns also have a number of limitations relative to
existing flow visualization algorithms. Currently, we only support

steady flow. Preprocessing time is needed to generate the dot pat-
terns, so our system does not allow users to interactively vary the
flow data. Like glyphs, our algorithm requires a minimum spacing
between samples to ensure appropriate local neighborhood sizes.
Although we include all the original data at the lowest level of the
visualization hierarchy, higher levels produce filtered representa-
tions of the flow field’s features.

Many of these disadvantages are similar to ones that existed for
the original spot noise or LIC algorithms. In spite of this, we be-
lieve the use of human visual perception offers an interesting per-
spective on flow visualization, and that with further effort many of
these limitations can be overcome. Even in its current form, the
Stevens algorithm provides benefits that may be useful for specific
visualization problems (e.g., using the economy of screen space to
show two independent flow fields: an underlying dense texture rep-
resentation with a perceptual dot pattern overlaid on top).

3 Stevens’s Local Orientation Model

Numerous methods have been proposed, both to explain how we
perceive orientation, and to display oriented elements (e.g., arrows,
sticks, or streamlines) to visualize direction. One technique that
has not been used in visualization, at least to our knowledge, is the
careful positioning of a small set of dots to produce the perception
of an underlying flow pattern.

Leon Glass studied how the visual system can rapidly perceive
structure in a set of non-directional elements, specifically, in a
sparse collection of dots [Glass 1969; Glass and Perez 1973]. Glass
started with a random collection of dotsX, then applied a global
transformationT to each dot to produce a second patternY = T(X).
Although bothX andY appear random in isolation (Fig. 2a), when
they are composited together the transformation used to produceY
from X is clearly visible (Fig. 2b). The composite images are of-
ten referred to asGlass patterns. Glass hypothesized that the low-
level visual system performs a global autocorrelation to identify the
transformation contained in the image. Numerous transformations
were shown to produce this effect, including translations, spirals,
and rotations.

Later work by Kent Stevens continued the investigation of Glass
patterns and the visible structure they produce [Stevens 1978].
Stevens suggested that the visual system does not use an autocor-
relation to identify the transformation in a Glass pattern. Rather,
he believed that a simple local operator was applied in parallel to
each dot to identify a perceived orientation at that position in the
image. Stevens hypothesized that the visual system assumes rela-
tively stable orientations within a local spatial region. He proposed
a model that identifies neighbors for a target dot, then builds virtual
lines between all pairs of neighbors. The virtual line orientation that
occurs most frequently is the one that the visual system perceives
at the target dot (i.e., we perceive an orientation at the target dot
that is “similar” to the orientations around that dot). Fig. 2c uses
short line segments to show the orientations that Stevens’s model
computes for each dot in Fig. 2b.

One important consequence of Stevens’s interpretation is the
ability to perceive different transformations applied to different re-
gions in a dot pattern (Fig. 1). A global autocorrelation would only
allow a single transformation to be perceived within an image. In
fact, Stevens generated exactly this type of multiple-transformation
image, and showed that the visual system can easily distinguish the
different transformations. Stevens further validated his model by
comparing its results to transformations reported by human subjects
across a collection of modified Glass patterns. Analysis showed that
parameters within Stevens’s model could be set to duplicate human
performance.
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(a) (b) (c)

Figure 2: Glass patterns: (a) two random dot sets, the bottom set is a transformed version of the top set; (b) the Glass pattern created by compositing the two
sets; (c) Stevens’s perceived orientation for each dot in (b), shown as an oriented line segment

3.1 Model Design

The goal of Stevens’s algorithm is to assign aperceived orientation
to each dotA in an image. This is done by computing a histogram of
the orientations of virtual lines formed by pairs of dots in the local
spatial neighborhood ofA. The result is an orientationθA,h with the
highest frequency in the histogram. Finally, the virtual line fromA
to a neighbornA,i with orientationθA,i closest toθA,h is identified.
θA,i is the perceived orientation assigned toA.

The histogram divides the continuous set of non-directional ori-
entations[0,180) into a discrete number of ranges. Stevens found
that his algorithm most accurately modeled human performance
with ranges of width 10◦. The histogram is therefore divided into
18 buckets[0,10), [10,20), . . . , [170,180).

Neighborhoods are formed as circular regions of radiusr cen-
tered about a target dot. For example, the solid circular bound-
ary centered aboutA in Fig. 3 showsA’s neighborhood, containing
neighborsB, C, D, E, F , and G. The dashed circular boundary
aboutC showsC’s neighborhood, containing neighborsA, G, H,
andJ. These neighborhoods are used to construct the virtual lines
whose orientations are added to the histogram. For each neighbor
nA,i of A, we constructnA,i ’s neighborhood to identify its neighbors,
build virtual lines fromnA,i to each of its neighbors, then record the
orientations of these virtual lines in the histogram. Duplicate vir-
tual lines (e.g.,CGandGC) are only recorded once. The histogram
is complete when every neighbornA,i of A has been processed in
this manner.

The contribution of each virtual line’s orientation to the his-
togram is weighted based on the virtual line’s lengthl . Intuitively,
the neighborhood radiusr is the maximum distance the visual sys-
tem will travel to associate two dots. The farther the dots are from
one another, the less likely the visual system is to consider them
as a virtual line, and therefore the less weight that line’s orientation
will contribute towards deciding on a perceived orientation. Stevens
suggested the following weightsw, again derived from matching his
algorithm’s performance to human subject results:

w =




1, if l ≤ 1
4r

2
3 , if 1

4r < l ≤ 1
2r

1
3 , if 1

2r < l ≤ r

(1)

Once the histogram is populated, its peak can be identified to define
θA,h. The final step is to examine all virtual lines fromA to a neigh-
bor nA,i and select the line whose orientationθA,i is closest toθA,h.
This orientationθA,i is assigned as the perceived orientation ofA.

Fig. 3 shows an example of this process forA, with participating
dotsB, . . . ,M shown aboutA, and the resulting histogram displayed
below the dot pattern. The peak in the histogram occurs atθA,h =
130◦. Among virtual linesAB, AC, AD, AE, AF, andAG, AB’s
orientationθA,B = 107◦ is closet toθA,h. A perceived orientation of
107◦ is therefore attached to dotA.

4 Flow Visualization Algorithm

When we first saw Glass and Stevens dot patterns, we were struck
by their correspondence to flow visualization images. Various
glyph-based flow visualization techniques produce results that are
visually similar to a Stevens dot pattern. The details of the algo-
rithms used to generate these images are very different, however.
More importantly, Stevens’s algorithmreportson perceived orien-
tations in an already-existing set of dots; it cannot be used togen-
eratea desired orientation pattern.

Because of the visual simplicity and strong perceptual charac-
teristics of the Stevens images, we wondered: “Is it possible to in-
tegrate Stevens’s model of perceived orientation into an algorithm
that generates dot patterns to visualize a user-selected vector field?”
That is, given a 2D flow field, can we generate a dot pattern whose
perceptual orientations capture the flow directions embedded in that
field?

In addition to being an interesting academic exercise, the use
of Stevens dot patterns may offer some important advantages over
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Figure 3: Perceived orientation atA, dashed line shows actual flow orienta-
tion θA, f = 135◦: A’s neighbors lie within distancer from A (solid bound-
ary). Each neighbor forms virtual lines with its neighbors to contribute to
A’s histogram (e.g.,C’s neighborsA, H, G, J form entriesAC, CH, CG, CJ).
AB’s orientation of 107◦ most closely matches the histogram peak of 130◦,
producing perceived orientation atA of 107◦

existing flow visualization methods. For example:

• Stevens’s algorithm is modeled on how the human visual sys-
tem perceives local orientation, so we can provide certain
guarantees on the visual salience of our flow patterns.

• Stevens dot patterns are sparse, so they allow additional data
to be visualized in the background layer beneath the dots. For
example, we could combine a Stevens-based technique with
a multidimensional visualization technique to visualize multi-
attribute flow data.

• Our investigation of how to use Stevens’s algorithm to visual-
ize flow data may further extend our knowledge of perceived
orientation. These discoveries would be useful to both the vi-
sualization and the psychophysics communities.

4.1 Design

Our technique begins by seeding a flow field with a jittered grid
of dots. An erroreA is assigned to each dotA to describe the dif-
ference between its perceived orientation and the actual orientation
of the flow field atA’s position. The dots are placed in a priority
queue ordered by error. The algorithm then iterates over the dots as
follows:

1. Remove the dotA with the highest error at the front of the
priority queue.

2. Evaluate howA’s neighbors contribute to its error.

3. Select a neighbornA,i and move it to reduceA’s error.

4. Re-evaluate the error of all dots affected bynA,i ’s move, then
decide whether to accept or reject the move.

5. If the move is accepted, update the error of each affected dot,
then re-insert them into the priority queue.

This iteration continues until the sum of the error over all dots falls
below a threshold value.

4.2 Initial Dot Patterns

Stevens initially used a random distribution of dots for the images
in his experiments. However, he found that clusters, sparse regions,
and chains of points appeared when the patterns were transformed
and composited. For a controlled experiment, these visual irregu-
larities are problematic, because they provide clues about the trans-
formation being applied, and can bias subject performance. Stevens
hand-corrected his images to remove any artifacts he identified.

Though the intent of our displays differs from Stevens, we found
that a random initial distribution resulted in visualizations with the
same types of clustering and sparse regions. Areas containing these
artifacts do a poor job of visualizing the underlying flow directions.
These artifacts seem to persist because our algorithm moves dots
locally, and does not reposition them over long distances. To correct
for this, we construct an initial distribution of dots on a regular grid,
then apply a small jitter to each dot. Now, the use of spatially local
operations is advantageous, since it helps to maintain the relatively
uniform distribution of our dots.

4.3 Neighborhood Radius

Computing perceived orientation and the corresponding error for a
dot A depends critically on the radiusr of the local spatial neigh-
borhood. Stevens did not define the ideal value forr, but it can be
estimated from his experiment results.

Given a display densityρ = D
n , the ratio of the number of dotsD

to the total number of pixelsn in a display, the average number of
dotsD in a circle of radiusr is:

D = (πr2)ρ (2)

Stevens’s experiments showedρ of 0.0085 and neighborhoods con-
taining six to seven points matched human performance. Using
ρ = 0.0085 andD = 7, we can therefore definer to be:

r =

√
D

ρπ
=

√
7

0.0085π
= 16.19 pixels (3)

4.4 Orientation Error

Our algorithm arranges the dots so that the perceived orientation of
each dot matches closely the flow orientation at the dot’s location.
Given a perceived orientationθA,i for dot A and a flow orientation
θA, f at the location ofA, their absolute difference|θA,i −θA, f | rep-
resents theperceptual errorat A.

Initial testing showed that managing perceptual error alone is
not sufficient to move dots in a way that converges to an acceptable
solution. Initially, the total perceptual error over all dots decreases
as individual dots are moved, but it often stabilized well above our
desired error threshold. Further investigation revealed that common
dot patterns with moves that produce improved configurations do
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Figure 4: Virtual line error:C is moved to form a virtual lineAC closer
to histogram peak of 130◦ (Fig. 3), reducingeA,v. Histogram entries in-
volving C change from Fig. 3, however, producing a new histogram peak
at 40◦ and histogram erroreA,h = |40− 135| = 95◦. AF’s orientation of
37◦ most closely matches the new histogram peak with virtual line error
eA,v = |37−40| = 3◦

not always decrease the total perceptual error. To correct this, we
decomposed perceptual error into two separate metrics:histogram
error andvirtual line error.

Recall that perceived orientation at a dotA is computed in two
steps. First, a histogram of the neighbor’s virtual line orienta-
tions is constructed, with the peak of the histogramθA,h selected
as the desired orientation forA. Second, the virtual line between
A and neighbornA,i with orientationθA,i closest toθA,h is identi-
fied, with θA,i assigned asA’s perceived orientation. These steps
represent two sources of potential error when we try to match per-
ceived orientation to an existing flow orientation. The difference
eA,h = |θA,h− θA, f | between the histogram’s peak and the desired
orientation could be large. This is histogram error. Even ifeA,h
is small, the orientationθA,i of the closest virtual line throughA
could be far from the histogram’s peak, producing a difference
eA,v = |θA,i −θA,h| that is still large. This is virtual line error.

We use a linear combination of histogram and virtual line error
to form bivariate error eA = c1eA,h + c2eA,v, wherec1 andc2 are
constants used to weight the different error metrics. Our testing
showed thatc1 < c2 produces a faster, more stable reduction in er-
ror. A neighbor (or a neighbor’s neighbor)nA,i of A is moved to
correct for both types of error. This move affects not onlyA’s er-
ror, however, but also the error of any other pointB whennA,i is a
neighbor or a neighbor’s neighbor ofB. Moving a single dotnA,i
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Figure 5: Histogram error: Given the histogram error in Fig. 4
eA,h = |40−135| = 95◦, BH is randomly selected from the 40◦ bucket and
shifted to orientation 135◦, producing a new histogram peak. Since his-
togram correction is designed to preserve previous virtual line corrections,
AC from Fig. 4 is maintained to produce perceived orientation atA of 130◦,
a good match toθA, f .

to reduceA’s virtual line error will normally produce only small
disruptions in the peaks of the histograms that sharenA,i . Mov-
ing nA,i to reduce histogram error may significantly increase virtual
line error if nA,i forms the endpoint of a virtual line toB, however.
Choosingc1 < c2 appropriately penalizes these types of histogram
corrections. It also favors processing dots with large virtual line
error first, followed by dots with large histogram error.

Virtual Line Error. WheneA,v is large, no neighbor exists to form
a virtual line fromA with an orientation close toθA, f . We correct
this by repositioning a randomly chosen neighbornA,i (e.g.,C is
chosen in Fig. 4).nA,i is moved with two constraints: (1)θA,i ∈
[θA, f ± 5] (i.e., the virtual line formed byA andnA,i is within 5◦
of the flow orientation), and (2) the lengthl of the virtual line is
l = αr, α ∈ (0,1]. Recall that each virtual line contributes to its
histogram bucket with weightw = 1, 2

3, or 1
3 depending onl . We

use a probability distribution forα to favor l that producew = 2
3.

Histogram Error. Histogram error occurs when the peak of a his-
togramθA,h occurs away from the flow orientationθA, f . To correct
for this, we reorient virtual lines to move them from the histogram’s
current (incorrect) peak into a bucket nearθA, f . Specifically, we:

1. Randomly choose a virtual lineCD from the histogram’s cur-
rent peak such thatC is a neighbor ofA, D is a neighbor of



C, andD is not a direct neighbor ofA (i.e., D is a neighbor’s
neighbor ofA).

2. MoveD such thatCD’s orientationθCD ∈ [θA, f ±5] (i.e.,CD
is either in the desired histogram bucket, or one away from
that bucket).

This reduces the height of the histogram’s current peak, and in-
creases the height of the buckets around where we want the peak to
occur. For example, in Fig. 5 we selectedBH from the histogram’s
current peak, and movedH to changeBH’s orientation such that
θBH ∈ (130◦,140◦], the bucket that contains the actual flow orien-
tationθA, f .

Updating Error. A proposed move is accepted or rejected depend-
ing on the overall change in bivariate error it produces. Because
Stevens’s algorithm operates on local regions, there is no need to
recalculate the error at every dot. IfnA,i is moved, only its spatially
local neighbors will be affected. To find these neighbors, we:

1. IdentifynA,i ’s neighbors, and the neighbors of its neighbors at
both its original and its new positions.

2. Union the two sets to obtain the combined setDA,i of all dots
that would be affected by movingnA,i .

We can then compute the total bivariate error for the dots inDA,i
both before and after the proposed move. If bivariate error falls, we
accept the move and re-insert the dots inDA,i back into the queue
with their possibly new error values.

4.5 Dot Pattern Hierarchies

A separate issue we must address is how to manage flow fields that
are too large to visualize in their entirety. Given a required dot-
per-pixel densityρ = 0.0085 and a display withn pixels, we can
seed the screen with at most 0.0085n dots. If we need one neigh-
borhood of seven dots to properly visualize each flow sample, we
can visualize at mosts= 1

7(0.0085n) = 0.001214n samples (e.g., a
typical 1280×1024 screen can visualize abouts= 1592 samples).
This problem is not unique to our algorithm. For any visualization
technique, the desired level of detail (e.g., the number of samples or
number of values per sample) is constrained by the physical prop-
erties of the display device. Various methods have been proposed
to address this problem, for example, data summarization, multidi-
mensional visualization algorithms, and focus+context techniques.

We chose to implement a hierarchical solution to allow flow
fields of any size, while still maintaining the dot density needed
to build our orientation patterns. Intuitively, our method works as
follows. The flow field is interpolated to reduce the number of sam-
ples to a size that will fit on-screen. This represents a high-level
overview of the dataset. The viewer can zoom in on different parts
of the flow field to obtain more detail. Additional dots are added
during the zoom to maintain the proper dot density, and to increase
the level of detail being displayed. Zooming halts when the user
reaches a level of detail that represents the original, unfiltered flow
values.

We begin by halving the size of the dataset repeatedly until we
reach a size that fits on-screen. Each reduction represents alayer
which we will visualize with a dot pattern. Given a flow field with
m samples, we generate layers of sizem, m

2 , . . ., m
2i where layeri is

the first layer to contains or fewer samples,i = d log2
m
s
e.

Next, we build a dot pattern for each layer to visualize the flow
orientations contained in its samples. We start with the topmost
layer i, which contains the fewest samples, and work down to layer
0, which contains the original flow field values. In order to apply
our algorithm to each layer, we need to know: (1) how many sam-
ples the layer contains, (2) how many “pixels” the layer contains,

(a)

(b)

(c)

Figure 6: Supernova flow visualizations: (a) an overview showing the high-
est layer in the visualization, layer 7; (b) a zoom in on the center of the field
in (a) down to layer 4; (c) a further zoom in on the center of the flow field
down to the original unfiltered data at layer 0



and (3) how many dots to seed the layer with. As described above,
layer i containsm

2i samples and( 7
ρ )( m

2i ) pixels1, and is seeded with
7m
2i dots. Based on these values, we populate each layer with dots

as follows:

1. For the topmost layeri we apply our algorithm to position7m
2i

dots.

2. For each lower layerj , j = i − 1, . . . ,0, we insert the 7m
2( j+1)

dots from layerj +1 and lock them so they cannot be moved,
then insert an additional7m

2( j+1) dots and apply our algorithm to
position them to visualize layerj ’s samples.

Once the dot patterns for each layer are built, we can visualize the
flow data as follows. We begin by showing layeri; this represents
an overview of the flow values at the highest zoom level. Viewers
can pan and zoom in on different parts of the flow field. As they
zoom in, the dots on layeri spread apart, reducing the dot density.
Stevens stated that each neighborhood must contain at least three
dots to ensure distinguishable orientations. As we approach the
point where the average number of dots per neighborhood is 3.5,
we fade in the next layer in our dot pattern hierarchy. This doubles
the number of dots in the display (i.e., it returns the dot density to
seven dots per neighborhood). It also doubles the number of sam-
ples being visualized. Because layerj contains all the dots in layer
j + 1, there is no visual discontinuity during this operation. New
dots smoothly appear to fill in the empty spaces between the exist-
ing dots. This zoom and add continues until layer 0 is introduced.
At this point zooming is halted, since layer 0 represents a visualiza-
tion of the original data at the lowest zoom level. If viewers choose
to zoom out, the same process is applied in reverse. Dots converge,
and just before they exceed our desired density, the next highest
layer is visualized and half the dots are faded out.

Our hierarchical approach allows us to visualize flow fields of
any size. Large fields simply mean more layers, and more zooming
required by a viewer to reach the bottom layer.

5 Practical Applications

One final issue we studied was the application of our theoretical
model to real-world data. We are collaborating with a number of
practitioners who want to visualized both real and simulated two-
dimensional flow fields. We decided to visualize flow data provided
by astrophysics collaborators. Ongoing research in their laboratory
involves investigating various aspects of supernovas. Part of this
effort includes simulating how a supernova collapses. We were
provided with a number of 2D slices through a 4D volume (x,y,z
andt) produced by their simulation. The astrophysicists were par-
ticularly interested in our algorithm’s ability to visualize both high-
level overviews and low-level detail in the slices. The animations
they are currently generating do not include multiple levels of de-
tail, so their visualizations normally represent a high-level overview
of an entire slice, possibly at the expense of displaying important
local detail.

Data points within each slice form a 500×500 regular grid of
sample points composed of the attributes∆x, ∆y, andmagnitude.
∆x and∆y were used to determine the orientation of the flow at each
sample point. Given our requirement of seven dots per sample, we
were tasked with arranging 1.75 million dots. Withρ = 0.0085, this
would require a screen size of( 1750000

ρ )
1
2 = 14349 pixels square.

1By definition, only the topmost layer contains a number of pixels that
can fit on-screen; layers below that will always have more pixels than the
display, however, these lower layers will only be shown when the viewer
zooms in on the flow field. The lower layers can be seen as “virtual” dis-
plays, that is, what we would have shown on a higher resolution display
device.

We instead chose a window size of 900× 900 pixels capable of
displaying about 983 sample points. This produced a total of eight
layers in our dot pattern hierarchy to properly visualize the entire
slice. A cutoff of 18◦ (10%) average perceptual error was used
during construction of each layer’s dot positions.

Fig. 6a shows a 2D supernova slice visualized at its lowest level
of detail (layer 7). Even though the topmost layer contains only
a high-level overview, interesting features like vortices, concurrent
flow regions, and flow boundaries can be identified. Fig. 6b and 6c
show the same slice visualized at layer 4 and layer 0 as the viewer
zooms in to study an area of interest. Additional dots faded in from
the lower layers reveal more detail about how the flow field behaves.
In Fig. 6b a vortex is clearly visible. Fig. 6c shows a close-up of the
details around the vortex.

Anecdotal feedback from our collaborators suggests they are ex-
cited about our technique, in particular, in the ability to interactively
zoom in and out of the slice to see an overview of the flow patterns,
and to probe areas of potential interest all the way down to the in-
dividual sample points.

5.1 Direction and Magnitude

Two vector properties are not included in our basic dot patterns: di-
rection and magnitude. Although local dot configurations show the
orientation of the flow field, they do not define which of the two
possible directions the flow actually travels. The magnitude of the
flow (i.e., vector length or velocity) is also missing in our initial vi-
sualizations. These omissions are not unique to our algorithm. For
example, the initial forms of spot noise and LIC produced textures
that did not include either direction or magnitude.

Numerous techniques have been proposed to add this missing
information to an orientation visualization. We investigated two
common methods: color integration and simulated motion. In
both cases we used perceptual rules to control the distinguishabil-
ity of the colors, motion directions, and motion velocities we dis-
played. This fits well with our overall goal of generating perceptu-
ally salient visualizations.

One very simple solution for adding velocity values to our visu-
alizations is to integrate a color overlay with our dot patterns. For
each dot we query the velocity of the flow at the dot’s position, then
color the dot to encode the scalar value. Specific colors are selected
by mapping the range of possible velocities is to a semi-continuous
color scale. Our color scale was selected to ensure that: (1) the lu-
minance of every color was sufficiently high to make it visible on
a black background (i.e., coloring the dots would not make some
of them difficult to see), and (2) colors along the scale are percep-
tually balanced, that is, equal differences in velocity will produce
color differences that are perceived to be roughly the same. Our
selection technique combines a number of experimental results on
the perception of color [Healey and Enns 1999]. A single loop spi-
raling up around the luminance axis is plotted near the boundary of
our monitor’s gamut of displayable colors in CIELUV space. The
path is subdivided intoc named color regions (i.e.,a blue region, a
green region, and so on).n colors can then be selected by choos-
ing n

c colors uniformly spaced along each of thec color regions.
The result is a set of colors selected from a perceptually balanced
color model, each with a roughly constant simultaneous contrast
error, and chosen such that color distance and linear separation are
constant within each named color region.

In Fig. 7a we use a perceptual luminance scale to represent flow
velocity while zooming in on the supernova data. Darker dots rep-
resent low velocities, while brighter dots represent high velocities
(see Fig. 8 for a color velocity example). The data being shown
is identical to the data in Fig. 6b. The addition of luminance does
not obscure the dot patterns and the perceived orientations they pro-
duce. At the same time, sharp differences in flow velocity are visi-



(a) (b)

Figure 7: Velocity and direction, data identical to Fig. 6b: (a) velocity en-
coded with luminance, darker for low velocity to brighter for high velocity,
note identical dot pattern to Fig. 6b; (b) velocity and direction encoded with
motion, shown as a composite of 20 consecutive animation frames, note
long streamlines in areas of high velocity, shorter streamlines in low veloc-
ity regions

ble as variations in luminance.
A second method represents both direction and velocity by an-

imating the dots (Fig. 7b). Each dot follows a linear path based
on its perceived orientation, and moves with a speed proportional
to the velocity at its location in the flow field. The dot is allowed
to “walk” in a cycle within its local neighborhood, fading out as it
reaches the neighborhood boundary, then fading back in at the op-
posite side. The continuous 360◦ around a dot are subdivided into
36 discrete “buckets”, and the continuous velocity range is subdi-
vided into five discrete ranges. These choices are based on results
from experiments in our laboratory that studied how the low-level
human visual system perceives properties of motion like flicker, di-
rection, and velocity. Different motion directions require 10 to 20◦
of rotational difference to make them distinguishable from one an-
other [Weigle et al. 2000]. Similarly, differences in velocity require
at least 0.5◦ of subtended visual angle to be “seen” as distinct by
our visual system. Given the local neighborhood size and maximum
speed we allowed a dot to walk, this produced five usable velocities.

We were initially concerned that moving the dots would disrupt
perceived orientations, since any change in a dot’s position can po-
tentially change histogram and virtual line error. In practice, how-
ever, we have not observed this problem. We believe this partly
because consistent changes in a local neighborhood produce only
small disruptions in the perceived orientation pattern, and partly
because a dot’s motion reinforces its perceived orientation, com-
pensating for any additional error that may be introduced.

6 Conclusions

This paper describes a new technique for visualizing 2D flow data.
Our method applies a model of how the low-level visual system
perceives orientation to position a collection dots to visualize flow
orientations in an underlying flow field. Our method offers poten-
tial advantages over existing flow visualization algorithms: (1) the
use of perception to build flow patterns with orientations that are
rapidly and accurately distinguishable; (2) an economy of dots so
additional data can be encoded in the display; and (3) the ability
to support large flow fields, and to represent related properties like
direction and velocity. Our images, together with anecdotal feed-
back from our collaborators, suggests that Stevens’s dot patterns
can successfully visualize flow data at multiple levels of detail.

We are investigating a number future research issues. First, we
plan to compare Stevens dot patterns to other 2D flow visualization
algorithms (e.g., LIC), possibly using a method similar to Laid-
law’s [Laidlaw et al. 2005]. This will identify the strengths and
limitations of our technique, allow using to plan future research

to improve the method. A second study focuses on computational
complexity. Currently, our algorithm requires preprocessing time
to generate each layer. We want to improve performance, hope-
fully to a point where the algorithm can run interactively. This is
necessary to visualize real-time data. We also hope to extend the
dot patterns to 3D flow data. This is complicated by the need to
differentiate dot depth in a 2D projected image, and by the lack
of detailed knowledge about how we perceive orientation in a 3D
dot pattern. Findings from our laboratory on identifying orientation
in 3D glyphs may form a starting point for this work. Finally, we
are working with colleagues to try to combine Stevens dot patterns
with existing multidimensional visualization techniques. The goal
is a method to visualize multi-attribute flow fields.
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Figure 8: Velocity and direction within a simulated supernova collapse, velocity encoded with color, dark blues and greens for low velocity to brightoranges
and pinks for high velocity


