

Lecture 10 Architecture of Parallel Computers 1

Cache memories

[§6.1] A cache is a small, fast memory which is transparent to the
processor.

• The cache duplicates information that is in main memory.

• With each data block in the cache, there is associated an
identifier or tag. This allows the cache to be content
addressable.

37

26

49

7

information information
26?

Tag

Key

• Caches are smaller
and faster than main
memory.

• Secondary storage, on
the other hand, is
larger and slower.

Cache

Main memory

Secondary storage

• A cache miss is the term analogous to a page fault. It
occurs when a referenced word is not in the cache.

° Cache misses must be handled much more quickly
than page faults. Thus, they are handled in hardware.

• Caches can be organized according to four different
strategies:

° Direct
° Fully associative
° Set associative
° Sectored

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 2

• A cache implements several different policies for retrieving
and storing information, one in each of the following
categories:

° Placement policy—determines where a block is placed
when it is brought into the cache.

° Replacement policy—determines what information is
purged when space is needed for a new entry.

° Write policy—determines how soon information in the
cache is written to lower levels in the memory hierarchy.

Cache memory organization

[§6.2] Information is moved into and out of the cache in blocks.
When a block is in the cache, it occupies a cache line. Blocks are
usually larger than one byte,

• to take advantage of locality in programs, and
• because memory may be organized so that it can overlap

transfers of several bytes at a time.

The block size is the same as the line size of the cache.

A placement policy determines where a particular block can be
placed when it goes into the cache. E.g., is a block of memory
eligible to be placed in any line in the cache, or is it restricted to a
single line?

In our examples, we assume—

• The cache contains 2048 bytes,
 with 16 bytes per line
 Thus it has 128 lines.

• Main memory is made up of 256K bytes, or 16384 blocks.
 Thus an address consists of 18 bits

We want to structure the cache to achieve a high hit ratio.

• Hit—the referenced information is in the cache.

Lecture 10 Architecture of Parallel Computers 3

• Miss—referenced information is not in cache, must be read
in from main memory.

Hit ratio 
Number of hits

Total number of references

We will study caches that have three different placement policies
(direct, fully associative, set associative).

Direct

Only 1 choice of where to place a block.

block i  line i mod 128

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order seven bits of
the main-memory address of the block.

 Main memory

Block 0
Block 1
Block 2

Block 127
Block 128
Block 129

Block 255
Block 256
Block 257

Block 4095
Block 4096

Block 16383

•
•

•
•

•
•

•
•

Tag

Tag

Tag

Line 1

Line 127

7 bits

Cache

Tag Index Offset

7 7 4

Main-memory address

Line 0

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 4

To search for a word in the cache,

1. Determine what line to look in (easy; just select bits 10–4 of
the address).

2. Compare the leading seven bits (bits 17–11) of the address

with the tag of the line. If it matches, the block is in the
cache.

3. Select the desired bytes from the line.

 Advantages:

 Fast lookup (only one comparison needed).

 Cheap hardware (only one tag needs to be checked).

 Easy to decide where to place a block

 Disadvantage: Contention for cache lines.

Exercise: What would the size of the tag, index, and offset fields be
if—
 the line size from our example were doubled, without changing

the size of the cache? 7, 6, 5
 the cache size from our example were doubled, without

changing the size of the line? 6, 8, 4
 an address were 32 bits long, but the cache size and line size

were the same as in the example? 21, 7, 4

Fully associative

Any block can be placed in any line in the cache.

This means that we have 128 choices of where to place a block.

 block i  any free (or purgeable) cache location

Lecture 10 Architecture of Parallel Computers 5

 Main memory

Tag

Tag

Tag

Line 0

Line 1

Line 127

14 bits

Cache

Tag Offset

4

Main-memory address

14

Block 0
Block 1

Block

Block 16382
Block 16383

•
•

•
•

•
•

i

•
•

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order fourteen bits
of the main-memory address of the block.

To search for a word in the cache,

1. Simultaneously compare the leading 14 bits (bits 17–4) of
the address with the tag of all lines. If it matches any one,
the block is in the cache.

2. Select the desired bytes from the line.

 Advantages:

 Minimal contention for lines.

 Wide variety of replacement algorithms feasible.

Exercise: What would the size of the tag and offset fields be if—

 the line size from our example were doubled, without changing
the size of the cache?

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 6

 the cache size from our example were doubled, without
changing the size of the line?

 an address were 32 bits long, but the cache size and line size
were the same as in the example?

 Disadvantage:

 The most expensive of all organizations, due to the high
cost of associative-comparison hardware.

A flowchart of cache operation: The process of searching a fully
associative cache is very similar to using a directly mapped cache.
Let us consider them in detail.

Page
number

Byte within
page

Virtual address

Search TLB

TLB hit?

Select TLB victim
to be replaced

Translate virt. addr.
to physical addr.

No

Enter new
(virt., phys.)

addr. pair in TLB

Yes
Block

number
Byte within

block

Update
replacement status

of TLB entries

Search tags
of cache lines

Cache
hit?

No

Yes

Fetch block from
main memory

Select cache victim
to be replaced

Store new block
in cache

Update
replacement status

of cache entries

Fetch block
from cache

Select desired
bytes from block

Send byte(s)
to processor

Note that this diagram assumes a separate TLB.

Lecture 10 Architecture of Parallel Computers 7

Which steps would be different if the cache were directly mapped?

Set associative

1 < n < 128 choices of where to place a block.

A compromise between direct and fully associative strategies.

The cache is divided into s sets, where s is a power of 2.

block i  any line in set i mod s

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order eight bits of
the main-memory address of the block. (The next six bits can be
derived from the set number.)

Main memory

Block 0
Block 1

Block 16383

•
•

•
•

•
•

Tag
Line 0

8 bits
Cache

Tag Offset

4

Main-memory address

•
•

Tag
Line 1

Tag
Line 2

Tag
Line 3

Tag
Line 126

Tag
Line 127

Block 4095

Block 65

Block 63
Block 64

Set 0

Set 1

Set 63

Index

8 6

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 8

Exercise: What would the size of the tag, index, and offset fields be
if—
 the line size from our example were doubled, without changing

the size of the cache?
 the set size from our example were doubled, without changing

the size of a line or the cache?
 the cache size from our example were doubled, without

changing the size of the line or a set?
 an address were 32 bits long, but the cache size and line size

was the same as in the example?

To search for a word in the cache,

1. Select the proper set (i mod s).

2. Simultaneously compare the leading 8 bits (bits 17–10) of

the address with the tag of all lines in the set. If it matches
any one, the block is in the cache.

 At the same time, the (first bytes of) the lines are also being

read out so they will be accessible at the end of the cycle.

3. If a match is found, gate the data from the proper block to

the cache-output buffer.

4. Select the desired bytes from the line.

Lecture 10 Architecture of Parallel Computers 9

= ?

= ?

= ?

= ?

Desired block # Tags from set

Select

Select

Select

Select

Lines from set

Data outCache output-
data buffer

• All reads from the cache occur as early as possible, to

allow maximum time for the comparison to take place.

• Which line to use is decided late, after the data have
reached high-speed registers, so the processor can receive
the data fast.

[§6.2.6] To attain maximum speed in accessing data, we would like
to start searching the cache at the same time we are looking up the
page number in the TLB.

When the bit-selection method is used, both can be done at once if
the page number is disjoint from the set number.

This means that

• the number of bits k in
the set number

• + the number of bits j
which determine the
byte within a line

• must be  the number of
bits d in the displace-
ment field.

Page
number

Set
number

Byte within
block

k j

d

We want k + j  d.

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 10

(If the page size is 2d, then there will be d bits in the displacement
field.)

Factors influencing line lengths:

• Long lines  higher hit ratios.

• Long lines  less memory devoted to tags.

• Long lines  longer memory transactions (undesirable in a

multiprocessor).

• Long lines  more write-backs (explained below).

For most machines, line sizes between 32 and 128 bytes perform
best.

If there are b lines per set, the cache is said to be b-way set
associative. How many way associative was the example above?

The logic to compare 2, 4, or 8 tags simultaneously can be made
quite fast.

But as b increases beyond that, cycle time starts to climb, and the
higher cycle time begins to offset the increased associativity.

Almost all L1 caches are less than 8-way set-associative. L2 caches
often have higher associativity.

Two-level caches

Write policy

[§6.2.3] Answer these questions, based on the text.

What are the two write policies mentioned in the text?

Lecture 10 Architecture of Parallel Computers 11

Which one is typically used when a block is to be written to main
memory, and why?

Which one can be used when a block is to be written to a lower level
of the cache, and why?

Can you explain what error correction has to do with the choice of
write policy?

Explain what a parity bit has to do with this.

Principle of inclusion

[§6.2.4] To analyze a second-level cache, we use the principle of
inclusion—a large second-level cache includes everything in the first-
level cache.

We can then do the analysis by assuming the first-level cache did not
exist, and measuring the hit ratio of the second-level cache alone.

How should the line length in the second-level cache relate to the line
length in the first-level cache?

When we measure a two-level cache system, two miss ratios are of
interest:

• The local miss rate for a cache is the

misses experienced by the cache

number of incoming references

 To compute this ratio for the L2 cache, we need to know
the number of misses in

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 12

• The global miss rate of the cache is

L2 misses

of references made by processor

 This is the primary measure of the L2 cache.

What conditions need to be satisfied in order for inclusion to hold?

• L2 associativity must be  L1 associativity, irrespective of
the number of sets.

 Otherwise, more entries in a particular set could fit into the
L1 cache than the L2 cache, which means the L2 cache
couldn’t hold everything in the L1 cache.

• The number of L2 sets has to be  the number of L1 sets,
irrespective of L2 associativity.

 (Assume that the L2 line size is  L1 line size.)

 If this were not true, multiple L1 sets would depend on a
single L2 set for backing store. So references to one L1
set could affect the backing store for another L1 set.

• All reference information from L1 is passed to L2 so that it
can update its replacement bits.

Even if all of these conditions hold, we still won’t have logical
inclusion if L1 is write-back. (However, we will still have statistical
inclusion—L2 usually contains L1 data.)

Translation Lookaside Buffers

The CPU generates virtual addresses, which correspond to locations
in virtual memory.

In principle, the virtual addresses are translated to physical
addresses using a page table.

Lecture 10 Architecture of Parallel Computers 13

Page
table

Main
memory

0
1
2

3

1000

5000

8000

10000

Page #s

Phys.
addrs.

But this is too slow, so in practice,
a translation lookaside buffer
(TLB) is used.

It is like a special cache that is
indexed by page number.

If there is a hit on a page number,
then the address of the page in
memory (called the page-frame
address) is immediately obtained.

Therefore, the TLB and the cache must be accessed sequentially.

This adds an extra cycle in case of a hit.

How can we avoid wasting this time?

Let’s look at what happens when a memory address is accessed.

TLB

Cache

Main memory

physical address

Virtual address: Page number Page offset

miss

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 14

line select (mux)

word select (mux)

MD
R

row
dec

tag
(27
bits)

31 5 4 3 2 0
tag
(27)

index
(2)

offset
(3)

set (holds 2 blocks) lines (8 bytes)

=? =?

MAR

What are the steps in cache access?

1. Access
the set that
could
contain the
sought-after
address.

2. Pull down
the tags into
the sense
amplifiers
(purple).

3. Compare
the tags with
the tag of the
sought-after
address.

4. Read all
lines in the
set into the
sense
amplifiers
(purple).4

5. Select the
line that
actually
contains the
sought-after
address.

6.Select
the sought-
after
byte(s) or
word(s) to
return.

7. Return the
sought-after
byte(s) or
word(s) to the
processor.

We always need to read lines into the sense amplifiers and then
select the word (cf. the direct-mapped cache diagram in Lecture 10).

Now, if we know the index before address translation takes place, we
can perform steps 1, 2, and 4 while address translation is occurring.

There is a tradeoff between speed and power efficiency.

 For power efficiency, which order should should steps 1
through 4 be performed in? sequentially: 1, 2, 3, 4

 For maximum speed, which of steps 1 through 4 can be
performed in parallel? 2 and 4.

Let’s take a look at address translation.

1

2

3

4

5

6

7

Lecture 10 Architecture of Parallel Computers 15

In this example, what is the page size? 212

How much physical memory is there? 225

Our goal is to allow the cache to be indexed before address
translation completes.

In order to do that, we need to have the index field be entirely
contained within the page offset.

Cache hit time reduces from two cycles to one!

0

(Virtual) page number Page offset

63 12 11

(Physical) page-frame # Page offset

24 12 11 0

TLB

Tag Block offset

24 0

Index

TLB supplies
the physical page
number portion

(Virtual) page number Page offset

63 12 11 0

(Phys.) page-frame #

24 12

TLB

Tag

Block
offset

24

Index

12

Data array

Word select

T
a

g
 a

rra
y

=?

0 11

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 16

… because the cache can now be indexed in parallel with TLB
(although the tag match uses output from the TLB).

But there are some constraints...

• Suppose our cache is direct mapped. Then the index field
just contains the line number. So, (line number || block
offset) must fit inside the page offset.

 What is the largest the cache can be? 212 = one page

• If we want to increase the size of the cache, what can we
do? Increase associativity

Options:
• For new machines, select page size such that—

page size 
cache size

associativity

• If page size is fixed, select associativity so that—

associativity 
cache size
page size

Example: MC88110

• Page size = 4KB

• I-cache, D-cache are both: 8KB, 2-way set-associative
(4KB = 8KB / 2)

Example: VAX series

• Page size = 512B

• For a 16KB cache, need assoc. = (16KB / 512B) = 32-way
set. assoc.!

The textbook gives these three alternatives for cache indexing and
tagging. Answer some questions about them.

Lecture 10 Architecture of Parallel Computers 17

What’s the main disadantage of
physically indexed and tagged?

What is the organization we have
just been discussing (in the last
diagram)?

What is the main disadvantage
of virtually indexed and tagged?

Multilevel cache design

What are distinguishing features of the different cache levels of the
four-level design (from 2013) illustrated on p. 135 of the textbook?

 Distinguish-
ing feature

Size Access time Implement’n
techology

L1 cache

L2 cache

L3 cache

L4 cache

Main mem.

What are some advantages of a centralized cache?

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 18

What are some advantages of a banked structure?

Inclusion in multilevel caches

Answer these questions about inclusion policies.

Which kind(s) of caches move a block from one level to the other?

Which kind(s) of caches propagate up an eviction from the L2 to the
L1?

Which kind(s) of caches have to inform the L2 about a write to the
L1?

In an inclusive cache, can L2 associativity be greater than L1
associativity?

Find and describe the typo in this diagram.

Lecture 10 Architecture of Parallel Computers 19

Replacement policies

LRU is a good strategy for cache replacement.

© 2020 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2020 20

In a set-associative cache, LRU is reasonably cheap to implement.
Why? Because you can only afford to look in a few places, since you
have to do the replacement in hardware. Finding the LRU line in a
set is easy enough to do in hardware because not many lines need to
be examined.

With the LRU algorithm, the lines can be arranged in an LRU stack,
in order of recency of reference. Suppose a string of references is—

a b c d a b e a b c d e

and there are 4 lines. Then the LRU stacks after each reference
are—

a b c d a b e a b c d e
 a b c d a b e a b c d
 a b c d a b e a b c
 a b c d d d e a b
* * * * * * * *

Notice that at each step:

• The line that is referenced moves to the top of the LRU
stack.

• All lines below that line keep their same position.

• All lines above that line move down by one position.

How many bits per set are required to keep track of LRU status in
both of the implementations described in the text?

 Matrix N2

 Pseudo-LRU N-1

Lecture 10 Architecture of Parallel Computers 21

3/28/2020

1

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence
Problem

The Cache-Coherence
Problem

Lecture 12

(Chapter 6)

Lecture 12

(Chapter 6)

1

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

• What is the difference between …
– SMP

– NUMA

– Cluster ?

CSC/ECE 506: Architecture of Parallel Computers

Small to Large Multiprocessors
• Small scale (2–30 processors): shared memory

– Often on-chip: shared memory (+ perhaps shared cache)
– Most processors have MP support out of the box
– Most of these systems are bus-based
– Popular in commercial as well as HPC markets

• Medium scale (64–256): shared memory and clusters
– Clusters are cheaper
– Often, clusters of SMPs

• Large scale (> 256): few shared memory and many clusters
– SGI Altix 3300: 512-processor shared memory (NUMA)
– Large variety on custom/off-the-shelf components such as

interconnection networks.
• Beowulf clusters: fast Ethernet
• Myrinet: fiber optics
• IBM SP2: custom

4

CSC/ECE 506: Architecture of Parallel Computers

Shared Memory vs. No Shared Memory

• Advantages of shared-memory machines (vs. distributed
memory w/same total memory size)

– Support shared-memory programming

• Clusters can also support it via software shared
virtual memory, but with much coarser granularity
and higher overheads

– Allow fine-grained sharing

• You can’t do this with messages—there’s too
much overhead to share small items

– Single OS image

• Disadvantage of shared-memory machines

– Cost of providing shared-memory abstraction

5

CSC/ECE 506: Architecture of Parallel Computers

A Bus-Based Multiprocessor

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
contr oller

PCI
bridge

PCI
bridge

Memory
contr oller

1-, 2-, or 4-way
interleaved

DRAM

P
C

I b
u

s

P
C

I b
u

sPCI
I/O

car ds

6

1

2

3

4

5

6

3/28/2020

2

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Will This Parallel Code Work Correctly?

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

Two issues:

• Will it print sum = 10?
• How can it support locking correctly?

8

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence Problem

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . .

• Will it print sum = 10?

9

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

Start state. All caches
empty and main memory
has Sum = 0.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

10

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads Sum from memory. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

=0Sum=0 VV

11

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 reads. Let’s assume this
comes from memory too.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController

BusBus

Sum=0Sum=0 VV Sum=0Sum=0 VV

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

12

7

8

9

10

11

12

3/28/2020

3

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 writes. This write goes
to the cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController

BusBus

Sum=3 D Sum=0 V

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

13

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 writes. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController

BusBus

=3Sum=3 DD =7Sum=7 DD

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

14

=0Sum=0 VV

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController

BusBus

Sum=3Sum=3 DD Sum=7Sum=7 DD

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

15

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem

• Do P1 and P2 see the same sum?

• Does it matter if we use a WT cache?

• The code given at the start of the animation does not
exhibit the same coherence problem shown in the
animation. Explain. Is the result still incoherent?

• What if we do not have caches, or sum is uncacheable.
Will it work?

16

CSC/ECE 506: Architecture of Parallel Computers

Write-Through Cache Does Not Work

P1 reads. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 7

ControllerController
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

=3Sum=3 DD =7Sum=7 DD

17

CSC/ECE 506: Architecture of Parallel Computers

Software Lock Using a Flag

• Here’s simple code to implement a lock:

• Will this guarantee mutual exclusion?

• Let’s look at an algorithm that will …

void lock (int process, int lvar) { // process is 0 or 1
while (lvar == 1) {} ;
lvar = 1;

}

void unlock (int process, int lvar) {
lvar = 0;

}

18

13

14

15

16

17

18

3/28/2020

4

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Peterson’s Algorithm

20

• Acquisition of lock() occurs only if
1.interested[other] == FALSE: either the other process

has not competed for the lock, or it has just called unlock(),
or

2.turn != other: the other process is competing, has set the
turn to our process, and will be blocked in the while() loop

int turn;
int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (turn == other && interested[other] == TRUE) {} ;

}
// Post: turn != other or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}

CSC/ECE 506: Architecture of Parallel Computers

No Race

21

// Proc 0
interested[0] = TRUE;
turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] starts out FALSE,
// Proc 0 enters critical section

// Proc 1
interested[1] = TRUE;
turn = 0;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

CSC/ECE 506: Architecture of Parallel Computers

Race

22

while (turn==1 && interested[1]==TRUE)
{};

// since turn == 0,
// Proc 0 enters critical section

while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock
interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

// Proc 0
interested[0] = TRUE;
turn = 1;

// Proc 1
interested[1] = TRUE;

turn = 0;

CSC/ECE 506: Architecture of Parallel Computers

When Does Peterson’s Alg. Work?

23

• Correctness depends on the global order of

• Thus, it will not work if—
– The compiler reorders the operations

• There’s no data dependence, so unless the compiler is
notified, it may well reorder the operations

• This prevents compiler from using aggressive optimizations
used in serial programs

– The architecture reorders the operations
• Write buffers, memory controller
• Network delay for statement A
• If turn and interested[] are cacheable, A may result in

cache miss, but B in cache hit
• This is called the memory-consistency problem.

A: interested[process] = TRUE;
B: turn = other;

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

24

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// Proc 1

interested[1] = TRUE;
turn = 0;

while (turn==0 && interested[0]==TRUE)
{};

19

20

21

22

23

24

3/28/2020

5

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

25

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] == FALSE,
// Proc 0 enters critical section

// Proc 1

turn = 0;

interested[1] = TRUE;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==1,
// Proc 1 enters critical section

reordered

Can you explain what has gone wrong here?

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

26

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

27

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness

but with varying performance

Tackled by consistency models
• supported by hardware, but
• software must conform to the

model.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

28

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness

but with varying performance

Tackled by consistency models
• supported by hardware, but
• software must conform to the

model.

All protocols realize same abstraction
• A program written for 1 protocol

can run w/o change on any other.

Models provide diff. abstractions
• Compilers must be aware of the

model (no reordering certain
operations …).

• Programs must “be careful” in
using shared variables.

CSC/ECE 506: Architecture of Parallel Computers

Two Approaches to Consistency

• Sequential consistency
– Multi-threaded codes for uniprocessors automatically run

correctly

– How? Every shared R/W completes globally in program
order

– Most intuitive but worst performance

• Relaxed consistency models
– Multi-threaded codes for uniprocessor need to be ported to

run correctly

– Additional instruction (memory fence) to ensure global
order between 2 operations

29

CSC/ECE 506: Architecture of Parallel Computers

Cache Coherence

• Do we need caches?
– Yes, to reduce average data access time.

– Yes, to reduce bandwidth needed for bus/interconnect.

• Sufficient conditions for coherence:
– Notation: Requestproc(data)

– Write propagation:

• Rdi (X) must return the “latest” Wrj(X)

– Write serialization:

• Wri(X) and Wrj(X) are seen in the same order by everybody

– e.g., if I see w2 after w1, you shouldn’t see w2 before w1

–  There must be a global ordering of memory
operations to a single location

– Is there a need for read serialization?

30

25

26

27

28

29

30

3/28/2020

6

CSC/ECE 506: Architecture of Parallel Computers

A Coherent Memory System: Intuition

• Uniprocessors
– Coherence between I/O devices and processors
– Infrequent, so software solutions work

• uncacheable memory, uncacheable operations, flush
pages, pass I/O data through caches

• But coherence problem much more critical in multiprocessors
– Pervasive
– Performance-critical
– Necessitates a hardware solution

• * Note that “latest write” is ambiguous.
– Ultimately, what we care about is that any write is propagated

everywhere in the same order.

– Synchronization defines what “latest” means.

31

CSC/ECE 506: Architecture of Parallel Computers

Summary

• Shared memory with caches raises the problem of cache
coherence.

– Writes to the same location must be seen in the same
order everywhere.

• But this is not the only problem

– Writes to different locations must also be kept in order
if they are being depended upon for synchronizing
tasks.

– This is called the memory-consistency problem

32

31

32

3/28/2020

1

CSC/ECE 506: Architecture of Parallel Computers

Coherence and ConsistencyCoherence and Consistency

1

Lecture 13

(Chapter 7)

Lecture 13

(Chapter 7)

CSC/ECE 506: Architecture of Parallel Computers

Outline

 Bus-based coherence

 Invalidation vs. update coherence
protocols

 Memory consistency

 Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Several Configurations for a Memory System

3

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

CSC/ECE 506: Architecture of Parallel Computers

Assume a Bus-Based SMP

• Built on top of two fundamentals of uniprocessor system

– Bus transactions

– Cache-line finite-state machine

• Uniprocessor bus transaction:

– Three phases: arbitration, command/address, data transfer

– All devices observe addresses, one is responsible

• Uniprocessor cache states:

– Every cache line has a finite-state machine

– In WT+write no-allocate: Valid, Invalid states

– WB: Valid, Invalid, Modified (“Dirty”)

• Multiprocessors extend both these somewhat to implement
coherence

4

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

5

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

• Implementing a Protocol

– Each cache controller reacts to processor and bus events:
• Takes actions when necessary

– Updates state, responds with data, generates new bus
transactions

– The memory controller also snoops bus transactions and
returns data only when needed

– Granularity of coherence is typically cache line/block

• Same granularity as in transfer to/from cache

6

1

2

3

4

5

6

3/28/2020

2

CSC/ECE 506: Architecture of Parallel Computers

Coherence with Write-Through Caches

7

sum = 0;
begin parallel
for (i=0; i<2; i++) {
lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
Print sum;

Suppose a[0] = 3 and a[1] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . .

= Snooper

– What happens when we snoop a write?
• Write-update protocol: write is immediately propagated or
• Write-invalidation protocol: causes miss on later access, and memory up-

to-date via write-through

CSC/ECE 506: Architecture of Parallel Computers

Snooper Assumptions

• Atomic bus

• Writes occur in
program order

8

CSC/ECE 506: Architecture of Parallel Computers

Transactions

• To show what’s going on, we will use
diagrams involving—
– Processor transactions

• PrRd

• PrWr

– Snooped bus transactions
• BusRd

• BusWr

9

CSC/ECE 506: Architecture of Parallel Computers

Write-Through State-Transition Diagram

10

V

I

PrRd/BusRd

PrRd/-- PrWr/BusWr

PrWr/BusWr

BusWr/--

Processor-initiated transactions

Bus-snooper-initiated transactions

• Key: A write invalidates all other caches

• Therefore, we have:

– Modified line: exists as V in only 1 cache

– Clean line: exists as V in at least 1 cache

– Invalid state represents invalidated line or not present in the cache

write-through
no-write-allocate
write invalidate

How does this protocol
guarantee write
propagation?

How does it guarantee
write serialization?

CSC/ECE 506: Architecture of Parallel Computers

Is It Coherent?
• Write propagation:

– through invalidation

– then a cache miss, loading a new value

• Write serialization: Assume—

– atomic bus

– invalidation happens instantaneously

– writes serialized by order in which they appear on bus (bus order)
• So are invalidations

• Do reads see the latest writes?

– Read misses generate bus transactions, so will get the last write

– Read hits: do not appear on bus, but are preceded by

• most recent write by this processor (self), or

• most recent read miss by this processor

– Thus, reads hits see latest written values (according to bus order)
11

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

12

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

11

11

7

8

9

10

11

12

3/28/2020

3

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

13

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

22

22
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

14

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.
3. Write follows read if read does not generate a bus transaction and is not already

separated from the write by another bus transaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

33

33
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Problem with Write-Through
• Write-through can guarantee coherence, but needs a lot of bandwidth.

– Every write goes to the shared bus and memory

– Example:

200MHz, 1-CPI processor, and 15% instrs. are 8-byte stores
Each processor generates 30M stores, or 240MB data, per second
How many processors could a 1GB/s bus support without saturating?

– Thus, unpopular for SMPs

• Write-back caches
– Write hits do not go to the bus  reduce most write bus transactions
– But now how do we ensure write propagation and serialization?

15

CSC/ECE 506: Architecture of Parallel Computers

Lecture 13 Outline

16

 Bus-based coherence
 Invalidation vs. update coherence protocols
 Memory consistency
 Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Dealing with “Dirty” Lines

• What does it mean to say a cache line is “dirty”?
– That at least one of its words has been changed since it was

brought in from main memory.

• Dirty in a uniprocessor vs. a multiprocessor
– Uniprocessor:

• Only need to keep track of
whether a line has been modified.

• Multiprocessor:
• Keep track of whether line is modified.

• Keep track of which cache owns the line.

• Thus, a cache line must know whether it is—

• Exclusive: “I’m the only one that has it, other than possibly
main memory.”

• The Owner: “I’m responsible for supplying the block upon a
request for it.” 17

CSC/ECE 506: Architecture of Parallel Computers

Invalidation vs. Update Protocols

• Question: What happens to a line if another
processor changes one of its words?

– It can be invalidated.

– It can be updated.

13

14

15

16

17

18

3/28/2020

4

CSC/ECE 506: Architecture of Parallel Computers

Invalidation-Based Protocols

• Idea: When I write the block, invalidate everybody else
 I get exclusive state.

• “Exclusive” means …
• Can modify without notifying anyone else (i.e., without a bus

transaction)

• But, before writing to it,
• Must first get block in exclusive state

• Even if block is already in state V, a bus transaction
(Read Exclusive = RdX) is needed to invalidate others.

• What happens when a block is ejected from the cache?
– if the block is not dirty?

– if the block is dirty?

19

CSC/ECE 506: Architecture of Parallel Computers

-Based Protocols

• Idea: If this block is written, send the new word to all
other caches.
• New bus transaction: Update

• Compared to invalidate, what are advs. and disads.?

• Advantages
• Other processors don’t miss on next access

• Saves refetch: In invalidation protocols, they would miss & bus
transaction.

• Saves bandwidth: A single bus transaction updates several
caches

• Disadvantages
• Multiple writes by same processor cause multiple update

transactions
• In invalidation, first write gets exclusive ownership, other writes local

20

CSC/ECE 506: Architecture of Parallel Computers

Invalidate versus Update

• Is a block written by one processor read by other
processors before it is rewritten?

• Invalidation:
• Yes  Readers will take a miss.

• No  Multiple writes can occur without additional traffic.

• Copies that won’t be used again get cleared out.

• Update:
• Yes  Readers will not miss if they had a copy previously

• A single bus transaction will update all copies

• No  Multiple useless updates, even to dead copies

• Invalidation protocols are much more popular.
• Some systems provide both, or even hybrid

21

CSC/ECE 506: Architecture of Parallel Computers

Lecture 13 Outline

 Bus-based coherence
 Invalidation vs. update coherence

protocols
 Memory consistency
 Sequential consistency

22

CSC/ECE 506: Architecture of Parallel Computers

Let’s Switch Gears to Memory Consistency

23

• Sequential consistency (SC) corresponds to our intuition.

• Other memory consistency models do not obey our intuition!

• Coherence doesn’t help; it pertains only to a single location

P1 P2

/*Assume initial values of A and flag are 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

• Recall Peterson’s algorithm (turn= …; interested[process]=…)

• When “multiple” means “all”, we have sequential consistency (SC)

Consistency: Writes to multiple locations are visible to all in the same order

Coherence: Writes to a single location are visible to all in the same order

CSC/ECE 506: Architecture of Parallel Computers

Another Example of Ordering

24

• What do you think the results should be? You may think:

• 1a, 1b, 2a, 2b 
• 1a, 2a, 2b, 1b 
• 2a, 2b, 1a, 1b 

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

programmers’ intuition:
sequential consistency

{A=1, B=2}
{A=1, B=0}
{A=0, B=0}

• Whatever our intuition is, we need

• an ordering model for clear semantics across different locations
• as well as cache coherence!

so programmers can reason about what results are possible.

• Is {A=0, B=2} possible? • Yes, suppose P2 sees: 1b, 2a, 2b, 1a
e.g. evil compiler, evil interconnection.

19

20

21

22

23

24

3/28/2020

5

CSC/ECE 506: Architecture of Parallel Computers

A Memory-Consistency Model …

• Is a contract between programmer and system
• Necessary to reason about correctness of

shared-memory programs

• Specifies constraints on the order in which
memory operations (from any process) can
appear to execute with respect to one another
• Given a load, constrains the possible values returned by it

• Implications for programmers
• Restricts algorithms that can be used
• e.g., Peterson’s algorithm, home-brew synchronization will be

incorrect in machines that do not guarantee SC

• Implications for compiler writers and computer architects
• Determines how much accesses can be reordered.

25

CSC/ECE 506: Architecture of Parallel Computers

Lecture 13 Outline

26

 Bus-based coherence
 Memory consistency
 Sequential consistency

 Invalidation vs. update coherence protocols

CSC/ECE 506: Architecture of Parallel Computers

Sequential Consistency

27

“A multiprocessor is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” [Lamport, 1979]

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes,
appear to [issue, execute, complete] atomically w.r.t. others

Processors
issuing memory
references as
per program order

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

CSC/ECE 506: Architecture of Parallel Computers

What Really Is Program Order?

• Intuitively, the order in
which operations appear
in source code

• Thus, we assume order
as seen by programmer,
• the compiler is prohibited from reordering memory

accesses to shared variables.

• Note that this is one reason parallel programs
are less efficient than serial programs.

28

CSC/ECE 506: Architecture of Parallel Computers

What Reordering Is Safe in SC?

29

• Possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

• Proof: By program order we know 1a  1b and 2a  2b

A = 0 implies 2b  1a, which implies 2a  1b

B = 2 implies 1b  2a, which leads to a contradiction

• BUT, actual execution 1b 1a  2b  2a is SC, despite not being in program order

– It produces the same result as 1a  1b  2a  2b.

– Actual execution 1b  2a  2b  1a is not SC, as shown above

– Thus, some reordering is possible, but difficult to reason that it ensures SC

What matters is the order in which code appears to execute,
not the order in which it actually executes.

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

CSC/ECE 506: Architecture of Parallel Computers

Conditions for SC
• Two kinds of requirements

– Program order
• Memory operations issued by a process must appear to become

visible (to others and itself) in program order.
– Global order

• Atomicity: One memory operation should appear to complete
with respect to all processes before the next one is issued.

• Global order: The same order of operations is seen by all
processes.

• Tricky part: how to make writes atomic?
–  Necessary to detect write completion
– Read completion is easy: a read completes when the data returns

• Who should enforce SC?
– Compiler should not change program order
– Hardware should ensure program order and atomicity

30

25

26

27

28

29

30

3/28/2020

6

CSC/ECE 506: Architecture of Parallel Computers

Write Atomicity

31

• Write Atomicity ensures same write ordering is seen by all procs.

– In effect, extends write serialization to writes from multiple
processes

• Under SC, transitivity implies that A should print as 1.
Without SC, why might it not?

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);
print A;

CSC/ECE 506: Architecture of Parallel Computers

Is the Write-Through Example SC?

o Assume no write buffers, or load-store bypassing

o Yes, it is SC, because of the atomic bus:
• Any write and read misses (to all locations) are serialized

by the bus into bus order.

• If a read obtains value of write W, W is guaranteed to have
completed since it caused a bus transaction

• When write W is performed with respect to any processor,
all previous writes in bus order have completed

32

CSC/ECE 506: Architecture of Parallel Computers

Summary

• One solution for small-scale multiprocessors is a shared
bus.

• State-transition diagrams can be used to show how a
cache-coherence protocol operates.
– The simplest protocol is write-through, but it has performance problems.

• Sequential consistency guarantees that memory
operations are seen in order throughout the system.
– It is fairly easy to show whether a result is or is not sequentially

consistent.

• The two main types of coherence protocols are
invalidate and update.
– Invalidate usually works better, because it frees up cache lines

more quickly.

31

32

33

Lecture 15 Architecture of Parallel Computers 1

Performance of coherence protocols

Cache misses have traditionally been classified into four categories:

• Cold misses (or “compulsory misses”) occur the first time that a block
is referenced.

• Conflict misses are misses that would not occur if the cache were
fully associative with LRU replacement.

• Capacity misses occur when the cache size is not sufficient to hold
data between references.

• Coherence misses are misses caused by the coherence protocol.

The first three types occur in uniprocessors. The last is specific to
multiprocessors.

To these, Solihin adds context-switch (or “system-related”) misses, which
are related to task switches.

Let’s take a look at a uniprocessor example, a very small cache that has
only four lines.

Let’s look first at a fully associative cache, because which kind(s) of misses
can’t it have?

Here’s an example of a reference trace of 0, 2, 4, 0, 2, 4, 6, 8, 0.

Fully associative

 0 2 4 0 2 4 6 8 0

0 0 0 8

1

2

2

0

2

4

4

3 6

cold cold cold hit hit hit cold cold capacity

In a fully associative cache, there are 5 cold misses, because 5 different
blocks are referenced.

Lecture 15 Architecture of Parallel Computers 2

There are 3 hits.

The remaining reference (the third one to block 0) is not a cold miss.

It must be a capacity miss, because the cache doesn’t have room to hold
all five blocks.

We’ll assume that replacement is LRU; in this case, block 0 replaces the
LRU line, which at that point is line 1.

Now let’s suppose the cache is 2-way set associative. This means there
are two sets, one (set 0) that will hold the even-numbered blocks, and one
(set 1) that will hold the odd-numbered blocks.

2-way set-associative

 0 2 4 0 2 4 6 8 0

0 0 4 2 6 0

1 2 0 4 8

2

3

cold cold cold conflict conflict conflict cold cold capacity

Since only even-numbered blocks are referenced in this trace, they will all
map to set 0.

This time, though, there won’t be any hits.

Classify each of these references as a hit or a particular kind of miss.

References that would have been hits in a fully associative cache, but are
misses in a less-associative cache, are conflict misses.

Finally, let’s look at a direct-mapped cache. Blocks with numbers
congruent to 0 mod 4 map to line 0; blocks with numbers congruent to 1
mod 4 map to line 1, etc.

Direct mapped

Lecture 15 Architecture of Parallel Computers 3

 0 2 4 0 2 4 6 8 0

0 0 4 0 4 8 0

1

2 2 2 6

3

cold Cold Cold conflict Hit Conflict cold cold capacity

Classify each of these references as a hit or a particular kind of miss.

Of the three conflict misses in the set-associative cache, one is a hit here.
Block 2 is still in the cache the second time it is referenced. The other two
are conflict misses in this cache.

Now, let’s talk about coherence misses.

Coherence misses can be divided into those caused by true sharing and
those caused by false sharing (see p. 236 of the Solihin text).

 False-sharing misses are those caused by having a line size larger
than one word. Can you explain?

 True-sharing misses, on the other hand, occur when

o a processor writes into a cache line, invalidating a copy of the
same block in another processors’ cache,

o after which

How can we attack each of the four kinds of misses?

 To reduce capacity misses, we can increase cache size

 To reduce conflict misses, we can increase associativity

 To reduce cold misses, we can increase line size

 To reduce coherence misses, we can use an update-based protocol.

Similarly, context-switch misses can be divided into categories.

Lecture 15 Architecture of Parallel Computers 4

 Replaced misses are blocks that were replaced while the other
process(es) were active.

 Reordered misses are blocks that were shoved so far down the LRU
stack by the other process(es) that they are replaced soon afterwards
(when they otherwise would’ve stayed in the cache).

Which protocol is best? What cache line size is performs best? What kind
of misses predominate?

Simulations

Questions like these can be answered by simulation. Getting the answer
right is part art and part science.

Parameters need to be chosen for the simulator. Culler & Singh (1998)
selected a single-level 4-way set-associative 1 MB cache with 64-byte
lines.

The simulation assumes an idealized memory model, which assumes that
references take constant time. Why is this not realistic?

The simulated workload consists of

 six parallel programs (Barnes, LU, Ocean, Radix, Radiosity,
Raytrace) from the SPLASH-2 suite and

 one multiprogrammed workload, consisting of mainly serial programs.

Invalidate vs. update

with respect to miss rate

Which is better, an update or an invalidation protocol?

Let’s look at real programs.

Lecture 15 Architecture of Parallel Computers 5

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

LU
/in

v

LU
/u

pd

O
ce

an
/in

v

O
ce

an
/m

ix

O
ce

an
/u

pd

R
ay

tr
ac

e/
in

v

R
ay

tr
ac

e/
up

d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
ad

ix
/in

v

R
ad

ix
/m

ix

R
ad

ix
/u

pd

0.00

0.50

1.00

1.50

2.00

2.50

Where there are many coherence misses, update performs better.

If there were many capacity misses, invalidate would be better, because
update would keep updating dead blocks, and they would occupy space in
the cache.

Lecture 15 Architecture of Parallel Computers 6

with respect to bus traffic

Compare the

● upgrades in inv. protocol

with the

● updates in upd. protocol

Each of these operations
produces bus traffic.

Which are more frequent?

Updates in an update
protocol are more prevalent
than upgrades in an
invalidation protocol.

Which protocol causes
more bus traffic?

The update protocol
causes more traffic.

The main problem is that
one processor tends to
write a block multiple
times before another
processor reads it.

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0
.0

0

0
.5

0

1
.0

0

1
.5

0

2
.0

0

2
.5

0

Radix/inv

Radix/mix

Radix/upd

0
.0

0

1
.0

0

2
.0

0

3
.0

0

4
.0

0

5
.0

0

6
.0

0

7
.0

0

8
.0

0

This causes several bus transactions instead of one, as there would be in
an invalidation protocol.

Effect of cache line size

on miss rate

If we increase the line size, what happens to each of the following classes
of misses?

 capacity misses? down

 conflict misses? up

 true-sharing misses? down

Lecture 15 Architecture of Parallel Computers 7

 false-sharing misses? up

If we increase the line size, what happens to bus traffic?
Increases, because more needs to be brought in for each miss.

So it is not clear which line size will work best.

Cold

Capacity

True sharing

False sharing

Upgrade

8

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

s
ra

te
 (

%
)

B
a

rn
e

s/
8

B
a

rn
e

s/
16

B
ar

n
es

/3
2

B
ar

n
es

/6
4

B
a

rn
e

s/
1

28

B
a

rn
e

s/
2

56

Lu
/8

L
u

/1
6

L
u

/3
2

L
u

/6
4

Lu
/1

28

Lu
/2

56

R
a

di
o

si
ty

/8

R
a

di
os

ity
/1

6

R
a

di
os

ity
/3

2

R
a

di
os

ity
/6

4

R
a

di
os

ity
/1

2
8

R
a

di
os

ity
/2

5
6

Results for the first three applications seem to show that which line size is
best? 64 to 256 bytes

For the second set of applications, which do not fit in cache, Radix shows a
greatly increasing number of false-sharing misses with increasing block

Lecture 15 Architecture of Parallel Computers 8

size.

Cold

Capacity

True sharing

False sharing

Upgrade

8 6 2 4 8 6 80

2

4

6

8

10

12

M
is

s
ra

te
 (

%
)

O
ce

a
n/

8

O
ce

an
/1

6

O
ce

a
n/

32

O
ce

an
/6

4

O
ce

a
n/

12
8

O
ce

a
n/

25
6

R
ad

ix
/8

R
a

di
x/

1
6

R
a

di
x/

3
2

R
a

di
x/

6
4

R
ad

ix
/1

2
8

R
ad

ix
/2

5
6

R
ay

tr
a

ce
/8

R
a

yt
ra

ce
/1

6

R
a

yt
ra

ce
/3

2

R
a

yt
ra

ce
/6

4

R
ay

tr
a

ce
/1

2
8

R
ay

tr
a

ce
/2

5
6

on bus traffic

Larger line sizes generate more bus traffic.

2 4 280

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Data bus

Address bus

B
ar

n
es

/1
6

T
ra

ff
ic

 (
by

te
s/

in
st

ru
ct

io
ns

)

B
a

rn
e

s/
8

B
ar

n
es

/3
2

B
ar

n
es

/6
4

B
a

rn
e

s/
12

8

B
a

rn
e

s/
2

56

R
ad

io
si

ty
/8

R
a

di
o

si
ty

/1
6

R
a

di
o

si
ty

/3
2

R
a

di
o

si
ty

/6
4

R
ad

io
si

ty
/1

2
8

R
ad

io
si

ty
/2

5
6

R
ay

tr
ac

e
/8

R
a

yt
ra

ce
/1

6

R
ay

tr
ac

e
/3

2

R
ay

tr
ac

e
/6

4

R
ay

tr
ac

e
/1

2
8

R
ay

tr
ac

e
/2

5
6

Lecture 15 Architecture of Parallel Computers 9

Tr
a

ff
ic

 (
by

te
s/

in
st

ru
ct

io
n)

Tr
a

ff
ic

 (
by

te
s/

F
LO

P
)

Data bus

Address bus
Data bus

Address bus

R
ad

ix
/8

R
ad

ix
/1

6

R
ad

ix
/3

2

R
ad

ix
/6

4

R
ad

ix
/1

28

R
ad

ix
/2

56

0

1

2

3

4

5

6

7

8

9

10

LU
/8

LU
/1

6

LU
/3

2

LU
/6

4

LU
/1

2
8

LU
/2

5
6

O
ce

a
n/

8

O
ce

a
n/

16

O
ce

a
n/

32

O
ce

a
n/

64

O
ce

a
n/

12
8

O
ce

a
n/

25
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

The results are different than for miss rate—traffic almost always increases
with increasing line size.

But address-bus traffic moves in the opposite direction from data-bus
traffic.

With this in mind, which line size appears to be best? 32 or 64

Context-switch misses

As cache size gets larger, there are fewer uniprocessor (“natural”) cache
misses.

But the number of context-switch misses may go up (mcf, soplex) or down
(namd, perlbench).

 Why could it go up?

 Why could it go down?

Reordered misses also decline as the cache becomes large. Why?

Lecture 15 Architecture of Parallel Computers 10

Physical cache organization

[Solihin §5.6] An cache is centralized (“united”) if its banks are adjacent on
the chip.

What are some advantages of a centralized structure?

 Uniform access latency

 Interconnect between the
cache and the next level
(e.g., on-chip memory
controller) is simpler,
because it can be in one
place.

A centralized cache usually uses
a crossbar (see also p. 167 of the
text).

P
ro

ce
ss

o
rs

Memories

Crossbar
Switch

…

…

A cache is distributed if its banks are scattered around the chip.

Lecture 15 Architecture of Parallel Computers 11

Usually, a portion of the L2 is placed near each L1; this is a tiled
arrangement.

What are some advantages of a distributed structure?

 In replication: tiles can simply be duplicated as many times as you
have cores on a chip

 In layout: wires are shorter, heat is not centralized.

Hybrid centralized + distributed structure: There’s a tradeoff between
centralized and distributed.

 A large cache is uniformly slow, especially if it needs to handle
coherence.

 A distributed cache requires a lot of interconnections, and routing
latency is high if the cache is in too many places.

A compromise is to have
an L2 cache that is
distributed, but not as
distributed as the L1
caches.

Logical cache organization

[Solihin §5.7] Regardless of whether a cache is centralized or distributed,
there are several options in mapping addresses to tiles.

Lecture 15 Architecture of Parallel Computers 12

 A processor can be limited to accessing a single tile, the one closest
to it (private cache configuration).

o A block in the local cache may also exist in other caches; the
copies must be kept coherent by a coherence protocol.

 All of the tiles can form a large logical cache. The address of a block
completely determines what tile it is found in (shared 1-tile
associative).

o It may require a lot of hops to get from a processor to the
cache.

 A block can be mapped to two tiles (shared 2-tile associative).

o Block numbers are arranged to improve distance locality.

 Or, a block can be allowed to map to any tile (full tile associativity).

o What is the upside?

o What is the downside?

Another option is a partitioned shared cache organization.

 Can you tell how many tiles each block can map to?

 Can you tell how many lines each block can map to?

 How does coherence play a role?

Lock Implementations

[§8.1] Recall the three kinds of synchronization from Lecture 6:

 Point-to-point send() and receive(); wait() and post()
 Lock

Lecture 15 Architecture of Parallel Computers 13

 Barrier

Performance metrics for lock implementations

 Uncontended latency

o Time to acquire a lock when there is no contention

 Traffic

o Lock acquisition when lock is already locked
o Lock acquisition when lock is free
o Lock release

 Fairness

o Degree in which a thread can acquire a lock with respect to
others

 Storage

o As a function of # of threads/processors

The need for atomicity

This code sequence illustrates the need for atomicity. Explain.

void lock (int *lockvar) {
 while (*lockvar == 1) {} ; // wait until released
 *lockvar = 1; // acquire lock
}

void unlock (int *lockvar) {
 *lockvar = 0;
}

In assembly language, the sequence looks like this:

lock: ld R1, &lockvar // R1 = lockvar
 bnz R1, lock // jump to lock if R1 != 0
 sti &lockvar, #1 // lockvar = 1
 ret // return to caller
unlock: sti &lockvar, #0 // lockvar = 0
 ret // return to caller

The ld-to-sti sequence must be executed atomically:

Lecture 15 Architecture of Parallel Computers 14

 The sequence appears to execute in its entirety
 Multiple sequences are serialized

Examples of atomic instructions

 test-and-set Rx, M

o read the value stored in memory location M, test the value
against a constant (e.g. 0), and if they match, write the value in
register Rx to the memory location M.

 fetch-and-op M

o read the value stored in memory location M, perform op to it
(e.g., increment, decrement, addition, subtraction), then store
the new value to the memory location M.

 exchange Rx, M

o atomically exchange (or swap) the value in memory location M
with the value in register Rx.

 compare-and-swap Rx, Ry, M

o compare the value in memory location M with the value in
register Rx. If they match, write the value in register Ry to M,
and copy the value in Rx to Ry.

How to ensure one atomic instruction is executed at a time:

1. Reserve the bus until done

o Other atomic instructions cannot get to the bus

2. Reserve the cache block involved until done

o Obtain exclusive permission (e.g. “M” in MESI)

o Reject or delay any invalidation or intervention requests until
done

3. Provide “illusion” of atomicity instead

Lecture 15 Architecture of Parallel Computers 15

o Using load-link/store-conditional (to be discussed later)

Test and set

test-and-set can be used like this to implement a lock:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];

 // if (R1==0) MEM[&lockvar]=1

 bnz R1, lock; // jump to lock if R1 != 0

 ret // return to caller

unlock: sti &lockvar, #0 // MEM[&lockvar] = 0

 ret // return to caller

What value does lockvar have when the lock is acquired? 1 free? 0

Here is an example of test-and-set execution. Describe what it shows.

Thread 1 tries repeatedly to get the lock, and succeeds only after thread 0
releases it by setting lockvar to 0.

Let’s look at how a sequence of test-and-sets by three processors plays
out:

Lecture 15 Architecture of Parallel Computers 16

Request P1 P2 P3 BusRequest

Initially – – – –

P1: t&s M – – BusRdX

P2: t&s I M – BusRdX

P3: t&s I I M BusRdX

P2: t&s I M I BusRdX

P1: unlock M I I BusRdX

P2: t&s I M I BusRdX

P3: t&s I I M BusRdX

P3: t&s I I M –

P2: unlock I M I BusRdX

P3: t&s I I M BusRdX

P3: unlock I I M –

How does test-and-set perform on the four metrics listed above?

 Uncontended latency
 Fairness
 Traffic
 Storage

Drawbacks of Test&Set Lock (TSL)

What is the main drawback of test&set locks? Very high traffic

 Many coherence transactions occur as processors compete for the
lock.

 Other processors that are invalidating the lock slow down the process
that does have the lock.

Without changing the lock mechanism, how can we diminish this
overhead?

 Back off: pause for awhile after a failed acquisition. Retry later

Lecture 15 Architecture of Parallel Computers 17

o Back off by too little: still too much contention.

o Back off by too much: processors are waiting needlessly long.

 Exponential backoff: Increase the backoff interval exponentially with
each failure.

Test and Test&Set Lock (TTSL)

 Busy-wait with ordinary read operations, not test&set.

o Cached lock variable will be invalidated when release occurs

 When value changes (to 0), try to obtain lock with test&set

o Only one attempter will succeed; others will fail and start testing
again.

Let’s compare the code for TSL with TTSL.

TSL:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];

 // if (R1==0) MEM[&lockvar]=1

 bnz R1, lock; // jump to lock if R1 != 0

 ret // return to caller

unlock: sti &lockvar, #0 // MEM[&lockvar] = 0

 ret // return to caller

TTSL:

lock: ld R1, &lockvar // R1 = MEM[&lockvar]

 bnz R1, lock; // jump to lock if R1 != 0

 t&s R1, &lockvar // R1 = MEM[&lockvar];

 // if (R1==0)MEM[&lockvar]=1

 bnz R1, lock; // jump to lock if R1 != 0

 ret // return to caller

Lecture 15 Architecture of Parallel Computers 18

unlock: sti &lockvar, #0 // MEM[&lockvar] = 0

 ret // return to caller

The lock method now contains two loops. What would happen if we
removed the first loop? Reduces to TSL
What happens if we remove the second loop? You get the code that we
started with, that does enforce synchronization.

Here’s a trace of a TSL, and then TTSL, execution. Let’s compare them
line by line.

Fill out this table:

 TSL TTSL

BusReads 0 6

BusReadXs 9 0

BusUpgrs 0 4

invalidations 8 5

(What’s the proper way to count invalidations?)

Lecture 15 Architecture of Parallel Computers 19

TSL: Request P1 P2 P3 BusRequest

Initially – – – –

P1: t&s M – – BusRdX

P2: t&s I M – BusRdX

P3: t&s I I M BusRdX

P2: t&s I M I BusRdX

P1: unlock M I I BusRdX

P2: t&s I M I BusRdX

P3: t&s I I M BusRdX

P3: t&s I I M –

P2: unlock I M I BusRdX

P3: t&s I I M BusRdX

P3: unlock I I M –

TTSL: Request P1 P2 P3 Bus Request

Initially – – – –

P1: ld E – - BusRd

P1: t&s M – – –

P2: ld S S – BusRd

P3: ld S S S BusRd

P2: ld S S S –

P1: unlock M I I BusUpgr

P2: ld S S I BusRd

Lecture 15 Architecture of Parallel Computers 20

TSL vs. TTSL summary

 Successful lock acquisition:

o 2 bus transactions in TTSL

 1 BusRd to intervene with a remotely cached block

 1 BusUpgr to invalidate all remote copies

o vs. only 1 in TSL

 1 BusRdX to invalidate all remote copies

 Failed lock acquisition:

o 1 bus transaction in TTSL

 1 BusRd to read a copy

 then, loop until lock becomes free

o vs. unlimited with TSL

 Each attempt generates a BusRdX

LL/SC

 TTSL is an improvement over TSL.

 But bus-based locking

P2: t&s I M I BusUpgr

P3: ld I S S BusRd

P3: ld I S S –

P2: unlock I M I BusUpgr

P3: ld I S S BusRd

P3: t&s I I M BusUpgr

P3: unlock I I M –

Lecture 15 Architecture of Parallel Computers 21

o has a limited applicability (explain)

o is not scalable with fine-grain locks (explain)
using any lock ties up the bus, so fine-grain locks have a high
overhead (when they were used to increase concurrency)

 Suppose we could lock a cache block instead of a bus …

o Expensive, must rely on buffering or NACK

 Instead of providing atomicity, can we provide an illusion of atomicity
instead?

o This would involve detecting a violation of atomicity.
o If something “happens to” the value loaded, cancel the store

(because we must not allow newly stored value to become
visible to other processors)

o Go back and repeat all other instructions (load, branch, etc.).
This can be done with two new instructions:

 Load Linked/Locked (LL)

o reads a word from memory, and
o stores the address in a special LL register

o The LL register is cleared if anything happens that may break
atomicity, e.g.,

 A context switch occurs
 The block containing the address in the LL register is

invalidated.

 Store Conditional (SC)
o tests whether the address in the LL register matches the store

address
o if so, store succeeds: store goes to cache/memory;
o else, store fails: the store is canceled, 0 is returned.

Here is the code.

lock: LL R1, &lockvar // R1 = lockvar;

 // LINKREG = &lockvar

Lecture 15 Architecture of Parallel Computers 22

 bnz R1, lock // jump to lock if R1 != 0

 add R1, R1, #1 // R1 = 1

 SC R1, &lockvar // lockvar = R1;

 beqz R1, lock // jump to lock if SC fails

 ret // return to caller

unlock: sti &lockvar, #0 // lockvar = 0

 ret // return to caller

Note that this code, like the TTSL code, consists of two loops. Compare
each loop with its TTSL counterpart.

 The first loop
 The second loop

Here is a trace of execution. Compare it with TTSL.

 Request P1 P2 P3 BusRequest

Initially – – – –

P1: LL E – – BusRd

P1: SC M – – –

P2: LL S S – BusRd

P3: LL S S S BusRd

P2: LL S S S –

P1: unlock M I I BusUpgr

P2: LL S S I BusRd

Lecture 15 Architecture of Parallel Computers 23

P2: SC I M I BusUpgr

P3: LL I S S BusRd

P3: LL I S S –

P2: unlock I M I BusUpgr

P3: LL I S S BusRd

P3: SC I I M BusUpgr

P3: unlock I I M –

 Similar bus traffic

o Spinning using loads  no bus transactions when the lock is
not free

o Successful lock acquisition involves two bus transactions.
What are they? BusRd, BusUpgr

 But a failed SC does not generate a bus transaction (in TTSL, all
test&sets generate bus transactions).

o Why don’t SCs fail often?
The first loop only falls through if the lock is available, so some
unusual condition has to occur to cause the SC to fail.

Limitations of LL/SC

 Suppose a lock is highly contended by p threads
o There are O(p) attempts to acquire and release a lock
o A single release invalidates O(p) caches, causing O(p)

subsequent cache misses
o Hence, each critical section causes O(p2) bus traffic

 Fairness: There is no guarantee that a thread that contends for a lock
will eventually acquire it.

Lecture 15 Architecture of Parallel Computers 24

These issues can be addressed by two different kinds of locks.

Ticket Lock

 Ensures fairness, but still incurs O(p2) traffic
 Uses the concept of a “bakery” queue
 A thread attempting to acquire a lock is given a ticket number

representing its position in the queue.
 Lock acquisition order follows the queue order.

Implementation:

ticketLock_init(int *next_ticket, int *now_serving) {

 *now_serving = *next_ticket = 0;

}

ticketLock_acquire(int *next_ticket, int *now_serving) {

 my_ticket = fetch_and_inc(next_ticket);

 while (*now_serving != my_ticket) {};

}

ticketLock_release(int *next_ticket, int *now_serving) {

 *now_serving++;

}

Trace:

Lecture 15 Architecture of Parallel Computers 25

Steps next_ticket now_serving
my_ticket

P1 P2 P3

Initially 0 0 – – –

P1: fetch&inc 1 0 0 – –

P2: fetch&inc 2 0 0 1 –

P3: fetch&inc 3 0 0 1 2

P1:now_serving++ 3 1 0 1 2

P2:now_serving++ 3 2 0 1 2

P3:now_serving++ 3 3 0 1 2

Note that fetch&inc can be implemented with LL/SC.

Array-Based Queueing Locks

With a ticket lock, a release still invalidates O(p) caches.

Idea: Avoid this by letting each thread wait for a unique variable. Waiting
processes poll on different locations in an array of size p.

Just change now_serving to an array! (renamed “can_serve”).

A thread attempting to acquire a lock is given a ticket number in the queue.

Lock acquisition order follows the queue order

 Acquire
o fetch&inc obtains the address on which to spin (the next array

element).
o We must ensure that these addresses are in different cache

lines or memories
 Release

o Set next location in array to 1, thus waking up process spinning
on it.

Advantages and disadvantages:

 O(1) traffic per acquire with coherent caches
o And each release invalidates only one cache.

Lecture 15 Architecture of Parallel Computers 26

 FIFO ordering, as in ticket lock, ensuring fairness
 But, O(p) space per lock
 Good scalability for bus-based machines

Implementation:

ABQL_init(int *next_ticket, int *can_serve) {

 *next_ticket = 0;

 for (i=1; i<MAXSIZE; i++)

 can_serve[i] = 0;

 can_serve[0] = 1;

}

ABQL_acquire(int *next_ticket, int *can_serve) {

 *my_ticket = fetch_and_inc(next_ticket) % MAXSIZE;

 while (can_serve[*my_ticket] != 1) {};

}

ABQL_release(int *next_ticket, int *can_serve) {

 can_serve[*my_ticket + 1] = 1;

 can_serve[*my_ticket] = 0; // prepare for next time

}

Trace:

Steps next_ticket can_serve[]
my_ticket

P1 P2 P3

Initially 0 [1, 0, 0, 0] – – –

P1: f&i 1 [1, 0, 0, 0] 0 – –

P2: f&i 2 [1, 0, 0, 0] 0 1 –

P3: f&i 3 [1, 0, 0, 0] 0 1 2

P1: can_serve[1]=1 3 [0, 1, 0, 0] 0 1 2

P2: can_serve[2]=1 3 [0, 0, 1, 0] 0 1 2
P3: can_serve[3]=1 3 [0, 0, 0, 1] 0 1 2

Lecture 15 Architecture of Parallel Computers 27

Let’s compare array-based queueing locks with ticket locks.

Fill out this table, assuming that 10 threads are competing:

Ticket locks

Array-based
queueing locks

#of invalidations 9+8+…+1 = 45 9

of subsequent
cache misses

9 9

Comparison of lock implementations

Criterion TSL TTSL LL/SC Ticket ABQL

Uncontested latency Lowest Lower Lower Higher Higher

1 release max traffic O(p) O(p) O(p) O(p) O(1)

Wait traffic High Low – – –

Storage O(1) O(1) O(1) O(1) O(p)

Fairness guaranteed? No No No Yes Yes

Discussion:

 Design must balance latency vs. scalability

o ABQL is not necessarily best.
o Often LL/SC locks perform very well.
o Scalable programs rarely use highly-contended locks.

 Fairness sounds good in theory, but

Lecture 15 Architecture of Parallel Computers 28

o Must ensure that the current/next lock holder does not suffer
from context switches or any long delay events

Barriers

[§8.2] Like locks, barriers can be implemented in different ways,
depending upon how important efficiency is.

 Performance criteria

o Latency: time spent from reaching the barrier to leaving it

o Traffic: number of bytes communicated as a function of number
of processors

 In current systems, barriers are typically implemented in software
using locks, flags, counters.

o Adequate for small systems
o Not scalable for large systems

A thread might have this general organization:

..
parallel region
BARRIER
parallel region
BARRIER
..

Note that barriers are usually constructed using locks, and thus can use
any of the lock implementations in the previous lecture.

A barrier can be implemented like this (first attempt):

// shared variables used in barrier & their initial values
int numArrived = 0;
lock_type barLock = 0;
int canGo = 0;

// barrier implementation
void barrier () {

Lecture 15 Architecture of Parallel Computers 29

 lock(&barLock);
 if (numArrived == 0) // first thread sets flag
 canGo = 0;
 numArrived++;
 int myCount = numArrived;
 unlock(&barLock);

 if (myCount < NUM_THREADS) {
 while (canGo == 0) {}; // wait for last thread
 }
 else { // this is the last thread to arrive
 numArrived = 0; // reset for next barrier
 canGo = 1; // release all threads
 }
}

What’s wrong with this?

Sense-reversal centralized barrier

[§8.2.1] The simplest solution to the correctness problem above just
toggles the barrier …

 the first time, the threads wait for canGo to become 1;
 the next time they wait for it to become 0;
 and then they alternate waiting for it to become 1 and 0 at successive

barriers.

Here is the code:

// variables used in a barrier and their initial values

int numArrived = 0;

lock_type barLock = 0;

int canGo = 0;

// thread-private variable

int valueToAwait = 0;

Lecture 15 Architecture of Parallel Computers 30

// barrier implementation

void barrier () {

 valueToAwait = 1 - valueToAwait; // toggle it

 lock(&barLock);

 numArrived++;

 int myCount = numArrived;

 unlock(&barLock);

 if (myCount < NUM_THREADS) {

 while (canGo != valueToAwait) {}; // await last thread
 }

 else { // this is the last thread to arrive

 numArrived = 0; // reset for next barrier

 canGo = valueToAwait; // release all threads

 }

}

How does the traffic at this barrier scale?

Combining-tree barrier

[§8.2.2] A tree-based strategy can be used to reduce contention, similarly
to the way we used partial sums in Lecture 5.

 Threads represent the leaf nodes of a tree.

 The non-leaf nodes are the variables that the threads spin on.

 Each thread spins on the variable of its immediate parent, which
constitutes an intermediate barrier.

Lecture 15 Architecture of Parallel Computers 31

 Once all threads have arrived at the intermediate barrier, one of these
threads goes on and spins on the variable immediately above.

 This is repeated until the root is reached. At this point, the root
releases all threads by setting a flag.

How does this improve performance?

But there is an offsetting cost to a combining tree. What is it?

[§8.2.3] In very large supercomputers, however, this technique does not
suffice.

The BlueGene/L system has a special barrier network for implementing
barriers and broadcasting notifications to processors.

The network contains four independent channels.

Each level does a global and
of the signals from the
levels below it.

The signals are combined in
hardware and propagate to
the top of a combining tree.

The tree can also be used to do a global interrupt when the entire machine
or partition must be stopped as soon as possible “for diagnostic purposes.”

In this case, each level does a global or of the signals from beneath.

Once the signal propagates to the top of the tree, the resultant notification
is broadcast down the tree.

The round-trip latency is only 1.5 μs for a system of 64K nodes.

Lecture 15 Architecture of Parallel Computers 32

Cache Coherence vs. Memory Consistency

 Cache coherence

o deals with ordering of writes to a single memory location
o only needed for systems with caches

 Memory consistency

o deals with ordering of reads/writes to all memory locations
o needed in systems with or without caches

Why is a memory consistency model needed?

[§9.1] Programmer’s intuition:

P0:
S1: datum = 5;
S2: datumIsReady = 1;

P1:
S3: while (!datumIsReady);
S4: … = datum

Programmers expect S4 to read the new value of datum (i.e., 5).

This expectation is violated if—

 S2 appears to be executed before S1
 S4 appears to be executed before S3

Thus, Hypothesis 1: Program-order expectation

Programmers expect memory accesses in a thread to be executed in the
same order in which they occur in the source code.

Not only the executing thread, but all threads, are expected to see them in
this order.

P0:

S1: x = 5;
S2: xReady = 1;

P1:

S3: while
 (!xReady) {};
S4: y = x + 4;
S5: xyReady = 1;

P2:

S6: while
 (!xyReady) {};
S7: z = x * y;

Let’s say, initially, x = y = z = xReady = xyReady = 0

Lecture 15 Architecture of Parallel Computers 33

As a programmer, what would you expect to be the value of z at S7?

This implies that if the new value of x has been propagated to P2, it has
also been propagated to

Thus, Hypothesis 2: Atomicity expectation

A read or write happens instantaneously with respect to all processors.

How can the atomicity expectation be violated?

Step 1: New values of x and xReady have been propagated to P1, but
have not reached P2.

Step 2: New values of y and xyReady have been propagated to P2
before x is propagated to P2.

Step 3: When x is propagated to P2, P2 has already read the old value
of x, and z has been set to 0.

Is there any other way that a violation of store atomicity can lead to a
wrong value for z?

What is another “incorrect” value that could be written for z? Explain how
this could happen.

Summary of programmer’s expectations:

Memory accesses emanating from a processor should be performed in
program order, and each of them should be performed atomically.

Lecture 15 Architecture of Parallel Computers 34

These expectations were incorporated in Lamport’s 1979 definition of
sequential consistency:

A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each
individual processor occur in this sequence in the order specified by
its program.

Sequentially consistent vs. non-SC outcomes

Consider these code sequences, with a and b initialized to 0.

P0:

S1: a = 1;
S2: b = 1;

P1:

S3: print b;
S4: print a;

Note that this program is non-deterministic due to a lack of synchronization.

Under SC, S1  S2 and S3  S4 are guaranteed

Assuming SC, what values might possibly be printed for a and b?

S1, S2, S3, S4  1, 1

S1, S3, S4, S2  1, 0

S3, S4, S1, S2  0, 0

What values for a, b are impossible? 0, 1

Prove it.

For a to print as 0, it must be that S4  S1: e.g.,

For b to print as 1, it must be that S2  S3: e.g.,

Both of these conditions cannot hold. Prove it. S1S2, S3S4 So if
S2S3, then S1S4

On a non-SC machine, the outcome of a, b = 0, 1 is possible. What
statement ordering can produce it? S2, S3, S4, S1

Lecture 15 Architecture of Parallel Computers 35

In this case, which of the two SC precedence guarantees (above) is
violated? Program order the order between two writes

What’s a way to get the same result that violates the other precedence
guarantee? S4, S1, S2, S3 the order between 2 reads

Let’s take another example.

P0:

S1: a = 1;
S2: print b;

P1:

S3: b = 1;
S4: print a;

Exercise: Assuming that a and b are initialized to 0,

 what values can be printed under SC?
 what values are impossible to print under SC?
 prove that the impossible results can only occur if SC is violated.

Answer: Note that the program is non-deterministic due to a lack of
synchronization.

With SC, S1  S2 and S3  S4 are guaranteed

S1, S2, S3, S4  1, 0

S1, S3, S2, S4  1, 1
S3, S4, S1, S2  0, 1

On a nondeterministic machine, the outcome a, b = 0, 0 is possible.

Lecture 15 Architecture of Parallel Computers 36

 S4, S1, S2, S3

o In this case, S3  S4 is violated

 S2, S3, S4, S1

o In this case, S1  S2 is violated

Both of the previous examples are non-deterministic.

Non-deterministic codes are notoriously hard to debug.

But non-determinism may have legitimate uses. See Code 3.16 (ocean-
current simulation) and 3.18 (smoothing filter for grayscale image).

So, does preserving ordering of memory accesses matter?

 Probably not if non-determinism is intentional

 Otherwise, yes, because:

o Helps keep programmers sane during debugging.

o Even properly synchronized programs need ordering for the
synchronization to work properly.

Building a SC system

[§9.2] Which of the two hypotheses (expectations) can be guaranteed by
software? Program order

 Ensure that compiler does not reorder memory accesses;
 Declare critical variables as volatile (to avoid register allocation, code

elimination, etc.)

What hypothesis needs to be maintained by hardware? Atomicity

 Execute one memory access one at a time, in program order. One
access needs to be complete before the next can start.

 In the processor pipeline, memory accesses can be overlapped or
reordered.

Lecture 15 Architecture of Parallel Computers 37

o But they must go to the cache in program order.

o A load is complete when the block has been read from the
cache.

o A store is complete when an invalidation has been posted (on a
bus) or acknowledged (see details in §9.2.1).

Example of SC Ordering

 S1: ld R1, A S1 must complete before S2,
 S2: ld R2, B S2 before S3, etc.
 S3: st R3, C
 S4: st R4, D
 S5: ld R5, D

Implications

 If S1 is a cache miss but S2 is a cache hit, S2 still must wait until S1
is completed. Same with S3 and S4.

 S4 must wait for S3 to complete, even though stores are often retired
early.

 S5 must wait for S4 to complete, even though they are to the same
location!

Improving SC performance

Via prefetching

We still have to obey ordering, but we can make each load/store complete
faster, e.g. by converting cache misses into cache hits:

 Employ load prefetching

o As soon as address is known/predictable,

 fetch before previous loads have completed,

o issue a prefetch request to fetch the block in Exclusive/Shared
state

 Employ store prefetching

Lecture 15 Architecture of Parallel Computers 38

o As soon as address is known/predictable, issue a prefetch
request to fetch the block in Modified state

But this is not a perfect strategy. Why not?

 Prefetch too late 

 Prefetch too early 

Via speculation

We can violate ordering, but undo the effect if atomicity is violated.

 The ability to undo execution and re-execute is already present in out-of-
order processors (as covered in ECE 563).

o So, we only need to determine when atomicity has been violated.

 Consider load A, followed by load B

o In strict SC, load B must wait until load A completes

o With speculation, load B accesses the cache anyway; the
processor just marks load B as speculative

o If B is invalidated before it “retires,” atomicity has been violated.

o In this case, the architecture cancels B and re-executes it.

Store speculation is harder, because stores cannot be canceled. Hence,
only load speculation is employed.

