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ABSTRACT

This paper describes an automated visualization assistant called ViA. ViA is designed to help users construct perceptually
optimal visualizations to represent, explore, and analyze large, complex, multidimensional datasets. We have approached this
problem by studying what is known about the control of human visual attention. By harnessing the low-level human visual
system, we can support our dual goals ofrapid andaccuratevisualization. Perceptual guidelines that we have built using
psychophysical experiments form the basis for ViA. ViA uses modified mixed-initiative planning algorithms from artificial
intelligence to search for perceptually optimal data attribute to visual feature (data-feature) mappings. Our perceptual guidelines
are integrated into evaluation engines that provide evaluation weights for a given data-feature mapping, and hints on how that
mapping might be improved. ViA begins by asking users a set of simple questions about their dataset and the analysis tasks they
want to perform. Answers to these questions are used in combination with the evaluation engines to identify and intelligently
pursue promising data-feature mappings. The result is an automatically-generated set of mappings that are perceptually salient,
but that also respect the context of the dataset and users’ preferences about how they want to visualize their data.

Keywords: artifical intelligence, color, computer graphics, human vision, mixed-initiative planning, multidimensional dataset,
preattentive processing, LRTA*, scientific visualization, texture

1. INTRODUCTION

Scientific visualization is the conversion of collections of strings and numbers (often called datasets) into images that are used
for visual exploration and analysis. One of the fundamental research issues in this area is the visualization of “multidimensional
datasets”. A multidimensional dataset contains data elements that encode many separate attributes. For example, consider a
dataset of environmental conditions for the continental United States. Each data element contains a corresponding weather
station’s latitude and longitude, the time and day that measurements were recorded, and weather conditions like temperature,
pressure, humidity, wind speed and direction, and precipitation. Our challenge is to find a way to display these values simulta-
neously without overwhelming the viewer’s ability to understand what they are seeing.

Recent work in our laboratory has studied ways to harness the low-level human visual system during multidimensional vi-
sualization. When we look at an image, certain visual features can be identified very quickly, without the need for search.
These features are often called preattentive, because their detection precedes focused attention in the low-level human visual
system.1{6 Preattentive features include visual properties like color, brightness, orientation, size, and motion. When applied
properly, these features can be used to perform exploratory data analysis. Examples include searching for data elements with
a unique feature, identifying the boundaries between groups of elements with common features, tracking groups of elements
as they move in time and space, and estimating the number of elements with a specific visual feature. Preattentive tasks are
performed very rapidly and accurately; they can often be completed in a “single glance” of 200 milliseconds (msec) or less.
Our human vision studies focus on identifying relevant results in the vision and psychophysical literature, then extending these
results and integrating them into a visualization environment. Tools that make use of preattentive vision offer a number of
important advantages for multidimensional visualization:

1. Visual analysis is rapid, accurate, and relatively effortless since preattentive tasks can be completed in 200 msec or less;
tasks performed on static displays extend to a dynamic environment where data frames are shown one after another in a
movie-like fashion.7

2. The time required for task completion is independent of display size; users can increase the number of data elements in
a display with little or no increase in the time required to analyze the display.1,4{6,8{10
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3. Certain combinations of visual features cause interference patterns that mask information in the low-level visual system;
by identifying these situations, our visualization tools can be built to avoid data-feature mappings that might interfere
with the analysis task.4,11{14

To date, we have compiled an interlocking collection of results on the use of color (hue and luminance)15 and texture (size,
density, and regularity)16,17 for multidimensional visualization. These results have been used to visualize a number of real-
world applications including medical scans,18 weather tracking,16,17 and scientific simulations.19

Our perceptual guidelines support the construction of perceptually salient visualizations for an underlying dataset. Unfortu-
nately, these “visual mappings” (the assignment of a visual feature to represent each attribute in the dataset) must still be built
by hand. This process is often difficult and time consuming, since users are asked to:

� apply a collection of interrelated guidelines,

� make various trade-offs to ensure none of the guidelines are violated, and

� decide at each step in this process how to move towards the best possible mapping for the given dataset and analysis
tasks.

In short, users must still act as “visualization experts” when applying our guidelines to view their data. In order to alleviate this
requirement, we are constructing an automated visualization assistant called ViA. ViA will free users from having to understand
and manipulate the guidelines needed to build effective visualizations. They will only be responsible for questions that draw
on their expert knowledge about their data, specifically: “What is the logical structure of the dataset?” and “What types
of exploration and analysis tasks need to be performed?” Answers to these questions will be combined with our perceptual
guidelines using an artifical intelligence (AI) mixed-initiative search algorithm. This algorithm will intelligently search the
space of all possible mappings to find only those mappings that are perceptually optimal, and that visualize the underlying
dataset in a way that effectively supports the users’ analysis goals.

1.1. Previous Work

Previous work in visualization has addressed the goal of automating the selection of a visual mappingM . This work provided
much of the insight and inspiration that we are using to construct ViA. Wehrend and Lewis built a classification system to
describe visualization techniques in a domain-independent manner20; these classifications are used to try to suggest an appro-
priateM . A similar technique was described by Lohse et al.21 Robertson used a natural scene paradigm to guide the choice of
visual representations for data22{24; this methodology identifies the types of information conveyed by a particular representa-
tion, then attempts to match these to the underlying characteristics of a dataset during the selection ofM . Mackinlay described
automated methods that used measures of expressiveness and effectiveness to develop 2D graphical presentations.25 Beshers
and Feiner used similar rules to build graph-based “worlds within worlds” to visualize multidimensional data.26,27 Senay and
Ignatius extended Mackinlay’s work to 3D using a visualization system (Vista) built on heuristic rules.28 Gallop proposed
data models and structures to classify visualizations.29 Rogowitz and Treinish described a rule-based visualization architecture
designed to represent continuous surfaces.30 A simple table lookup scheme is used to match a dataset with certain properties
to an appropriateM . The paper advocated the use of perceptual rules to guarantee thatn-fold increases in an attribute’s value
resulted in a perceptualn-fold increase in the visual feature used to represent that attribute. Unfortunately, the construction
of these perceptual rules was left as work-in-progress. Later studies by Bergman et al.31 described a colormap tool that used
system-generated and user-provided information about a dataset to limit a viewer’s choice of color scales during visualization.

1.2. Research Goals

Although each of the existing automated visualization techniques perform well in their target environments, none of them
completely address six important goals that we feel are critical for a generalized visualization assistant:

� multidimensional:visualization of multidimensional datasets must be considered; this is significantly more difficult than
mapping a single visual feature to a single data attribute,

� robust rules:visual features should be selected using a flexible collection of perceptual guidelines, rather than relying
only on anecdotal rules and experience-based intuition,



� dataset terminology:a standard method is needed to describe the important properties of a datasetD and the exploration
tasks a user wants to perform,

� intelligent search:an intelligent search technique should be used to find the most appropriate visualizations for a partic-
ular dataset and analysis task,

� multiple mappings:multiple data-feature mappings should be offered to the user, allowing them to view their dataset in
various ways; the use of different mappings will often highlight different areas of interest that no single mapping can
completely capture, and

� user control:users should be able to control certain properties of the data-feature mappings ViA produced; this includes
applying constraints (e.g.,the ability to force the choice of a particular visual feature for a particular attribute) and stating
preferences (e.g.,the ability to mark certain mappings as “preferable” to others based on context or other user-chosen
criteria).

ViA will address these goals in the following manner:

1. We will apply a collection of perceptual rules built using psychophysical experiments. We believe this provides a flexible
framework that will support a more general collection of application environments, moreover, our investigations are
specifically designed to support multidimensional data visualization.

2. Part of our design of ViA will include the construction of a formal taxonomy to classify the important properties of a
datasetD for use during the selection of a visual mappingM .

3. ViA will use modified mixed-initiative search algorithms to find collections of perceptually optimal data-feature map-
pings.

4. ViA will allow users to impose constraints during search, or to tag certain mappings as “more desirable” than others
when results are returned.

The use of AI search algorithms will allow us to move intelligently through the entire space of all possible mappings, returning
the topk mappings found during the search. Perceptual guidelines from our human vision studies will be integrated into
evaluation engines that provide the search algorithms with evaluation weights for a givenM , and hints on howM might be
improved (Figure 1). Although a completely automated assistant might seem to be an appropriate goal, we do not believe this
is feasible. The evaluation engines cannot be perfect, and specific datasets may have unique properties that cannot be addressed
in a general way by ViA. The strength of ViA is its ability to produce a collection of mappings that satisfy the rules of human
perception. Any one of these mappings can then be extended by the user to include context or to highlight dataset-specific
properties.

2. ARCHITECTURE

ViA’s architecture is based on conventional principles for building knowledge-based systems in artificial intelligence. Its func-
tion can be divided into a general-purpose search engine and a set of independent knowledge sources (evaluation engines) that
guide the search effectively through the visualization domain. The search engine is based on LRTA*, an incremental, real-time
search algorithm (described in more detail in the Heuristic Search section below). Each decision made by the search engine is
guided in part by an evaluation of its current results, as returned by some specific set of the evaluation knowledge sources. Each
of these knowledge sources encodes a collection of visualization rules based on robust, experimentally validated information
about perception. These rules explicitly consider the potential interactions between different visual features when they are used
to visualize multiple data attributes simultaneously in a single display.

The two conceptual components of ViA meet all four of our design requirements for an automated visualization process.
The knowledge sources represent robust evaluation rules that produce multidimensional data-feature mappings. A standard
taxonomy will be used to describe the dataset properties and analysis tasks used to evaluate an individual mapping. Instead of
choosing a single mapping for a given set of data attributes and stopping, the search process will continue to consider all the
mappings that meet the criteria of its evaluation knowledge sources. Some of the multiple mappings will be more effective for
visualization than others; the incremental search process can be directed by the user, with mapping results evaluated and pruned
based both on objective information about the dataset and subjective preferences defined by the user.
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Figure 1. An overview of ViA’s architecture, including an LRTA* mixed-initiative search algorithm and a collection of evaluation engines,
one for each visual feature available for use during visualization; information about the data attributes and analysis tasks come from both the
user and the dataset itself; the final data-feature mappings chosen by ViA are used by an external visualization software system to control the
display of the dataset

The search begins by asking several questions about the dataset to be visualized. First, users rank data attributes with regard to
their importance, producing either a total or partial ordering. Users must then indicate whether each variable is continuous or
discrete, ordinal or nominal. ViA will use this information to take advantage of an existing ordering on attribute values in the
visualizations it generates. Users can also associate an analysis task with any attribute (e.g.,whether the goal of the visualization
is search, boundary detection, tracking, estimation, and so on). This will further constrain the types of visual features used to
display this attribute. Finally the system itself determines various properties of each attribute (e.g.,its spatial frequency, number
of unique values, and domain).

Once the search begins, it is guided in two ways. First, the search engine passes its incrementally constructed mappings to
the evaluation engines for examination. On reaching a maximum in its evaluation process, the engine can pause to present
the user with its results up to that point. The user can review the selected mappings and indicated which components should
be retained and which should be revised. Alternatively, the user can select one or more of the lower-ranked mappings and
instruct the search engine to continue in a new direction. At this intermediate stopping point the user can also tune various
dataset properties like the importance ranking of attributes, to guide the search toward different combinations in the resulting
visualization. This approach reflects our past work on automated assistance for statistical reasoning.32,33

3. EVALUATION ENGINES

The mixed-initiative search algorithm needs a way to evaluate visual mappings; these evaluations are used to identify visualiza-
tions that are most appropriate for the given dataset and analysis tasks. Each mappingM selected by the search algorithm will
be examined by a collection of “evaluation engines”. A mappingM is a relationship that associates a visual featurevj with
each attributeAj in the dataset. A separate engine will be built to evaluate each visual feature available during the construction
of M (e.g.,one engine for color, one for luminance, one for density, and so on, see also Figure 1). ViA will use these engines
to obtain an evaluation weight for every attribute to visual feature pairingAj ! vj 2M .

The design of our evaluation engines is built on results from our human vision studies. Our initial work in this area found that
viewers can perform high-speed estimation using both color and orientation (i.e.,estimating the percentage of elements colored
blue, or the percentage of elements rotated45� off horizontal). Our results also demonstrated that neither feature interferes with
the other during estimation.

We then studied methods for choosing collections of colors that can be rapidly distinguished from one another.15 Our findings
showed that three selection criteria must be considered: the distance between colors in a perceptually balanced color space, the
ability to separate each color from all the others with a straight line, and the named color region each color occupies. Proper
application of these criteria produces up to seven isoluminant colors that can be easily distinguished from one another, even
when all the colors are shown simultaneously in a single display.
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Figure 2. The DF map structure, a linked list of nodes, each node contains information for a single attribute, including: attribute type
(discrete or continuous, ordinal or nominal), frequency type (low or high), the visual feature currently being used to represent the attribute,
the analysis task users want to perform on the attribute, and a link to a binary file that contains the actual data values

We have also conducted studies to identify the perceptual dimensions that combine to produce visual texture patterns.16 Our
results allowed us to construct pexels (perceptual texture elements) that visualize information in a dataset through the variation
of each pexel’s size (or height), density (or contrast), and regularity of placement. A final set of experiments showed the
presence of color-on-texture interference: random variations in color can mask underlying texture patterns, but variations in
perceptual texture dimensions have no effect on a viewer’s ability to identify individual colors.17 Our current research is
extending this perceptual foundation through the study of 2D and 3D orientation, and the perceptual components of motion
(e.g.,flicker, direction, velocity, and coherence).

Our collection of guidelines on the use of color, texture, and motion during visualization form a solid foundation on which to
construct our evaluation engines. As mentioned in the Architecture section, we must also identify the dataset properties needed
to correctly apply our guidelines during the evaluation ofM . Previous work24,29{31 suggests these could include an attribute
importance ordering, the spatial frequency of eachAj 2 D, the domain type ofAj (continuous or discrete, ordinal or nominal),
and the exploration and analysis tasks the viewer wants to perform. Some of these properties (e.g.,spatial frequency) can be
inferred from the dataset. Others (e.g.,exploration and analysis tasks) need to be specified by the viewer. ViA will test each
attribute-feature pairAj ! vj 2M for:

� interference:can other attribute-feature mappingsAk ! vk 2M visually interfere withAj ! vj?

� task applicability:doesvj support the exploration and analysis tasks the viewer wants to perform onAj?

� attribute domain type:doesvj support the domain type ofAj (e.g.,canvj produce continuous scales ifAj is continuous,
or canvj produce an appropriate number of distinguishable values ifAj is discrete?)

� spatial frequency:is vj appropriate for representing the spatial frequency ofAj?

Information about a particularM is stored in aDF mapdata structure (Figure 2). This data structure is used to pass mappings
between the LRTA* search algorithm and the evaluation engines. ADF mapis a linked list of nodes, one for each attribute-
feature pairAj ! vj 2 M . A node encodes the visual feature being used to display the attribute, the analysis task users want
to perform on the attribute (if any), the attribute’s spatial frequency, and its type (continuous or discrete, ordinal or nominal). A
reference is also stored to the binary file that contains the raw data values.

Each node in theDF mapis examined separately. The visual featurevj being used to display the node’s attribute determines
which evaluation engine to invoke. The evaluation engine returns a weight between 0.0 (a completely flawed attribute-feature
pairing) and 1.0 (a perfect attribute-feature pairing). Any violation of our perceptual guidelines will produce a decrease in the
weight returned. The engine will also try to provide “hints” to fix the problem, thereby improvingM . For example, suppose
Aj ! color. The color evaluation engine would check to see ifAk ! luminance 2 M . If so, and ifAj > Ak in terms of
attribute importance, there may exist a luminance interference effect (i.e., background luminance patterns used to displayAk

may mask color patterns attached to the more important attributeAj ). The engine would also check to see ifAj had a high
spatial frequency, since color (particularly isoluminant color) is not well-suited for representing fine spatial detail. Either case



would cause the evaluation engine to return a low weight forAj ! color. In both cases it would also “hint” to use luminance
rather than color to representAj .

Hints are returned as a linked list of nodes that contain two values:featuretypeandimprovementweight. featuretypeis a new
visual feature recommended by the evaluation engine to represent the given attribute (in our previous example,featuretype
would be luminance).improvementweightis the engine’s estimated improvement in the evaluation weight iffeaturetypewere
adopted.

The search algorithm will collect all the evaluation weights and corresponding hints, then use the hints to direct its search to a
new set of mappings. Hints from different evaluation engines can conflict with one another. The search algorithm must decide
which hints to apply and which to ignore; this will often produce multiple search paths to further test the improvement inM
offered by different collections of hints. If any of the hints are valid, some of the new mappings should produce better evaluation
weights. In this way, ViA can restrict its search to small groups of mappings with a strong potential for improvement.

4. MIXED-INITIATIVE SEARCH

We take a search perspective on the selection of an appropriate mapping between data attributes and visual features. Classical
problem-solving algorithms require the specification of a state space (including an initial state and a set of goal states), a set
of operators that transform one state into another, constraints on the application of the operators, and appropriate knowledge to
guide the selection of operators in a given state.

We can formalize the problem of generating a mapping between data attributes and visual features as follows. LetD =
fd1; : : : ; dng be the set of all attributes for a given dataset,F = ff1; : : : ; fmg the set of all available visual features. A point
p in the state space is an ordered pair(Dp; Fp) whereDp � D andFp � F . The initial state is characterized by(D;F ), while
a solution point is characterized by(Ds � D;Fs � F ). The set of operationsO = foij ji 2 [1; 2; : : : n]; j 2 [1; 2; : : : ;m]g �
D � F is a set of all possible assignmentsAi ! vj of dataset attributes to visual features. In other words, a search algorithm
will move through the search space by removing a dataset attribute and a visual feature from(Dp; Fp) and associating them.
As the search progresses a partial mapping is constructed. At some point a mapping is selected as a solution.

In the remainder of this section we discuss the characteristics of this problem domain, such as the requirements for respon-
siveness and user involvement. We then present the rationale for using a real-time heuristic search technique, LRTA*, which
provides a good match for the properties of the domain.

4.1. Problem Domain Characteristics

The number of visual features available for assignment to dataset attributes in the current system is limited to a relatively small
number: color, luminance, height, density, and regularity. If we assume that the user provides a complete preference ordering
on dataset attributes, a simple solution might be as follows:

1. Select the topN dataset attributes, in order, whereN is the number of visual features we wish to display.

2. Treat every permutation of visual features as a mapping to the fixed ordering of dataset attributes.

3. Evaluate each permutation and select the best one.

Because we have set an upper bound on the number of dataset attributes that can be simultaneously visualized, and we have
fixed their ordering in terms of importance, the number of nodes in the largest mapping problem isT (n; n) = n! = 120 nodes
— a small search space by most measures. Our tentative solution formulates the mapping problem as one of optimization, and
solves it by exhaustively searching the bounded problem space for the optimal solution.

This would be acceptable only if the application domain requirements provide no additional constraints. This is not the case.
First, the running time of this algorithm is exponential in the size of the set of visual features, and we have no reason to believe
that this set will remain at its current tractable size. Once some number of novel visual features (e.g.,the addition of flicker,
direction and velocity of motion, and motion coherence) have been incorporated, a brute force approach will break down.
Second, we cannot expect that users will always provide a total ordering on dataset attributes; the user may be interested in
more attributes than can be visualized at once, which leads to a combinatorial explosion in the number of visualizations that
must be generated in a brute force search.



Third, and most important, the automated evaluation provided by the evaluation engines for a mapping is heuristic. That is, the
search guidance may lead to the best possible mapping, but this is not the only plausible result. Evaluation knowledge sources
have been developed for general, domain-independent and user-independent applications. They may not match the specific
patterns in a dataset; they may not meet the individual preferences of a user; for novel visual features, they may require tuning
for their integration into the more comprehensive evaluation process. An algorithm that addresses this uncertainty must be
interactive, to take advantage of user control knowledge in selecting a path through the search space. If the algorithm reaches
a specific solution and the user decides that it is inappropriate, the algorithm must be able to return to its search to produce
alternative suggestions.

The interactive generation of visualization mappings gives rise to three requirements that move beyond simply allowing steering
by the user. The system must also be incremental, responsive, and adaptive. Equipped with plausible but uncertain heuristics,
the search engine should be able to move the search process into regions of the state space populated by good mappings, but in
the end this determination may need to be made by a user. If fine tuning (and sometimes even the broader search process) is
open to user direction, then the process must be incremental (rather than a black box search) in order to allow for this guidance.
This implies that the system must be responsive, taking into account the standard requirements of interactive computing. We
can divide the visualization process into several stages, including the selection of a mapping, the refinement of the mapping into
a visualization specification (e.g.,discretizing a variable for color selection), and the actual rendering of the visualization. If the
generation of good mappings grows too time-consuming, this can reduce user satisfaction with the entire process. Finally, the
system must be adaptive. Some of the earliest, relatively fragile expert systems produced a single solution to a given problem
and presented it to the user. If the user judged the solution inadequate but found no difficulties with the problem representation,
the system could not recover from the failure. An effective system in the visualization domain must learn about the search space
as it is traversed, to eliminate the possibility of following paths found unfruitful in previous episodes and to adapt its evaluation
to the user’s choices.

4.2. Heuristic Search

Real-time search techniques fall into the class of “anytime” algorithms, algorithms that deliberate for some variable period of
time in search of an optimal solution.34 An anytime algorithm halts when the cost of continuing is perceived to be greater than
the benefit of the eventual solution. At this point the algorithm returns with the action it evaluates as the current best. After
committing to an action, real-time search techniques are often required to start a new search episode, taking the state after the
action as the new initial state. These algorithms can thus incorporate techniques for learning the topology of the search space
over the multiple search trials. We can make a direct analogy between interactive visualization and real-time computing; in
fact, some argue that all forms of interactive computing belong in the real-time arena.

In the class of real-time heuristic search techniques, Learning Real-Time A* (LRTA*), which is guaranteed not to over-estimate
the promise of previously visited nodes, is well-suited to learning over multiple trials.35 We base our development of the
heuristic function for this problem on the independent evaluation knowledge sources discussed above. These knowledge sources
implement functional mappings,ei;j : (Ai ! vj) ! [0; 1] 2 R, that depend on the characteristic of the input dataset and the
proposed associated visual feature. An evaluationei;j is a value between 0 and 1 that reflects the merit of the assignment
Ai ! vj . We define the intrinsic promise or heuristic estimation of a points in the state space to be

Q(s) = 1 + 1=n
nX

j=1

xj(eS(j);j � 1) (1)

wherexj is a Boolean variable that is assigned a truth value that reflects whether the states provides an assignment for dataset
j, andS(j) is a function that computes the feature assigned to datasetj under states.

This function satisfies the admissibility requirement for optimality, an important property for LRTA*. Informally, admissibility
in a search heuristic ensures that the search algorithm will not halt with a solution that is less than optimal. The above heuristic
estimate can be viewed as representing an overestimate of user satisfaction with the mappings implied bys. If we think of the
heuristic estimate as a cost function, then1 � Q(s) is an underestimate for the user satisfaction of the given mapping. The
intrinsic estimate of dissatisfaction, however, does not capture the cost of deliberation time to compute a mapping; it assumes
that the user is only concerned about visualization quality and not with the time spent to achieve it. One simple approach to this
problem is using the intrinsic dissatisfaction function to compute the aggregate cost of moving to a certain point in the solution
space through the incorporation of a time variable.

LetQ(s) be the intrinsic cost estimate. Then the aggregate cost functionf(s) can be modeled as



f(s) = A(1�Q(s)) + (1�A)(1�Q(s))[1� e�Bt] (2)

whereA 2 [0; 1] is a tuning parameter to reflect the user’s appreciation of visualization quality over deliberation time,B is
time constant that denotes the rate of depreciation of intrinsic quality over time, andt is the total number of node expansions
to reach the points in the state space. It directly follows that as deliberation time increases the search technique develops a
tendency toward delivering acceptable solutions rather than pursuing optimality.

5. CONCLUSIONS

To summarize, ViA will advance research on rule-based visualization and the automated selection of data-feature mappings by:

� building a formal taxonomy to enumerate bothD’s properties and the exploration and analysis tasks to be performed,

� constructing a set of evaluation engines to rank the perceptual salience of any data-feature mappingM for an underlying
datasetD,

� testing the applicability of mixed-initiative search algorithms that allow external hinting for the selection of a collection
of mappings, and

� comparing automatically constructed mappings to those designed by domain experts, or to those built by hand from
guidelines in our perceptual foundation.

The result is a software system viewers can use to build data-feature mappings for their multidimensional datasets. ViA will ask
the viewer a limited set of questions, then suggest a collection of mappings most appropriate for their exploration and analysis
tasks. ViA will be integrated into our perceptual display software, so any mappings it suggests can be immediately applied to
visualize an underlying dataset.

The current ViA system is now working in a prototype environment. The LRTA* search algorithm has been implemented; sev-
eral evaluation engines (including those for color, luminance, size, density, and regularity) have been constructed. Techniques
have been built to allow the Lisp-based LRTA* and C++-based evaluation engines to communicate with one another using
DF mapandhint data structures. The combined system is capable of suggesting collections of basic data-feature mappings for
an underlying multidimensional dataset.

Our future work will take several directions from the foundation we have established. First, we will continue development on
knowledge sources for visual features. These will include the refinement of existing knowledge sources and the exploration
of novel visual features. Second, we will examine in more detail the complementary contributions of the user and the system
to the mapping search. Considerable research has been devoted to the concept of interactive statistical strategies, formal
descriptions of the actions and decisions involved in applying statistical tools to a problem.36 We believe that comparable
interactive visualization strategies can be defined. These will benefit users of differing expertise in a complex, knowledge-
intensive process. Third, ViA will be evaluated by testing the effectiveness of the mappings it produces. This will be done
using a set of real-world datasets that include results from CT medical scans,18 storm and typhoon tracking,16,17 and marine
biology simulations.19 Data-feature mappings produced by ViA will be compared to mappings designed by domain experts in
each area, and to mappings built by hand using our perceptual guidelines. We will conduct validation studies to test a viewer’s
ability to perform application-specific exploration and analysis using the ViA-based, domain expert, and hand-built mappings.
Results from these studies will highlight the strengths and weaknesses of each category of mapping. It will also allow us to
improve ViA by identifying situations where it fails to locate the most effective mappings.
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