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Abstract

New data sources and sensors bring new possibilities for
terrain representations, and new types of characteristic er-
rors. We develop a system to visualize and compare terrain
representations and the errors they produce.

1. Introduction
New sensors and improved computational capabilities al-
low us to collect huge amounts of sample data on which to
build terrain models for a broad range of applications: pho-
togrammetric correction, flood modeling, beach monitor-
ing, visibility simulation, urban and natural resource man-
agement. In fact, new data comes so fast that it is hard to
determine how its errors manifest. Daniel and Tennant [1]
report that “technology has advanced and indeed outpaced
quality assessment developments.”

In this paper we develop a system to visualize error on
terrain models so that we can compare different terrain rep-
resentations, different data sources, and different levels of
detail, both numerically and visually. Our system uses con-
cepts from perceptual visualization to choose mappings of
data attributes to visual features in an attempt to help a de-
veloper answer the question of what is the best terrain rep-
resentation, given resource limits, for a particular applica-
tion. This first prototype has already been helpful in re-
vealing correlations between errors and showing systematic
error that would be hidden in a numeric assessment of error
statistics.

1.1. Motivation for Visualizing Terrain Error
The methods used to evaluate error in terrain models are
either indirect or coarse. Sophisticated engineering qual-
ity assessment is applied to bound the error introduced by
the equipment that obtains the data, but the result is usually
encoded in a single assessment number. Statistical analy-
sis is applied to compare elevation data to “ground truth”
at selected points, but this does not capture the correlation
of error or its effects on different applications. Those who
work with data from a particular sensor can tell interesting
stories of its characteristic errors: e.g., how the old mechan-
ical stereo plotters lead to washboard surfaces as operators
undershoot and overshoot as the cursor flies back and forth

across the terrain, and how the recently-released data from
the shuttle radar topography mission (SRTM) flattens ridges
and valleys, and has data voids or 25 meter jumps in certain
types of terrain.

These new sources of data also inspire new research into
data representations, which bring more opportunities for er-
ror. In our case, we are particularly interested in new rep-
resentations for which the resolution or level of detail may
differ at different spatial locations. The TIN (Triangulated
Irregular Network [2]) was proposed in 1977 for this pur-
pose, and many other techniques (based quadtrees, splines,
wavelets, . . . ) have been proposed since. Nevertheless,
raster DEMs (Digital Elevation Models) remain the most
common terrain representation because they make the data
fit the computation. Raw data is never in raster DEM form,
however, and it is difficult to determine what errors are in-
troduced by the various processing and resampling opera-
tions that convert raw data into a raster DEM.

Given the errors that can be introduced by sensors, data
processing, and data representations, what is the best type
of terrain model for a given application? Unfortunately, we
already encounter problems with the premise of this ques-
tion; the error is there, but it is difficult to model and mea-
sure. Once cannot get a single number, either from engi-
neering quality assessment or from statistical analysis, that
will show the effects of error on different applications.

And so much depends on the application. The capabili-
ties of the application platform will determine memory lim-
its, and the application itself will determine data resolution
(since different geographical features are defined at differ-
ent resolutions). Even the preference of the person running
the application plays a role: Kumler’s monograph in 1994
addressed these questions for TINs and raster DEMs [3] and
concluded that except for visualization DEMs were better,
for a given amount of memory, but the author still liked
TINs. (Actually, advances in compression [4, 5] mean that
Kumler’s questions need to be asked again.)

1.2. System Foundations
Before we survey previous work, we take a moment lay the
foundations for our system for perceptual-based visualiza-
tion of terrain error. Our system has two types of mod-
ules: surface moduleseach represent a continuous terrain



surface derived from data. A surface module must report
surface attributeswhen queried atmeasurement locations.
Each surface module has attributes of elevation and resolu-
tion, and may register others such as slope, aspect, or confi-
dence. Most surface modules have a level-of-detail control
value that may be set by the user; this value may reflect the
fraction of data used, the number of wavelet coefficients, or
allowed deviation from data samples.

Theerror visualization modulerequests attributes at cho-
sen measurement locations (from one or more surface mod-
ules, at one or more levels of detail). One set of returned
attributes is deemedground truth—often the user chooses
the measurement locations as the most accurate data known
for the ground truth surface. It chooses, with user interac-
tion, a perceptual-based mapping from attributes, or their
deviation from ground truth, to visual features (e.g.hue, lu-
minance, size, orientation). It manages which measurement
locations are shown to the user to give the correct impres-
sion of the error at the scale that the user is viewing, respect-
ing the resolution of the underlying model. By simultane-
ously showing the results from two or more surface mod-
ules or levels of detail at the same measurement locations,
the error visualization module permits the user to compare
terrain representations and their errors.

Surface modules that are compared together must use the
same coordinate system and earth datum. All images we
show are using UTM coordinates on a WGS’84 datum [6],
but lat/long or state plane coordinates could be used in-
stead. Coordinate conversions and attribute derivation mod-
ules (such as slope from elevation samples) are available,
but must be called for explicitly so that the user is aware
that these conversions may be a possible source of error.

The application means that it is important to keep reso-
lution in mind in this system: geographic features have a
natural range of scales at which they can be defined—the
difference between a pebble, a bolder and Yosemite’s Half-
Dome is a matter of scale.

Many of our visualization techniques apply not only to
terrains, but also to general surfaces. We concentrate on
terrains because our goal is to evaluate different represen-
tations’ capabilities to support terrain analysis applications.
For terrain users, surface topology is unimportant and regis-
tration is (almost) already solved by the standard coordinate
systems provided with geocoded data. On the other hand,
terrain data sets are huge, and come with interesting error
characteristics from a wide variety of sensors. Our system
can take advantage of the geocoding to unify and compare a
diverse set of representations: including raster DEM, TIN,
subdivision, spline, and wavelet surfaces.

A key goal of visualization is to present raw data in an
unambiguousmanner. It is critical that a visualization does
not hide important details, or worse, introduce false infor-
mation into an image. Consider a simple example: the rain-

bow color scale (purple, blue, cyan, green, yellow, orange,
red) commonly used to encode continuous scalar data, for
example, temperatures on a weather map. It is well known
by visualization experts that this scale produces the illusion
of visual discontinuities between neighboring color regions
(e.g. between purple and blue, yellow and orange, and so
on). When continuous data are visualized with the rainbow
scale, users often conclude that values on either side of a
visual boundary have a large difference. In fact, this is not
true. The color scale has introduced false information into
the resulting visualization1. This is exactly the type of prob-
lem we want to avoid.

One way to manage and control how a visualization is in-
terpreted is through an understanding of how the human vi-
sual system perceives basic properties of color, texture, and
motion that appear in an image. We use results from psy-
chophysical experiments to choose visual features that pre-
serve patterns and relationships in the raw data, that avoid
visual ambiguity, and that ensure an effective presentation
of the data.

2. Previous Work
Our visualization prototype draws on previous work in un-
certainty visualization, terrain visualization, multidimen-
sional visualization, and properties of low-level human vi-
sion to build perceptually salient representations of multidi-
mensional data.

2.1. Visualizing Uncertainty
As a first step towards understanding how best to visu-
ally represent uncertainty, confidence, or errors, researchers
have studied different ways to model uncertainty. Gershon
enumerated sources of error or uncertainty and described
corresponding techniques to represent each, with special
emphasis on examples of inappropriate presentation [7].
MacEachren et al. provide an excellent overview of re-
cent research on uncertainty, demonstrating different meth-
ods to visualize uncertain data values. They propose seven
interdisciplinary challenges that must be met to further ad-
vance our ability to manage, understand, and represent un-
certainty [8].

Researchers have explored many methods to visualize
the uncertainty associated with individual sample points or
data values. For example, Wittenbrink et al. [9] used glyphs
to display uncertainty in flow fields. Pang et al. demon-
strated a comprehensive set of methods, including glyphs,
geometry modification, sonification, animation, and psy-
chophysical cues, in representative examples of applica-

1Note that the visual boundaries in the rainbow scale are not problem-
atic if they are managed correctly, for example, if they are used to subdivide
continuous data into categories as is done in weather maps (e.g.regions of
cold, cool, moderate, warm, hot, etc.)



Figure 1: An example multidimensional visualization of historical weather
conditions for January over the eastern United States; color represents tem-
perature (purple and blue for cold to orange and red for hot), luminance
represents cloud coverage (brighter for denser clouds), size represents sur-
face pressure (larger strokes for higher pressure), orientation represents
precipitation (rightward tilt for heavier rainfall), and density represents
wind speed (denser packing of strokes for stronger winds)

tions [10]. Johnson and Sanderson emphasize the impor-
tance of including uncertainty in visualization, and propose
a number of techniques to encode error and uncertainty val-
ues [11]. Grigoryan and Rheingans apply geometry mod-
ification to 3D surfaces—rendering surfaces as collections
of points, each displaced by an amount proportional to its
uncertainty in the surface normal direction [12].

Researchers have also studied ways to visualize multi-
dimensional data, and since visualizing multidimensional
data requires effective methods to present several attribute
values at a common spatial location, the same methods can
display both data and associated uncertainty values for indi-
vidual sample points in a dataset. Methods to visualize mul-
tidimensional data include using glyphs that represent sep-
arate data attributes by varying separate properties of color,
texture, and motion [13, 14], or using one visual feature
(e.g.different orientations of a line glyph) to encode differ-
ent values of an attribute, and a second visual feature (e.g.
luminance) to represent the amount of the attribute present
at any given spatial location [15]. Results from multidimen-
sional visualization may offer important insights on how to
best represent data and errors together in a common display.

2.2. Terrain Visualization

Terrain and height field visualization in particular, and mesh
simplification and rendering in general, are important and
well-researched areas in visualization and computer graph-

ics. We touch briefly on methods most related to our own
goals and system design.

Terrain models are large, so much of the research on ter-
rain visualization is to develop data structures that are effi-
cient to render and methods to ensure that large, high-detail
terrains display at interactive frame rates. Real-time sim-
plification and visibility culling reduce the polygon count
during rendering: Examples include the real-time adap-
tive meshes of Duchaineau et al. [16] and the nested grid
caching scheme of Losasso and Hoppe [17]. Out-of-core
visualization methods manage the large amount of data as-
sociated with high-detail terrains [18, 19].

Data can be visualized on top of the surface, once an un-
derlying surface model is defined. Common ways to present
data values include color coding (e.g. the well-known rain-
bow color scale used to represent temperature in weather
maps), shading (e.g.surface normals and virtual lights pro-
duce a shaded relief of a terrain’s elevation features), and
glyphs (e.g.contour lines for topography, or directed arrows
to represent wind direction and speed). Again, the various
methods used to map data to locations on the terrain are
typically based on techniques for visualizing single-valued
or multidimensional data (e.g.as demonstrated for meteo-
rological data over maps [14]).

2.3. Perception
Our visualizations are constructed from psychophysical
studies of how the human visual system “sees” fundamental
visual properties in an image. The use of color, texture, and
motion has a long history in the graphics, vision, and visu-
alization literature (e.g., in Treinish’s meteorological visu-
alizations [20], see also Figure 1).

Examples of simple color scales include the rainbow
spectrum, red-blue or red-green ramps, and the grey-red
saturation scale. More sophisticated methods divide color
along dimensions like luminance, hue, and saturation to bet-
ter control the difference viewers perceive between different
colors. Researchers in visualization have combined percep-
tually balanced color models with non-linear mappings to
emphasize changes across specific parts of an attribute’s do-
main, and have also proposed automatic colormap selection
algorithms based on an attribute’s spatial frequency, con-
tinuous or discrete nature, and the analysis tasks to be per-
formed. Experiments have shown that color distance, linear
separation, and color category must all be controlled to se-
lect discrete collections of distinguishable colors [13].

Texture is often viewed as a single visual feature. Like
color, however, it can be decomposed into a collection of
fundamental perceptual dimensions. One promising ap-
proach in visualization has been to use perceptual tex-
ture dimensions to represent multiple data attributes. In-
dividual values of an attribute control its corresponding
texture dimension. The result is a texture pattern that



changes its visual appearance based on data in the under-
lying dataset. Examples of perceptual dimensions include
properties like size, density, orientation, and regularity of
placement [13, 15].

Motion patterns are only beginning to be understood.
They can be processed very rapidly by the low-level vi-
sual system [21]. Perceptual dimensions of motion like
flicker, direction, and velocity have been studied in the psy-
chophysical literature, and are now being used for notifica-
tion in real-time systems [22], for cognitive grouping of el-
ements [23], and for visualizing multiple independent data
attributes.

Our visualization designs choose visual features that are
highly salient, both in isolation and in combination. We
map the features to individual data attributes in ways that
draw a viewer’s focus of attention to important areas in a
visualization. The ability to harness the low-level human
visual system is attractive, since:

• high-level exploration and analysis tasks are rapid and
accurate, usually requiring 200 milliseconds or less to
complete,

• analysis is display size insensitive, so the time to per-
form a task is independent of the number of elements
in the display, and

• different features can interact with one another to mask
information; psychophysical experiments allow us to
identify and avoid these visual interference patterns.

We have combined basic techniques from uncertainty, ter-
rain, and multidiemsional visualization with experimental
results on perception to construct a software tool designed
to visualize different types of error over an underlying ter-
rain height field. Users control which visual feature to apply
(hue, luminance, size, or velocity of motion) to represent
different error types. We visualize error values in ways that
maintain perceptual salience. For example, both the hue
and luminance scales are built to ensure perceived balance,
that is, equal-distance steps at different positions along the
scale produce roughly equal perceived differences in the re-
sulting hues or luminances. Sizes and velocities are also se-
lected based on experimental results from visualization and
psychophysics.

3. VisTRE
We designed a prototype visualization tool, VisTRE, to vi-
sualize terrain representations and their errors. Each ter-
rain model recordsx, y, z-elevation and slope (stored as a
unit-length surface normal) for a sequence of sample points.
Two error measurements are also attached to each sample:
elevation error, the difference in a sample point’s elevation
compared to a ground truth terrain, and slope error, the ab-

solute angular difference between a sample point’s surface
normal compared to a ground truth terrain.

We chose a simple point cloud visualization scheme for
our initial system. Sample points are represented as square
glyphs (i.e. variable-sized OpenGL points). Each glyph is
positioned at its(x, y) location, with itsz-position and sur-
face normal defined by the sample’s elevation and slope.
Simulated lighting is used to produce a shaded relief of the
map’s underlying topology (Figure 2). Error values are dis-
played as variations in each sample point’s hue, luminance,
size, or velocity of motion. Values for each visual feature
were selected to maintain perceptual distinguishability and
balance, specifically:

Hue: Hues range from blue for the lowest error values
through green, yellow, orange, and red for highest er-
ror. Positions along the hue scale are mapped through
a perceptually balanced color model [24] to ensure
equal-distance steps produce roughly equal changes in
perceived hue.

Luminance:Luminances range from approximately 40%
of the monitor’s available brightness (to ensure glyphs
are not too dark to distinguish differences in hue) to
approximate 80% of available brightness (to ensure
glyphs are not so bright that they produce highly un-
saturated, pastel-like hues). Again, a perceptual color
model is used to ensure balance between differences in
error values and perceived differences in luminance.

Size: Sizes range from one unit to 2×2, 3×3, 4×4, and
6×6 arrays. Experimental results from psychophysics
suggest that area should double to generate a uni-
form perceived change in size. Array differences were
therefore selected to approximately double successive
areas, except for the change from one unit to 2×2
units, which is a four-fold increase. In practice, how-
ever, we have observed no negative effects from the
over-emphasis of this size difference.

Velocity: Non-zero velocity moves a sample point’s glyph
along a motion path parallel to thez-axis. The path
extends up to nineteen units in length, centered about
the sample’s initial position. All glyphs traverse their
full path over a fixed time interval (i.e. glyphs with
longer paths move with a higher velocity). Differences
in path length were selected to approximately double
successive velocities, again based on results that sug-
gest this relationship is needed to produce uniform per-
ceived differences in velocity [25, 26].

Some visual features (e.g. different values of hue and lu-
minance) are selected using monitor properties like maxi-
mum luminance and triad chromaticity. Perceptually bal-
anced color models and calibrated conversions to a moni-
tor’s RGB space improve our ability to encode quantitative



(a) (b) (c)

(d) (e)

Figure 2: Examples of different visual features used to represent error values: (a) elevation error from the national elevation dataset (NED) terrain model
at 1◦ resolution visualized using hue; (b) elevation error visualized using luminance; (c) elevation error visualized using size; (d) NED terrain model with
elevation error visualized using hue and slope error visualized using luminance; (e) elevation error visualized using hue and slope error visualized using size

information using hue and luminance. Since the main task
in our visualizations is error comparison, however, reason-
able colours can still be selected even without knowing spe-
cific monitor properties.

Figure 2 shows examples of hue, luminance, and size
used to visualize different error values. In Figure 2a, eleva-
tion error is visualized using hue, with green representing
little or no error, red representing high positive error (i.e.
z-heights above ground truth), and blue representing high
negative error (i.e. z-heights below ground truth).

Figure 2b uses luminance to visualize the same elevation
error: brighter regions for high positive error, and darker
regions for high negative error. This image shows that lu-
minance is less effective in a shaded relief environment, be-
cause variations in brightness due to error values are con-
founded by variations due to surface shading. Although
we can turn off lighting effects, this then makes it diffi-
cult or impossible to judge surface orientations and eleva-
tions. Figure 3 demonstrates this by representing elevation
error with luminance and disabling lighting. The underlying
shading represents elevation error alone, with no direct cor-

respondence to surface direction (in spite of our natural ten-
dency to interpret luminance changes as surface relief). A
comparison with the true shaded surface (e.g.in Figure 2c)
highlights this artifact.

Finally, Figure 2c uses size to visualize elevation error:
large for high positive error, and small for high negative er-
ror. Although different positive errors are not immediately
obvious at this resolution, negative errors are clearly visi-
ble as regions with background showing through the terrain.
Compare this to the hue representation, where the small size
of the negative error regions makes them more difficult to
identify.

Figures 2d and 2e demonstrate visualizing elevation and
slope error simultaneously with hue and luminance and hue
and size, respectively. Because areas of high slope error are
limited mainly to the peaks and valleys, both visualizations
do a reasonable job of highlighting these locations. In the
hue-luminance visualization, the areas with higher slope er-
ror are less obvious (again due to the confounding effect
with surface shading), but the underlying elevation errors
(visualized with hue) are easy to identify. The hue-size vi-



Figure 3: The terrain with elevation error visualized using luminance, and
lighting disabled to remove the confounding effect of shading to represent
surface orientation

sualization does a better job of highlighting regions of high
slope error at the expense of presenting elevation error. Re-
gions with low slope error produce smaller glyphs, which
are not as effective at encoding distinguishable differences
in hue. Again, this problem could be overcome by zoom-
ing in on specific regions of the map. This demonstrates
how different combinations of visual features offer different
strengths and weaknesses, and how these tradeoffs change
as users interactively vary the way they view their data.

Our choice of a point cloud rather than a regular-grid
mesh or triangulated irregular network (TIN) is based on a
number of current and future requirements for our visualiza-
tion tool. The digital elevation models we are asked to vi-
sualize can be irregular in their density and location of sam-
ples. This is because the acquisition of elevation and slope
data varies depending on location and the sampling method-
ology (e.g. data from LIDAR, light detection and rang-
ing, versus SRTM, the shuttle radar topography mission).
Perhaps more importantly, we plan to investigate various
methods for simplifying the terrain models, for example,
a wavelet compression that can be applied to an irregular
layout of samples. This representation provides point loca-
tions, but no connectivity information. Using point clouds
frees us from having to add mesh edges in post-processing.

Users control which visual features to use to represent
elevation or slope error. The domain of error values for a
given terrain model is normalized and mapped to the range
of displayable values for the given visual feature. Users
can load multiple terrain models, and flip back and forth
between them to compare slope and elevation error over the
surface as a whole, or at specific spatial locations.

4. Conclusions and Future Work
We developed this perceptual-based visualization tool to
help evaluate terrain representations and their errors, thus

we would like to conclude with a couple of vignettes for
what aspects of this tool have already been helpful.

(a)

(b)

Figure 4: Effects of misregistered data: (a) the NED terrain in its original
format, which is translated iny from corresponding positions in the ground
truth terrain as indicated by the positive (red hue) errors on north-facing
slopes and negative (blue hue) errors on south-facing. (b) the same NED
terrain properly shifted to correct for the misregistration, producing signif-
icantly lower (green hue) elevation errors. Note how the ridge with error
at left now stands out.

The tool shows correlations of error with terrain features
and with other types of error. These have been important to
see in several cases: for example, the tool showed us pretty
quickly that the SRTM data flattened valleys and, to a lesser
extent, ridges, a fact that was confirmed by Jim Slater, one
of the data experts at NGA (personal

Correlation also shows where data is misregistered or
warped, as the example of Figure 4 illustrates. These
misregistrations can hide actual errors that become visible
when they are removed.

Elevation and slope errors can also be used to highlight



changes in a terrain between data acquisition. Consider
Figure 5, which shows SRTM data with elevation error vi-
sualized using hue and slope error visualized using lumi-
nance. A circular area in the the upper-right corner of the
terrain has high negative elevation error and high slope er-
ror. Google Earth imagery2 reveals this as a large gravel
pit, which apparently, was dug deeper after the ground truth
data was acquired, but before the shuttle radar mission was
conducted. This new topographical “feature” was there-
fore highlighted in the SRTM data as a large hole relative
to ground truth.

To our surprise, our attempts to use velocity of motion
to represent error were not as effective as we initially ex-
pected. Findings from both biological and computer vision
suggest motion is one of the most salient visual cues. Psy-
chophysical experiments have confirmed that various prop-
erties of motion like flicker, direction, and velocity can be
used to encode data values in a visualization [25]. In our
system, however, it is difficult to identify specific veloci-
ties, partly because small elevation and slope errors exist
at almost all locations on many terrains, so every glyph is
moving at some velocity. Moving glyphs break up the un-
derlying surface, changing it from a shaded relief map into
a collection of moving patches. This produces the impres-
sion of wave-like motion across the terrain, and confounds a
user’s ability to pick out the velocity of any particular sam-
ple point and to compare velocities for different points. It
was even difficult to determine if a sample point’s glyph is
moving upward (for positive error) or downward (for neg-
ative error). Moreover, standard methods for viewing ter-
rain do not favor the use of velocity. For example, when
looking straight down on the terrain from above, velocity
is difficult to detect because glyph motion paths are paral-
lel to the viewing direction. When the terrain is rotated,
the 3D perspective projection causes many of the glyphs to
overlap with one another (i.e. groups of glyphs at different
distances from the camera near to a common projection ray
are rendered in similar regions on the screen). One possible
improvement is to threshold velocity such that a minimum
error is required before movement begins. Glyph motion
could then be used to highlight regions of larger error val-
ues. Even with this change, it’s unclear how effective ve-
locity can be in our visualization environment. Because of
this, we plan to replace velocity with a visual feature better
suited to our application environment.

The prototype is currently limited to small to moderate
data sets of tens to hundreds of thousands of points. Some
of the ways to raise this limitation are well-researched:
the error visualization module needs to incorporate more
culling techniques from Section 2.2, and the surface mod-
ules need to be engineered to accept large data sets. But
there are other interesting questions for how to give the

2http://earth.google.com

Figure 5: A visualization of shuttle radar topography mission (SRTM) el-
evation data; the region of high negative elevation error in the upper-right
corner of the image is a gravel pit that was dug deeper after the ground
truth terrain model was captured.

user the right perception of errors when much data is
suppressed—if we give users a brush or zoom tool that al-
low them to express their level of interest in an area, how
do we increase or decrease the resolution while keeping the
perception of error consistent?

We would also like to enhance the ability to visualize
error results for more two (or more) terrains together in a
common display. For example, we might like to see how er-
rors for SRTM terrains compare to errors for low-resolution
DEM terrains. Currently, this requires flipping back-and-
forth between two separate visualizations. Since the visual
system is known to be highly inefficient at maintaining and
comparing details, due to change blindness [27, 28]. A sin-
gle combined display would allow us to directly analyze er-
ror values for the different surfaces at common terrain loca-
tions, and more importantly, see patterns in the error fields
to answer questions such as: Where is one terrain better
than another at estimating elevation or slope? Where is it
worse? Are there particular properties of the terrain (valley,
ridges, and so on) that drive these differences? A method to
subdivide each glyph between several surfaces in an intelli-
gent manner seems like a promising starting point towards
achieving this goal.

Finally, we plan to validate our research with domain ex-
perts who study these types of datasets. This will test the
basic capabilities of our design, and identify its strengths
and weaknesses relative to existing tools currently used by
the domain experts. To this end, we have initiated discus-
sions with collaborators at the who study ways to store, rep-
resent, and simplify terrain, elevation, and gravity data at
National Geospatial-Intelligence Agency. We are designing
a prototype to provide to our collaborators, to allow them
to visualize data at their organization. Feedback from these
investigations will be used to further improve and enhance
our visualization techniques.
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