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Cache memories 

[§6.1]  A cache is a small, fast memory which is transparent to the 
processor. 

• The cache duplicates information that is in main memory.   
 

• With each data block in the cache, there is associated an 
identifier or tag.  This allows the cache to be content 
addressable. 
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information information
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• Caches are smaller 
and faster than main 
memory.   
 

• Secondary storage, on 
the other hand, is 
larger and slower.   
 
 

Cache

Main memory

Secondary storage

 

• A cache miss is the term analogous to a page fault.  It 
occurs when a referenced word is not in the cache. 

° Cache misses must be handled much more quickly 
than page faults.  Thus, they are handled in hardware. 

• Caches can be organized according to four different 
strategies: 

° Direct 
° Fully associative 
° Set associative 
° Sectored 
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• A cache implements several different policies for retrieving 
and storing information, one in each of the following 
categories: 

° Placement policy—determines where a block is placed 
when it is brought into the cache. 

° Replacement policy—determines what information is 
purged when space is needed for a new entry. 

° Write policy—determines how soon information in the 
cache is written to lower levels in the memory hierarchy. 

Cache memory organization 

[§6.2]  Information is moved into and out of the cache in blocks.  
When a block is in the cache, it occupies a cache line.  Blocks are 
usually larger than one byte, 

• to take advantage of locality in programs, and 
• because memory may be organized so that it can overlap 

transfers of several bytes at a time. 
 
The block size is the same as the line size of the cache. 

A placement policy determines where a particular block can be 
placed when it goes into the cache.  E.g., is a block of memory 
eligible to be placed in any line in the cache, or is it restricted to a 
single line? 

In our examples, we assume— 

• The cache contains 2048 bytes, 
 with  16 bytes per line 
 Thus it has    128 lines. 
 
• Main memory is made up of  256K bytes, or 16384 blocks. 
 Thus an address consists of 18 bits 
 

We want to structure the cache to achieve a high hit ratio. 

• Hit—the referenced information is in the cache. 
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• Miss—referenced information is not in cache, must be read 
in from main memory. 

 

Hit ratio    
Number of hits

Total number of references  
 
We will study caches that have three different placement policies 
(direct, fully associative, set associative). 

Direct 

Only 1 choice of where to place a block. 
 

block i    line  i mod 128 
 

Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order seven bits of 
the main-memory address of the block. 

 Main memory 

Block 0 
Block 1 
Block 2 

Block 127 
Block 128 
Block 129 

Block 255 
Block 256 
Block 257 

Block 4095 
Block 4096 

Block 16383 

• 
• 

• 
• 

• 
• 

• 
• 

Tag 

Tag 

Tag 

Line 1 

Line 127 

7 bits 

Cache 

Tag Index Offset 

7 7 4 

Main-memory address 

Line 0 
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To search for a word in the cache, 

1. Determine what line to look in (easy; just select bits 10–4 of 
the address). 

 
2. Compare the leading seven bits (bits 17–11) of the address 

with the tag of the line.  If it matches, the block is in the 
cache. 

 
3. Select the desired bytes from the line. 
 

 Advantages: 

 Fast lookup (only one comparison needed). 

 Cheap hardware (only one tag needs to be checked). 

 Easy to decide where to place a block 

 Disadvantage:  Contention for cache lines. 

Exercise:  What would the size of the tag, index, and offset fields be 
if— 
 the line size from our example were doubled, without changing 

the size of the cache?  7, 6, 5 
 the cache size from our example were doubled, without 

changing the size of the line? 6, 8, 4  
 an address were 32 bits long, but the cache size and line size 

were the same as in the example?  21, 7, 4 
 

Fully associative 

Any block can be placed in any line in the cache. 

This means that we have 128 choices of where to place a block. 

 block i   any free (or purgeable) cache location 
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 Main memory 

Tag 

Tag 

Tag 

Line 0 

Line 1 

Line 127 

14 bits 

Cache 

Tag Offset 

4 

Main-memory address 

14 

Block 0 
Block 1 

Block   

Block 16382 
Block 16383 

• 
• 

• 
• 

• 
• 

i 

• 
• 

 
 
Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order fourteen bits 
of the main-memory address of the block. 

To search for a word in the cache, 

1. Simultaneously compare the leading 14 bits (bits 17–4) of 
the address with the tag of all lines.  If it matches any one, 
the block is in the cache. 

2. Select the desired bytes from the line. 

 Advantages: 

 Minimal contention for lines. 

 Wide variety of replacement algorithms feasible. 

Exercise:  What would the size of the tag and offset fields be if— 

 the line size from our example were doubled, without changing 
the size of the cache?   
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 the cache size from our example were doubled, without 
changing the size of the line?   

 an address were 32 bits long, but the cache size and line size 
were the same as in the example?   

 Disadvantage: 

 The most expensive of all organizations, due to the high 
cost of associative-comparison hardware.   

 
A flowchart of cache operation:  The process of searching a fully 
associative cache is very similar to using a directly mapped cache.  
Let us consider them in detail. 

Page
number

Byte within
page

Virtual address

Search TLB

TLB hit?

Select TLB victim
to be replaced

Translate virt. addr.
to physical addr.

No

Enter new
(virt., phys.)

addr. pair in TLB

Yes
Block

number
Byte within

block

Update
replacement status

of TLB entries

Search tags
of cache lines

Cache
hit?

No

Yes

Fetch block from
main memory

Select cache victim
to be replaced

Store new block
in cache

Update
replacement status

of cache entries

Fetch block
from cache

Select desired
bytes from block

Send byte(s)
to processor

Note that this diagram assumes a separate TLB. 

 

Lecture 10 Architecture of Parallel Computers 7 

Which steps would be different if the cache were directly mapped?  
 
Set associative 

1 < n < 128  choices of where to place a block. 

A compromise between direct and fully associative strategies. 

The cache is divided into s sets, where s is a power of 2. 

block i    any line in set i mod s 

Each line has its own tag associated with it. 

When the line is in use, the tag contains the high-order eight bits of 
the main-memory address of the block.  (The next six bits can be 
derived from the set number.) 

 
Main memory 

Block 0 
Block 1 

Block 16383 

• 
• 

• 
• 

• 
• 

Tag 
Line 0 

8 bits 
Cache 

Tag Offset 

4 

Main-memory address 

• 
• 

Tag 
Line 1 

Tag 
Line 2 

Tag 
Line 3 

Tag 
Line 126 

Tag 
Line 127 

Block 4095 

Block 65 

Block 63 
Block 64 

Set 0 

Set 1 

Set 63 

Index 

8 6 
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Exercise:  What would the size of the tag, index, and offset fields be 
if— 
 the line size from our example were doubled, without changing 

the size of the cache?   
 the set size from our example were doubled, without changing 

the size of a line or the cache?   
 the cache size from our example were doubled, without 

changing the size of the line or a set?   
 an address were 32 bits long, but the cache size and line size 

was the same as in the example?   

To search for a word in the cache, 

1. Select the proper set (i mod s). 
 
2. Simultaneously compare the leading 8 bits (bits 17–10) of 

the address with the tag of all lines in the set.  If it matches 
any one, the block is in the cache. 

 
 At the same time, the (first bytes of) the lines are also being 

read out so they will be accessible at the end of the cycle. 
 
3. If a match is found, gate the data from the proper block to 

the cache-output buffer. 
 
4. Select the desired bytes from the line. 
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= ?

= ?

= ?

= ?

Desired block # Tags from set

Select

Select

Select

Select

Lines from set

Data outCache output-
data buffer

 
• All reads from the cache occur as early as possible, to 

allow maximum time for the comparison to take place. 

• Which line to use is decided late, after the data have 
reached high-speed registers, so the processor can receive 
the data fast. 

[§6.2.6]  To attain maximum speed in accessing data, we would like 
to start searching the cache at the same time we are looking up the 
page number in the TLB. 

When the bit-selection method is used, both can be done at once if 
the page number is disjoint from the set number. 

This means that 

• the number of bits k in 
the set number  
 

• +  the number of bits j 
which determine the 
byte within a line  
 

• must be  the number of 
bits d in the displace-
ment field. 

Page
number

Set
number

Byte within
block

k j

d

 
 

We want k + j  d.   
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(If the page size is 2d, then there will be d  bits in the displacement 
field.) 

Factors influencing line lengths: 

• Long lines  higher hit ratios.   
 
• Long lines  less memory devoted to tags. 
 
• Long lines  longer memory transactions (undesirable in a 

multiprocessor). 
 
• Long lines  more write-backs (explained below). 
 

For most machines, line sizes between 32 and 128 bytes perform 
best. 

If there are b lines per set, the cache is said to be b-way set 
associative.  How many way associative was the example above? 

The logic to compare 2, 4, or 8 tags simultaneously can be made 
quite fast. 

But as b increases beyond that, cycle time starts to climb, and the 
higher cycle time begins to offset the increased associativity. 

Almost all L1 caches are less than 8-way set-associative.  L2 caches 
often have higher associativity. 

Two-level caches 

Write policy 

[§6.2.3]  Answer these questions, based on the text. 

What are the two write policies mentioned in the text?   
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Which one is typically used when a block is to be written to main 
memory, and why?   
 

Which one can be used when a block is to be written to a lower level 
of the cache, and why?   
 

Can you explain what error correction has to do with the choice of 
write policy?   
 
 
 

Explain what a parity bit has to do with this.   
 
 
 

Principle of inclusion 

[§6.2.4]  To analyze a second-level cache, we use the principle of 
inclusion—a large second-level cache includes everything in the first-
level cache. 

We can then do the analysis by assuming the first-level cache did not 
exist, and measuring the hit ratio of the second-level cache alone. 

How should the line length in the second-level cache relate to the line 
length in the first-level cache?   
 
 

When we measure a two-level cache system, two miss ratios are of 
interest: 

• The local miss rate for a cache is the 

 
# misses experienced by the cache

number of incoming references   

 To compute this ratio for the L2 cache, we need to know 
the number of misses in  
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• The global miss rate of the cache is  

 
# L2 misses

# of references made by processor   

 This is the primary measure of the L2 cache. 

What conditions need to be satisfied in order for inclusion to hold? 

• L2 associativity must be  L1 associativity, irrespective of 
the number of sets. 

 Otherwise, more entries in a particular set could fit into the 
L1 cache than the L2 cache, which means the L2 cache 
couldn’t hold everything in the L1 cache. 

• The number of L2 sets has to be  the number of L1 sets, 
irrespective of L2 associativity. 

 (Assume that the L2 line size is  L1 line size.) 

 If this were not true, multiple L1 sets would depend on a 
single L2 set for backing store.  So references to one L1 
set could affect the backing store for another L1 set. 

• All reference information from L1 is passed to L2 so that it 
can update its replacement bits. 

Even if all of these conditions hold, we still won’t have logical 
inclusion if L1 is write-back.  (However, we will still have statistical 
inclusion—L2 usually contains L1 data.) 

Translation Lookaside Buffers 

The CPU generates virtual addresses, which correspond to locations 
in virtual memory. 

In principle, the virtual addresses are translated to physical 
addresses using a page table. 
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Page
table

Main
memory

0
1
2

3

1000

5000

8000

10000

Page #s

Phys.
addrs. 

But this is too slow, so in practice, 
a translation lookaside buffer 
(TLB) is used. 

It is like a special cache that is 
indexed by page number. 

If there is a hit on a page number, 
then the address of the page in 
memory (called the page-frame 
address) is immediately obtained. 

Therefore, the TLB and the cache must be accessed sequentially. 

This adds an extra cycle in case of a hit. 

How can we avoid wasting this time? 

Let’s look at what happens when a memory address is accessed. 

TLB 

Cache 

Main memory 

physical address 

Virtual address: Page number Page offset 

miss 
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line select (mux) 

word select (mux) 

MD
R 

row 
dec 

tag 
(27 
bits) 

31 5 4 3 2 0 
tag 
(27) 

index 
(2) 

offset 
(3) 

set (holds 2 blocks) lines (8 bytes) 

=? =? 

MAR 

 

What are the steps in cache access? 

1. Access 
the set that 
could 
contain the 
sought-after 
address. 

2. Pull down 
the tags into 
the sense 
amplifiers 
(purple). 

3. Compare 
the tags with 
the tag of the 
sought-after 
address. 

4. Read all 
lines in the 
set into the 
sense 
amplifiers 
(purple).4 

5. Select the 
line that 
actually 
contains the 
sought-after 
address. 

6.Select 
the sought-
after 
byte(s) or 
word(s) to 
return. 

7. Return the 
sought-after 
byte(s) or 
word(s) to the 
processor. 

 

We always need to read lines into the sense amplifiers and then 
select the word (cf. the direct-mapped cache diagram in Lecture 10). 

Now, if we know the index before address translation takes place, we 
can perform steps 1, 2, and 4 while address translation is occurring. 

There is a tradeoff between speed and power efficiency. 

 For power efficiency, which order should should steps 1 
through 4 be performed in? sequentially: 1, 2, 3, 4  

 For maximum speed, which of steps 1 through 4 can be 
performed in parallel?  2 and 4. 

Let’s take a look at address translation. 

1 

2 

3 

4 

5 

6 

7 
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In this example, what is the page size?  212 

How much physical memory is there?  225 

Our goal is to allow the cache to be indexed before address 
translation completes. 

In order to do that, we need to have the index field be entirely 
contained within the page offset. 

 

Cache hit time reduces from two cycles to one! 

0 

(Virtual) page number Page offset 

63 12 11 

(Physical) page-frame # Page offset 

24 12 11 0 

TLB 

Tag Block offset 

24 0 

Index 

TLB supplies 
the physical page 
number portion 

(Virtual) page number Page offset 

63 12 11 0 

(Phys.) page-frame # 

24 12 

TLB 

Tag 

Block 
offset 

24 

Index

12 

Data array 

Word select 

T
a

g
 a

rra
y 

=? 

0 11 
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… because the cache can now be indexed in parallel with TLB 
(although the tag match uses output from the TLB). 

But there are some constraints... 

• Suppose our cache is direct mapped.  Then the index field 
just contains the line number.  So, (line number || block 
offset) must fit inside the page offset. 

 What is the largest the cache can be?  212 = one page 

• If we want to increase the size of the cache, what can we 
do?  Increase associativity 
 

Options: 
• For new machines, select page size such that— 

page size    
cache size

associativity  

• If page size is fixed, select associativity so that— 

associativity    
cache size
page size   

Example: MC88110 

• Page size = 4KB 

• I-cache, D-cache are both: 8KB, 2-way set-associative 
(4KB = 8KB / 2) 

Example: VAX series 

• Page size = 512B 

• For a 16KB cache, need assoc. = (16KB / 512B) = 32-way 
set. assoc.! 

The textbook gives these three alternatives for cache indexing and 
tagging.  Answer some questions about them. 
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What’s the main disadantage of 
physically indexed and tagged?   
 

What is the organization we have 
just been discussing (in the last 
diagram)?   
 

What is the main disadvantage 
of virtually indexed and tagged?   
 
 
 
 
   

 

Multilevel cache design 

What are distinguishing features of the different cache levels of the 
four-level design (from 2013) illustrated on p. 135 of the textbook? 

 Distinguish- 
ing feature 

Size Access time Implement’n 
techology 

L1 cache     

L2 cache     

L3 cache     

L4 cache     

Main mem.     

 
What are some advantages of a centralized cache? 
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What are some advantages of a banked structure? 

 
 
 
 
 
 

Inclusion in multilevel caches 

Answer these questions about inclusion policies. 

Which kind(s) of caches move a block from one level to the other?   
 

Which kind(s) of caches propagate up an eviction from the L2 to the 
L1?   

Which kind(s) of caches have to inform the L2 about a write to the 
L1?   

In an inclusive cache, can L2 associativity be greater than L1 
associativity?   

Find and describe the typo in this diagram.   
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Replacement policies 

LRU is a good strategy for cache replacement. 
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In a set-associative cache, LRU is reasonably cheap to implement.  
Why?  Because you can only afford to look in a few places, since you 
have to do the replacement in hardware.  Finding the LRU line in a 
set is easy enough to do in hardware because not many lines need to 
be examined. 

With the LRU algorithm, the lines can be arranged in an LRU stack,  
in order of recency of reference.  Suppose a string of references is— 

a  b  c  d  a  b  e  a  b  c  d  e 

and there are 4 lines.  Then the LRU stacks after each reference 
are—  

a b c d a b e a b c d      e 
 a b c d a b e a b c      d 
  a b c d a b e a b      c 
   a b c d d d e a      b 
* * * *   *   * *        *    

   
Notice that at each step: 

• The line that is referenced moves to the top of the LRU 
stack. 

• All lines below that line keep their same position. 

• All lines above that line move down by one position. 

How many bits per set are required to keep track of LRU status in 
both of the implementations described in the text?  

 Matrix N2 

 Pseudo-LRU N-1 
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Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

• What is the difference between …
– SMP

– NUMA

– Cluster ?

CSC/ECE 506: Architecture of Parallel Computers

Small to Large Multiprocessors
• Small scale (2–30 processors): shared memory

– Often on-chip: shared memory (+ perhaps shared cache)
– Most processors have MP support out of the box
– Most of these systems are bus-based
– Popular in commercial as well as HPC markets

• Medium scale (64–256): shared memory and clusters
– Clusters are cheaper
– Often, clusters of SMPs

• Large scale (> 256): few shared memory and many clusters
– SGI Altix 3300: 512-processor shared memory (NUMA)
– Large variety on custom/off-the-shelf components such as 

interconnection networks.
• Beowulf clusters: fast Ethernet
• Myrinet: fiber optics
• IBM SP2: custom

4
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Shared Memory vs. No Shared Memory

• Advantages of shared-memory machines (vs. distributed 
memory w/same total memory size) 

– Support shared-memory programming

• Clusters can also support it via software shared 
virtual memory, but with much coarser granularity 
and higher overheads

– Allow fine-grained sharing 

• You can’t do this with messages—there’s too 
much overhead to share small items

– Single OS image

• Disadvantage of shared-memory machines

– Cost of providing shared-memory abstraction
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Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Will This Parallel Code Work Correctly?

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and        
a[2] = 7

Two issues: 

• Will it print sum = 10?
• How can it support locking correctly?
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The Cache-Coherence Problem

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and 
a[2] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . . 

• Will it print sum = 10?
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Cache-Coherence Problem Illustration

Start state. All caches 
empty and main memory 
has Sum = 0.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus
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Cache-Coherence Problem Illustration

P1 reads Sum from memory. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory
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ControllerController
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

=0Sum=0 VV
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Cache-Coherence Problem Illustration

P2 reads.  Let’s assume this 
comes from memory too.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

ControllerController

BusBus

Sum=0Sum=0 VV Sum=0Sum=0 VV

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum
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Cache-Coherence Problem Illustration

P1 writes.  This write goes 
to the cache.
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Cache-Coherence Problem Illustration

P2 writes. P1

CacheCache
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Cache-Coherence Problem Illustration

P1 reads. P1

CacheCache
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Cache-Coherence Problem

• Do P1 and P2 see the same sum? 

• Does it matter if we use a WT cache? 

• The code given at the start of the animation does not 
exhibit the same coherence problem shown in the 
animation.  Explain.  Is the result still incoherent?

• What if we do not have caches, or sum is uncacheable.  
Will it work?  
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Write-Through Cache Does Not Work

P1 reads. P1

CacheCache
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CacheCache

Main memoryMain memory
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Software Lock Using a Flag

• Here’s simple code to implement a lock:

• Will this guarantee mutual exclusion?

• Let’s look at an algorithm that will …

void lock (int process, int lvar) {     // process is 0 or 1
while (lvar == 1) {} ;  
lvar = 1;

} 

void unlock (int process, int lvar) {
lvar = 0;

}

18
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Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency
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Peterson’s Algorithm

20

• Acquisition of lock() occurs only if
1.interested[other] == FALSE: either the other process 

has not competed for the lock, or it has just called unlock(), 
or

2.turn != other: the other process is competing, has set the 
turn to our process, and will be blocked in the while() loop

int turn;
int interested[n];  // initialized to false

void lock (int process, int lvar) {     // process is 0 or 1
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (turn == other && interested[other] == TRUE) {} ;

} 
// Post: turn != other or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}
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No Race

21

// Proc 0
interested[0] = TRUE;
turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] starts out FALSE, 
// Proc 0 enters critical section

// Proc 1
interested[1] = TRUE;
turn = 0;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

CSC/ECE 506: Architecture of Parallel Computers

Race

22

while (turn==1 && interested[1]==TRUE)
{};

// since turn == 0, 
// Proc 0 enters critical section

while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock
interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

// Proc 0
interested[0] = TRUE;
turn = 1;

// Proc 1
interested[1] = TRUE;

turn = 0;
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When Does Peterson’s Alg. Work?

23

• Correctness depends on the global order of 

• Thus, it will not work if—
– The compiler reorders the operations

• There’s no data dependence, so unless the compiler is 
notified, it may well reorder the operations

• This prevents compiler from using aggressive optimizations 
used in serial programs

– The architecture reorders the operations
• Write buffers, memory controller
• Network delay for statement A
• If turn and interested[] are cacheable, A may result in 

cache miss, but B in cache hit
• This is called the memory-consistency problem.

A: interested[process] = TRUE;
B: turn = other;
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Race on a Non-Sequentially Consistent Machine

24

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// Proc 1

interested[1] = TRUE;
turn = 0;

while (turn==0 && interested[0]==TRUE)
{};
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Race on a Non-Sequentially Consistent Machine

25

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] == FALSE, 
// Proc 0 enters critical section

// Proc 1

turn = 0;

interested[1] = TRUE;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==1,
// Proc 1 enters critical section

reordered

Can you explain what has gone wrong here?
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Coherence vs. Consistency

26

Cache coherence Memory consistency

Deals with the ordering of 
operations to a single memory 
location.

Deals with the ordering of 
operations to different memory 
locations.
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Coherence vs. Consistency

27

Cache coherence Memory consistency

Deals with the ordering of 
operations to a single memory 
location.

Deals with the ordering of 
operations to different memory 
locations.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness 

but with varying performance

Tackled by consistency models
• supported by hardware, but
• software must conform to the 

model.
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Coherence vs. Consistency

28

Cache coherence Memory consistency

Deals with the ordering of 
operations to a single memory 
location.

Deals with the ordering of 
operations to different memory 
locations.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness 

but with varying performance

Tackled by consistency models
• supported by hardware, but
• software must conform to the 

model.

All protocols realize same abstraction
• A program written for 1 protocol 

can run w/o change on any other.

Models provide diff. abstractions
• Compilers must be aware of the 

model (no reordering certain 
operations …).

• Programs must “be careful” in 
using shared variables.
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Two Approaches to Consistency

• Sequential consistency
– Multi-threaded codes for uniprocessors automatically run 

correctly

– How? Every shared R/W completes globally in program 
order

– Most intuitive but worst performance

• Relaxed consistency models
– Multi-threaded codes for uniprocessor need to be ported to 

run correctly

– Additional instruction (memory fence) to ensure global 
order between 2 operations

29
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Cache Coherence

• Do we need caches?
– Yes, to reduce average data access time.

– Yes, to reduce bandwidth needed for bus/interconnect.

• Sufficient conditions for coherence:
– Notation: Requestproc(data)

– Write propagation: 

• Rdi (X) must return the “latest” Wrj(X) 

– Write serialization: 

• Wri(X) and Wrj(X) are seen in the same order by everybody

– e.g., if I see w2 after w1, you shouldn’t see w2 before w1

–  There must be a global ordering of memory 
operations to a single location

– Is there a need for read serialization?

30
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A Coherent Memory System:  Intuition

• Uniprocessors
– Coherence between I/O devices and processors
– Infrequent, so software solutions work

• uncacheable memory, uncacheable operations, flush 
pages, pass I/O data through caches 

• But coherence problem much more critical in multiprocessors
– Pervasive
– Performance-critical
– Necessitates a hardware solution

• * Note that “latest write” is ambiguous.  
– Ultimately, what we care about is that any write is propagated 

everywhere in the same order.

– Synchronization defines what “latest” means.

31
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Summary

• Shared memory with caches raises the problem of cache 
coherence.

– Writes to the same location must be seen in the same 
order everywhere.

• But this is not the only problem

– Writes to different locations must also be kept in order 
if they are being depended upon for synchronizing 
tasks.

– This is called the memory-consistency problem

32
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Coherence and ConsistencyCoherence and Consistency

1

Lecture 13

(Chapter 7)

Lecture 13

(Chapter 7)

CSC/ECE 506: Architecture of Parallel Computers

Outline

 Bus-based coherence

 Invalidation vs. update coherence 
protocols

 Memory consistency

 Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Several Configurations for a Memory System

3

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory
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Assume a Bus-Based SMP

• Built on top of two fundamentals of uniprocessor system

– Bus transactions

– Cache-line finite-state machine

• Uniprocessor bus transaction:

– Three phases: arbitration, command/address, data transfer

– All devices observe addresses, one is responsible

• Uniprocessor cache states:

– Every cache line has a finite-state machine

– In WT+write no-allocate: Valid, Invalid states

– WB: Valid, Invalid, Modified (“Dirty”)

• Multiprocessors extend both these somewhat to implement 
coherence

4
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Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions 
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant 
events.

5
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Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions 
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant 
events.

• Implementing a Protocol

– Each cache controller reacts to processor and bus events: 
• Takes actions when necessary

– Updates state, responds with data, generates new bus 
transactions

– The memory controller also snoops bus transactions and 
returns data only when needed

– Granularity of coherence is typically cache line/block

• Same granularity as in transfer to/from cache

6
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Coherence with Write-Through Caches

7

sum = 0;
begin parallel
for (i=0; i<2; i++) {
lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
Print sum;

Suppose a[0] = 3 and a[1] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . . 

= Snooper

– What happens when we snoop a write?
• Write-update protocol: write is immediately propagated or
• Write-invalidation protocol: causes miss on later access, and memory up-

to-date via write-through
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Snooper Assumptions

• Atomic bus

• Writes occur in 
program order

8
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Transactions

• To show what’s going on, we will use 
diagrams involving—
– Processor transactions

• PrRd

• PrWr

– Snooped bus transactions
• BusRd

• BusWr

9
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Write-Through State-Transition Diagram

10

V

I

PrRd/BusRd

PrRd/-- PrWr/BusWr

PrWr/BusWr

BusWr/--

Processor-initiated transactions

Bus-snooper-initiated transactions

• Key: A write invalidates all other caches

• Therefore, we have: 

– Modified line: exists as V in only 1 cache

– Clean line: exists as V in at least 1 cache

– Invalid state represents invalidated line or not present in the cache

write-through
no-write-allocate
write invalidate

How does this protocol 
guarantee write 
propagation?

How does it guarantee 
write serialization?
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Is It Coherent?
• Write propagation: 

– through invalidation

– then a cache miss, loading a new value

• Write serialization: Assume—

– atomic bus

– invalidation happens instantaneously

– writes serialized by order in which they appear on bus (bus order) 
• So are invalidations

• Do reads see the latest writes? 

– Read misses generate bus transactions, so will get the last write

– Read hits: do not appear on bus, but are preceded by 

• most recent write by this processor (self), or

• most recent read miss by this processor

– Thus, reads hits see latest written values (according to bus order)
11
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Determining Orders More Generally

12

A memory operation M2 follows a memory operation M1 if the operations are issued 
by the same processor and M2 follows M1 in program order. 
1. Read follows write W if read generates bus transaction that follows W’s xaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Determining Orders More Generally

13

A memory operation M2 follows a memory operation M1 if the operations are issued 
by the same processor and M2 follows M1 in program order. 
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if  M generates bus transaction and the transaction 

for the write follows that for M.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

22
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R
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Determining Orders More Generally

14

A memory operation M2 follows a memory operation M1 if the operations are issued 
by the same processor and M2 follows M1 in program order. 
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if  M generates bus transaction and the transaction 

for the write follows that for M.
3. Write follows read if read does not generate a bus transaction and is not already 

separated from the write by another bus transaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

33
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Problem with Write-Through
• Write-through can guarantee coherence, but needs a lot of bandwidth.

– Every write goes to the shared bus and memory

– Example: 

200MHz, 1-CPI processor, and 15% instrs. are 8-byte stores
Each processor generates 30M stores, or 240MB data, per second
How many processors could a 1GB/s bus support without saturating?

– Thus, unpopular for SMPs

• Write-back caches 
– Write hits do not go to the bus  reduce most write bus transactions
– But now how do we ensure write propagation and serialization?

15
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Lecture 13 Outline
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 Bus-based coherence
 Invalidation vs. update coherence protocols
 Memory consistency
 Sequential consistency
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Dealing with “Dirty” Lines

• What does it mean to say a cache line is “dirty”?
– That at least one of its words has been changed since it was 

brought in from main memory.

• Dirty in a uniprocessor vs. a multiprocessor
– Uniprocessor: 

• Only need to keep track of 
whether a line has been modified.

• Multiprocessor: 
• Keep track of whether line is modified.

• Keep track of which cache owns the line.

• Thus, a cache line must know whether it is—

• Exclusive: “I’m the only one that has it, other than possibly 
main memory.”

• The Owner: “I’m responsible for supplying the block upon a 
request for it.” 17
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Invalidation vs. Update Protocols

• Question:  What happens to a line if another
processor changes one of its words?

– It can be invalidated.

– It can be updated.

13

14

15

16
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Invalidation-Based Protocols

• Idea: When I write the block, invalidate everybody else 
 I get exclusive state.

• “Exclusive” means … 
• Can modify without notifying anyone else (i.e., without a bus 

transaction)

• But, before writing to it,
• Must first get block in exclusive state

• Even if block is already in state V, a bus transaction 
(Read Exclusive = RdX) is needed to invalidate others.

• What happens when a block is ejected from the cache?
– if the block is not dirty?

– if the block is dirty?

19

CSC/ECE 506: Architecture of Parallel Computers

-Based Protocols

• Idea: If this block is written, send the new word to all 
other caches.
• New bus transaction: Update

• Compared to invalidate, what are advs. and disads.?

• Advantages
• Other processors don’t miss on next access

• Saves refetch: In invalidation protocols, they would miss & bus 
transaction.

• Saves bandwidth: A single bus transaction updates several 
caches 

• Disadvantages
• Multiple writes by same processor cause multiple update 

transactions
• In invalidation, first write gets exclusive ownership, other writes local

20
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Invalidate versus Update

• Is a block written by one processor read by other 
processors before it is rewritten?

• Invalidation:
• Yes  Readers will take a miss.

• No  Multiple writes can occur without additional traffic.

• Copies that won’t be used again get cleared out.

• Update:
• Yes  Readers will not miss if they had a copy previously

• A single bus transaction will update all copies

• No   Multiple useless updates, even to dead copies

• Invalidation protocols are much more popular.
• Some systems provide both, or even hybrid

21
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Lecture 13 Outline

 Bus-based coherence
 Invalidation vs. update coherence 

protocols
 Memory consistency
 Sequential consistency

22
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Let’s Switch Gears to Memory Consistency

23

• Sequential consistency (SC) corresponds to our intuition.

• Other memory consistency models do not obey our intuition!

• Coherence doesn’t help; it pertains only to a single location

P1 P2

/*Assume initial values of A and  flag are 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

• Recall Peterson’s algorithm (turn= …; interested[process]=…)

• When “multiple” means “all”, we have sequential consistency (SC)

Consistency: Writes to multiple locations are visible to all in the same order

Coherence: Writes to a single location are visible to all in the same order
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Another Example of Ordering

24

• What do you think the results should be? You may think:

• 1a, 1b, 2a, 2b  
• 1a, 2a, 2b, 1b 
• 2a, 2b, 1a, 1b 

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

programmers’ intuition: 
sequential consistency

{A=1, B=2}
{A=1, B=0}
{A=0, B=0}

• Whatever our intuition is, we need 

• an ordering model for clear semantics across different locations
• as well as cache coherence! 

so programmers can reason about what results are possible.

• Is {A=0, B=2} possible? • Yes, suppose P2 sees: 1b, 2a, 2b, 1a
e.g. evil compiler, evil interconnection.
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A Memory-Consistency Model …

• Is a contract between programmer and system
• Necessary to reason about correctness of 

shared-memory programs

• Specifies constraints on the order in which 
memory operations (from any process) can 
appear to execute with respect to one another
• Given a load, constrains the possible values returned by it

• Implications for programmers
• Restricts algorithms that can be used
• e.g., Peterson’s algorithm, home-brew synchronization will be 

incorrect in machines that do not guarantee SC

• Implications for compiler writers and computer architects
• Determines how much accesses can be reordered.

25
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Lecture 13 Outline

26

 Bus-based coherence
 Memory consistency
 Sequential consistency

 Invalidation vs. update coherence protocols
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Sequential Consistency

27

“A multiprocessor is sequentially consistent if the result of any execution is 
the same as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual processor appear in 
this sequence in the order specified by its program.” [Lamport, 1979]

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes, 
appear to [issue, execute, complete] atomically w.r.t. others

Processors 
issuing memory 
references as 
per program order

P1 P2 Pn

Memory

The “switch” is randomly 
set after each memory
reference
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What Really Is Program Order?

• Intuitively, the order in 
which operations appear 
in source code

• Thus, we assume order 
as seen by programmer, 
• the compiler is prohibited from reordering memory 

accesses to shared variables. 

• Note that this is one reason parallel programs 
are less efficient than serial programs.

28
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What Reordering Is Safe in SC? 

29

• Possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

• Proof: By program order we know 1a  1b and 2a  2b

A = 0 implies 2b  1a, which implies 2a  1b

B = 2 implies 1b  2a, which leads to a contradiction

• BUT, actual execution 1b 1a  2b  2a is SC, despite not being in program order

– It produces the same result as 1a  1b  2a  2b.

– Actual execution 1b  2a  2b  1a is not SC, as shown above

– Thus, some reordering is possible, but difficult to reason that it ensures SC

What matters is the order in which code appears to execute, 
not the order in which it actually executes.

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;
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Conditions for SC
• Two kinds of requirements

– Program order
• Memory operations issued by a process must appear to become 

visible (to others and itself) in program order.
– Global order

• Atomicity: One memory operation should appear to complete 
with respect to all processes before the next one is issued.

• Global order: The same order of operations is seen by all 
processes.

• Tricky part: how to make writes atomic? 
–  Necessary to detect write completion 
– Read completion is easy: a read completes when the data returns

• Who should enforce SC? 
– Compiler should not change program order
– Hardware should ensure program order and atomicity

30
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Write Atomicity

31

• Write Atomicity ensures same write ordering is seen by all procs.

– In effect, extends write serialization to writes from multiple 
processes

• Under SC, transitivity implies that A should print as 1.  
Without SC, why might it not?

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);
print A;
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Is the Write-Through Example SC?

o Assume no write buffers, or load-store bypassing

o Yes, it is SC, because of the atomic bus: 
• Any write and read misses (to all locations) are serialized 

by the bus into bus order.

• If a read obtains value of write W, W is guaranteed to have 
completed since it caused a bus transaction

• When write W is performed with respect to any processor, 
all previous writes in bus order have completed 

32
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Summary

• One solution for small-scale multiprocessors is a shared 
bus.

• State-transition diagrams can be used to show how a 
cache-coherence protocol operates.
– The simplest protocol is write-through, but it has performance problems.

• Sequential consistency guarantees that memory 
operations are seen in order throughout the system.
– It is fairly easy to show whether a result is or is not sequentially 

consistent.

• The two main types of coherence protocols are 
invalidate and update.
– Invalidate usually works better, because it frees up cache lines 

more quickly.

31
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Performance of coherence protocols 

Cache misses have traditionally been classified into four categories: 

• Cold misses (or “compulsory misses”) occur the first time that a block 
is referenced. 

• Conflict misses are misses that would not occur if the cache were 
fully associative with LRU replacement. 

• Capacity misses occur when the cache size is not sufficient to hold 
data between references. 

• Coherence misses are misses caused by the coherence protocol. 

The first three types occur in uniprocessors.  The last is specific to 
multiprocessors. 

To these, Solihin adds context-switch (or “system-related”) misses, which 
are related to task switches. 

Let’s take a look at a uniprocessor example, a very small cache that has 
only four lines. 

Let’s look first at a fully associative cache, because which kind(s) of misses 
can’t it have? 

Here’s an example of a reference trace of 0, 2, 4, 0, 2, 4, 6, 8, 0. 

Fully associative 

  0 2 4 0 2 4 6 8 0 

0 0     0       8   

1 
 

2 
  

2 
   

0 

2 
  

4 
  

4 
  

  

3             6     

 
cold cold cold hit hit hit cold cold capacity 

 
In a fully associative cache, there are 5 cold misses, because 5 different 
blocks are referenced. 
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There are 3 hits. 

The remaining reference (the third one to block 0) is not a cold miss. 

It must be a capacity miss, because the cache doesn’t have room to hold 
all five blocks. 

We’ll assume that replacement is LRU; in this case, block 0 replaces the 
LRU line, which at that point is line 1. 

Now let’s suppose the cache is 2-way set associative.  This means there 
are two sets, one (set 0) that will hold the even-numbered blocks, and one 
(set 1) that will hold the odd-numbered blocks. 

2-way set-associative 

  0 2 4 0 2 4 6 8 0 

0 0   4   2   6   0 

1   2   0   4   8   

2                   

3                   

 
cold cold cold conflict conflict conflict cold cold capacity 

 
Since only even-numbered blocks are referenced in this trace, they will all 
map to set 0. 

This time, though, there won’t be any hits. 

Classify each of these references as a hit or a particular kind of miss. 

References that would have been hits in a fully associative cache, but are 
misses in a less-associative cache, are conflict misses. 

Finally, let’s look at a direct-mapped cache.  Blocks with numbers 
congruent to 0 mod 4 map to line 0; blocks with numbers congruent to 1 
mod 4 map to line 1, etc. 

Direct mapped 
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  0 2 4 0 2 4 6 8 0 

0 0   4 0   4   8 0 

1                   

2   2     2   6     

3                   

 
cold Cold Cold conflict Hit Conflict cold cold capacity 

 
Classify each of these references as a hit or a particular kind of miss. 

Of the three conflict misses in the set-associative cache, one is a hit here.  
Block 2 is still in the cache the second time it is referenced.  The other two 
are conflict misses in this cache. 

Now, let’s talk about coherence misses. 

Coherence misses can be divided into those caused by true sharing and 
those caused by false sharing (see p. 236 of the Solihin text).  

 False-sharing misses are those caused by having a line size larger 
than one word.  Can you explain? 

 True-sharing misses, on the other hand, occur when  

o a processor writes into a cache line, invalidating a copy of the 
same block in another processors’ cache,  

o after which  
 

How can we attack each of the four kinds of misses? 

 To reduce capacity misses, we can increase cache size 

 To reduce conflict misses, we can increase associativity 

 To reduce cold misses, we can increase line size 

 To reduce coherence misses, we can use an update-based protocol. 

Similarly, context-switch misses can be divided into categories. 
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 Replaced misses are blocks that were replaced while the other 
process(es) were active. 

 Reordered misses are blocks that were shoved so far down the LRU 
stack by the other process(es) that they are replaced soon afterwards 
(when they otherwise would’ve stayed in the cache). 

Which protocol is best?  What cache line size is performs best?  What kind 
of misses predominate? 

Simulations 

Questions like these can be answered by simulation.  Getting the answer 
right is part art and part science.   
 

Parameters need to be chosen for the simulator.  Culler & Singh (1998) 
selected a single-level 4-way set-associative 1 MB cache with 64-byte 
lines. 

The simulation assumes an idealized memory model, which assumes that 
references take constant time.  Why is this not realistic?  
 

The simulated workload consists of  

 six parallel programs (Barnes, LU, Ocean, Radix, Radiosity, 
Raytrace) from the SPLASH-2 suite and  

 one multiprogrammed workload, consisting of mainly serial programs. 

Invalidate vs. update 

with respect to miss rate 

Which is better, an update or an invalidation protocol? 

Let’s look at real programs. 
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Where there are many coherence misses, update performs better. 

If there were many capacity misses, invalidate would be better, because 
update would keep updating dead blocks, and they would occupy space in 
the cache. 
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with respect to bus traffic 

Compare the 

● upgrades in inv. protocol 

with the 

● updates in upd. protocol 

Each of these operations 
produces bus traffic. 

Which are more frequent? 

Updates in an update 
protocol are more prevalent 
than upgrades in an 
invalidation protocol.  

Which protocol causes 
more bus traffic? 

The update protocol 
causes more traffic. 

The main problem is that 
one processor tends to 
write a block multiple 
times before another 
processor reads it. 
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This causes several bus transactions instead of one, as there would be in 
an invalidation protocol. 

Effect of cache line size 

on miss rate 

If we increase the line size, what happens to each of the following classes 
of misses? 

 capacity misses?  down 

 conflict misses?  up 

 true-sharing misses? down 
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 false-sharing misses? up 

If we increase the line size, what happens to bus traffic?   
Increases, because more needs to be brought in for each miss. 

So it is not clear which line size will work best. 
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Results for the first three applications seem to show that which line size is 
best?  64 to 256 bytes 

For the second set of applications, which do not fit in cache, Radix shows a 
greatly increasing number of false-sharing misses with increasing block 
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on bus traffic  

Larger line sizes generate more bus traffic. 
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The results are different than for miss rate—traffic almost always increases 
with increasing line size. 

But address-bus traffic moves in the opposite direction from data-bus 
traffic. 

With this in mind, which line size appears to be best?  32 or 64 

Context-switch misses 

As cache size gets larger, there are fewer uniprocessor (“natural”) cache 
misses. 

But the number of context-switch misses may go up (mcf, soplex) or down 
(namd, perlbench). 

 Why could it go up?   
 

 Why could it go down?   
 

Reordered misses also decline as the cache becomes large.  Why?  
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Physical cache organization 

[Solihin §5.6] An cache is centralized (“united”) if its banks are adjacent on 
the chip. 

What are some advantages of a centralized structure? 

 Uniform access latency 

 Interconnect between the 
cache and the next level 
(e.g., on-chip memory 
controller) is simpler, 
because it can be in one 
place. 

A centralized cache usually uses 
a crossbar (see also p. 167 of the 
text). 

P
ro

ce
ss

o
rs

Memories

Crossbar 
Switch

…

…

 

A cache is distributed if its banks are scattered around the chip. 
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Usually, a portion of the L2 is placed near each L1; this is a tiled 
arrangement. 

 

What are some advantages of a distributed structure? 

 In replication: tiles can simply be duplicated as many times as you 
have cores on a chip 

 In layout: wires are shorter, heat is not centralized. 

Hybrid centralized + distributed structure:  There’s a tradeoff between 
centralized and distributed. 

 A large cache is uniformly slow, especially if it needs to handle 
coherence. 

 A distributed cache requires a lot of interconnections, and routing 
latency is high if the cache is in too many places. 

A compromise is to have 
an L2 cache that is 
distributed, but not as 
distributed as the L1 
caches. 

 
Logical cache organization 

[Solihin §5.7]  Regardless of whether a cache is centralized or distributed, 
there are several options in mapping addresses to tiles. 
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 A processor can be limited to accessing a single tile, the one closest 
to it (private cache configuration). 

o A block in the local cache may also exist in other caches; the 
copies must be kept coherent by a coherence protocol. 

 All of the tiles can form a large logical cache.  The address of a block 
completely determines what tile it is found in (shared 1-tile 
associative). 

o It may require a lot of hops to get from a processor to the 
cache. 

 A block can be mapped to two tiles (shared 2-tile associative). 

o Block numbers are arranged to improve distance locality. 

 Or, a block can be allowed to map to any tile (full tile associativity). 

o What is the upside?   
 

o What is the downside?   
 
 

Another option is a partitioned shared cache organization. 

 Can you tell how many tiles each block can map to?   

 Can you tell how many lines each block can map to?   
 
 

 How does coherence play a role?   

 

Lock Implementations 

[§8.1]  Recall the three kinds of synchronization from Lecture 6: 

 Point-to-point  send() and receive(); wait() and post() 
 Lock 
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 Barrier 

Performance metrics for lock implementations 

 Uncontended latency 

o Time to acquire a lock when there is no contention 

 Traffic 

o Lock acquisition when lock is already locked 
o Lock acquisition when lock is free 
o Lock release  

 Fairness 

o Degree in which a thread can acquire a lock with respect to 
others 

 Storage 

o As a function of # of threads/processors 

The need for atomicity 

This code sequence illustrates the need for atomicity.  Explain. 

void lock (int *lockvar) { 
  while (*lockvar == 1) {} ;  // wait until released 
  *lockvar = 1;               // acquire lock 
}  
 
void unlock (int *lockvar) { 
  *lockvar = 0; 
} 
 
In assembly language, the sequence looks like this:  

lock: ld R1, &lockvar     // R1 = lockvar 
      bnz R1, lock        // jump to lock if R1 != 0 
      sti &lockvar, #1    // lockvar = 1 
      ret                 // return to caller 
unlock: sti  &lockvar, #0 // lockvar = 0 
        ret               // return to caller 

The ld-to-sti sequence must be executed atomically: 
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 The sequence appears to execute in its entirety 
 Multiple sequences are serialized 

Examples of atomic instructions 

 test-and-set Rx, M  

o read the value stored in memory location M, test the value 
against a constant (e.g. 0), and if they match, write the value in 
register Rx to the memory location M. 

 fetch-and-op M 

o read the value stored in memory location M, perform op to it 
(e.g., increment, decrement, addition, subtraction), then store 
the new value to the memory location M.  

 exchange Rx, M 

o atomically exchange (or swap) the value in memory location M 
with the value in register Rx.  

 compare-and-swap Rx, Ry, M 

o compare the value in memory location M with the value in 
register Rx. If they match, write the value in register Ry to M, 
and copy the value in Rx to Ry. 

How to ensure one atomic instruction is executed at a time: 

1. Reserve the bus until done 

o Other atomic instructions cannot get to the bus 

2. Reserve the cache block involved until done 

o Obtain exclusive permission (e.g. “M” in MESI) 

o Reject or delay any invalidation or intervention requests until 
done 

3. Provide “illusion” of atomicity instead  
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o Using load-link/store-conditional (to be discussed later) 

Test and set 

test-and-set can be used like this to implement a lock: 

lock:   t&s R1, &lockvar  // R1 = MEM[&lockvar];  

                          // if (R1==0) MEM[&lockvar]=1  

        bnz R1, lock;     // jump to lock if R1 != 0  

        ret               // return to caller  

unlock: sti &lockvar, #0  // MEM[&lockvar] = 0  

        ret               // return to caller 

What value does lockvar have when the lock is acquired? 1 free? 0 

Here is an example of test-and-set execution.  Describe what it shows. 

 

Thread 1 tries repeatedly to get the lock, and succeeds only after thread 0 
releases it by setting lockvar to 0. 

Let’s look at how a sequence of test-and-sets by three processors plays 
out: 
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Request P1 P2 P3 BusRequest 

Initially – – – – 

P1: t&s M – – BusRdX 

P2: t&s I M – BusRdX 

P3: t&s I I M BusRdX 

P2: t&s I M I BusRdX 

P1: unlock M I I BusRdX 

P2: t&s I M I BusRdX 

P3: t&s I I M BusRdX 

P3: t&s I I M – 

P2: unlock I M I BusRdX 

P3: t&s I I M BusRdX 

P3: unlock I I M – 

How does test-and-set perform on the four metrics listed above? 

 Uncontended latency 
 Fairness 
 Traffic 
 Storage 

Drawbacks of Test&Set Lock (TSL) 

What is the main drawback of test&set locks?  Very high traffic 

 Many coherence transactions occur as processors compete for the 
lock. 

 Other processors that are invalidating the lock slow down the process 
that does have the lock. 
 

Without changing the lock mechanism, how can we diminish this 
overhead? 

 Back off: pause for awhile after a failed acquisition.  Retry later 



 

Lecture 15 Architecture of Parallel Computers 17 

o Back off by too little: still too much contention. 

o Back off by too much: processors are waiting needlessly long. 

 Exponential backoff: Increase the backoff interval exponentially with 
each failure. 

Test and Test&Set Lock (TTSL) 

 Busy-wait with ordinary read operations, not test&set. 

o Cached lock variable will be invalidated when release occurs 

 When value changes (to 0), try to obtain lock with test&set 

o Only one attempter will succeed; others will fail and start testing 
again. 

Let’s compare the code for TSL with TTSL. 

TSL: 

lock:   t&s R1, &lockvar  // R1 = MEM[&lockvar];  

                          // if (R1==0) MEM[&lockvar]=1  

        bnz R1, lock;     // jump to lock if R1 != 0  

        ret               // return to caller  

unlock: sti &lockvar, #0  // MEM[&lockvar] = 0  

        ret               // return to caller 

TTSL: 

 

lock:   ld R1, &lockvar  // R1 = MEM[&lockvar]  

        bnz R1, lock;    // jump to lock if R1 != 0  

        t&s R1, &lockvar // R1 = MEM[&lockvar];  

                         // if (R1==0)MEM[&lockvar]=1  

        bnz R1, lock;    // jump to lock if R1 != 0  

        ret              // return to caller  
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unlock: sti &lockvar, #0 // MEM[&lockvar] = 0  

        ret              // return to caller  

 

 

The lock method now contains two loops.  What would happen if we 
removed the first loop?  Reduces to TSL 
What happens if we remove the second loop?  You get the code that we 
started with, that does enforce synchronization. 

Here’s a trace of a TSL, and then TTSL, execution.  Let’s compare them 
line by line. 

Fill out this table: 

 TSL TTSL 

# BusReads 0 6 

# BusReadXs 9 0 

# BusUpgrs 0 4 

# invalidations 8 5 

 
(What’s the proper way to count invalidations?)   
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TSL: Request P1 P2 P3 BusRequest 

Initially – – – – 

P1: t&s M – – BusRdX 

P2: t&s I M – BusRdX 

P3: t&s I I M BusRdX 

P2: t&s I M I BusRdX 

P1: unlock M I I BusRdX 

P2: t&s I M I BusRdX 

P3: t&s I I M BusRdX 

P3: t&s I I M – 

P2: unlock I M I BusRdX 

P3: t&s I I M BusRdX 

P3: unlock I I M – 

 

TTSL: Request P1 P2 P3 Bus Request 

Initially – – – – 

P1: ld E – - BusRd 

P1: t&s M – – – 

P2: ld S S – BusRd 

P3: ld S S S BusRd 

P2: ld S S S – 

P1: unlock M I I BusUpgr 

P2: ld S S I BusRd 
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TSL vs. TTSL summary 

 Successful lock acquisition: 

o 2 bus transactions in TTSL  

 1 BusRd to intervene with a remotely cached block 

 1 BusUpgr to invalidate all remote copies 

o vs. only 1 in TSL 

 1 BusRdX to invalidate all remote copies   
 

 Failed lock acquisition: 

o 1 bus transaction in TTSL 

 1 BusRd to read a copy 

 then, loop until lock becomes free 

o vs. unlimited with TSL 

 Each attempt generates a BusRdX 
 

LL/SC 

 TTSL is an improvement over TSL. 

 But bus-based locking 

P2: t&s I M I BusUpgr 

P3: ld I S S BusRd 

P3: ld I S S – 

P2: unlock I M I BusUpgr 

P3: ld I S S BusRd 

P3: t&s I I M BusUpgr 

P3: unlock I I M – 
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o has a limited applicability (explain)  
 

o is not scalable with fine-grain locks (explain)  
using any lock ties up the bus, so fine-grain locks have a high 
overhead (when they were used to increase concurrency) 

 Suppose we could lock a cache block instead of a bus … 

o Expensive, must rely on buffering or NACK  
 

 Instead of providing atomicity, can we provide an illusion of atomicity 
instead? 

o This would involve detecting a violation of atomicity. 
o If something “happens to” the value loaded, cancel the store 

(because we must not allow newly stored value to become 
visible to other processors) 

o Go back and repeat all other instructions (load, branch, etc.). 
This can be done with two new instructions: 

 Load Linked/Locked (LL) 

o reads a word from memory, and 
o stores the address in a special LL register 

o The LL register is cleared if anything happens that may break 
atomicity, e.g.,  

 A context switch occurs 
 The block containing the address in the LL register is 

invalidated. 

 Store Conditional (SC) 
o tests whether the address in the LL register matches the store 

address 
o if so, store succeeds: store goes to cache/memory; 
o else, store fails: the store is canceled, 0 is returned. 

 

Here is the code. 

lock: LL R1, &lockvar // R1 = lockvar;  

                      // LINKREG = &lockvar  
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      bnz R1, lock    // jump to lock if R1 != 0       

      add R1, R1, #1  // R1 = 1  

      SC R1, &lockvar // lockvar = R1;  

      beqz R1, lock   // jump to lock if SC fails  

      ret             // return to caller  

 

unlock: sti &lockvar, #0  // lockvar = 0  

        ret              // return to caller  

 

Note that this code, like the TTSL code, consists of two loops.  Compare 
each loop with its TTSL counterpart. 

 The first loop  
 The second loop  

 
 
 

Here is a trace of execution.  Compare it with TTSL.   
 

 Request P1 P2 P3 BusRequest 

Initially – – – – 

P1: LL E – – BusRd 

P1: SC M – – – 

P2: LL S S – BusRd 

P3: LL S S S BusRd 

P2: LL S S S – 

P1: unlock M I I BusUpgr 

P2: LL S S I BusRd 
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P2: SC I M I BusUpgr 

P3: LL I S S BusRd 

P3: LL I S S – 

P2: unlock I M I BusUpgr 

P3: LL I S S BusRd 

P3: SC I I M BusUpgr 

P3: unlock I I M – 

 

 Similar bus traffic 

o Spinning using loads  no bus transactions when the lock is 
not free 

o Successful lock acquisition involves two bus transactions.  
What are they?  BusRd, BusUpgr 

 But a failed SC does not generate a bus transaction (in TTSL, all 
test&sets generate bus transactions). 

o Why don’t SCs fail often?   
The first loop only falls through if the lock is available, so some 
unusual condition has to occur to cause the SC to fail. 

Limitations of LL/SC 

 

 Suppose a lock is highly contended by p threads 
o There are O(p) attempts to acquire and release a lock 
o A single release invalidates O(p) caches, causing O(p) 

subsequent cache misses 
o Hence, each critical section causes O(p2) bus traffic 

 

 Fairness: There is no guarantee that a thread that contends for a lock 
will eventually acquire it. 
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These issues can be addressed by two different kinds of locks. 

Ticket Lock 

 Ensures fairness, but still incurs O(p2) traffic 
 Uses the concept of a “bakery” queue 
 A thread attempting to acquire a lock is given a ticket number 

representing its position in the queue. 
 Lock acquisition order follows the queue order. 

Implementation: 

ticketLock_init(int *next_ticket, int *now_serving) {  

  *now_serving = *next_ticket = 0;  

}  

 

ticketLock_acquire(int *next_ticket, int *now_serving) {  

  my_ticket = fetch_and_inc(next_ticket);  

  while (*now_serving != my_ticket) {};  

}  

 

ticketLock_release(int *next_ticket, int *now_serving) {  

  *now_serving++;  

} 

Trace: 
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Steps next_ticket now_serving 
my_ticket 

P1 P2 P3 

Initially 0 0 – – – 

P1: fetch&inc 1 0 0 – – 

P2: fetch&inc 2 0 0 1 – 

P3: fetch&inc 3 0 0 1 2 

P1:now_serving++ 3 1 0 1 2 

P2:now_serving++ 3 2 0 1 2 

P3:now_serving++ 3 3 0 1 2 

Note that fetch&inc can be implemented with LL/SC.  

Array-Based Queueing Locks 

With a ticket lock, a release still invalidates O(p) caches. 

Idea:  Avoid this by letting each thread wait for a unique variable.  Waiting 
processes poll on different locations in an array of size p. 

Just change now_serving to an array!  (renamed “can_serve”). 

A thread attempting to acquire a lock is given a ticket number in the queue. 

Lock acquisition order follows the queue order 

 Acquire 
o fetch&inc obtains the address on which to spin (the next array 

element). 
o We must ensure that these addresses are in different cache 

lines or memories 
 Release 

o Set next location in array to 1, thus waking up process spinning 
on it. 

Advantages and disadvantages: 

 O(1) traffic per acquire with coherent caches 
o And each release invalidates only one cache. 
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 FIFO ordering, as in ticket lock, ensuring fairness 
 But, O(p) space per lock 
 Good scalability for bus-based machines 

Implementation: 

ABQL_init(int *next_ticket, int *can_serve) {  

  *next_ticket = 0;  

  for (i=1; i<MAXSIZE; i++)  

     can_serve[i] = 0;  

  can_serve[0] = 1;  

} 

ABQL_acquire(int *next_ticket, int *can_serve) {  

  *my_ticket = fetch_and_inc(next_ticket) % MAXSIZE;  

  while (can_serve[*my_ticket] != 1) {};  

}  

ABQL_release(int *next_ticket, int *can_serve) {  

  can_serve[*my_ticket + 1] = 1;  

  can_serve[*my_ticket] = 0; // prepare for next time  

}  

Trace: 

Steps next_ticket can_serve[] 
my_ticket 

P1 P2 P3 

Initially 0 [1, 0, 0, 0] – – – 

P1: f&i 1 [1, 0, 0, 0] 0 – – 

P2: f&i 2 [1, 0, 0, 0] 0 1 – 

P3: f&i 3 [1, 0, 0, 0] 0 1 2 

P1: can_serve[1]=1 3 [0, 1, 0, 0] 0 1 2 

P2: can_serve[2]=1 3 [0, 0, 1, 0] 0 1 2 
P3: can_serve[3]=1 3 [0, 0, 0, 1] 0 1 2 
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Let’s compare array-based queueing locks with ticket locks. 

Fill out this table, assuming that 10 threads are competing: 

 
Ticket locks 

Array-based 
queueing locks 

#of invalidations 9+8+…+1 = 45 9 

# of subsequent 
cache misses 

9 9 

 

Comparison of lock implementations 

Criterion TSL TTSL LL/SC Ticket ABQL 

Uncontested latency Lowest Lower Lower Higher Higher 

1 release max traffic O(p) O(p) O(p) O(p) O(1) 

Wait traffic High Low – – – 

Storage  O(1) O(1) O(1) O(1) O(p) 

Fairness guaranteed? No No No Yes Yes 

 
 

Discussion: 

 Design must balance latency vs. scalability 

o ABQL is not necessarily best. 
o Often LL/SC locks perform very well. 
o Scalable programs rarely use highly-contended locks. 

 Fairness sounds good in theory, but 
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o Must ensure that the current/next lock holder does not suffer 
from context switches or any long delay events 

 

Barriers 

[§8.2]  Like locks, barriers can be implemented in different ways, 
depending upon how important efficiency is. 

 Performance criteria 

o Latency: time spent from reaching the barrier to leaving it 

o Traffic: number of bytes communicated as a function of number 
of processors 

 In current systems, barriers are typically implemented in software 
using locks, flags, counters. 

o Adequate for small systems 
o Not scalable for large systems 

A thread might have this general organization: 

..  
parallel region 
BARRIER 
parallel region 
BARRIER 
.. 

Note that barriers are usually constructed using locks, and thus can use 
any of the lock implementations in the previous lecture. 

A barrier can be implemented like this (first attempt): 

// shared variables used in barrier & their initial values  
int numArrived = 0;  
lock_type barLock = 0;  
int canGo = 0;  
 
// barrier implementation  
void barrier () {  
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   lock(&barLock);  
      if (numArrived == 0)  // first thread sets flag  
         canGo = 0;  
      numArrived++;  
      int myCount = numArrived;  
   unlock(&barLock);  
 
   if (myCount < NUM_THREADS) {  
      while (canGo == 0) {}; // wait for last thread  
   }  
   else { // this is the last thread to arrive  
      numArrived = 0; // reset for next barrier  
      canGo = 1; // release all threads  
 }  
}  

What’s wrong with this?   
 
 
 

Sense-reversal centralized barrier 

[§8.2.1]  The simplest solution to the correctness problem above just 
toggles the barrier …  

 the first time, the threads wait for canGo to become 1;  
 the next time they wait for it to become 0;  
 and then they alternate waiting for it to become 1 and 0 at successive 

barriers. 

Here is the code: 

// variables used in a barrier and their initial values  

int numArrived = 0;  

lock_type barLock = 0;  

int canGo = 0;  

 

// thread-private variable  

int valueToAwait = 0;  
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// barrier implementation  

void barrier () { 

   valueToAwait = 1 - valueToAwait; // toggle it  

   lock(&barLock);  

      numArrived++;  

      int myCount = numArrived;  

   unlock(&barLock);  

 

   if (myCount < NUM_THREADS) {  

      while (canGo != valueToAwait) {}; // await last thread  
   } 

   else  { // this is the last thread to arrive  

      numArrived = 0; // reset for next barrier  

      canGo = valueToAwait; // release all threads  

   } 

}  

How does the traffic at this barrier scale?   
 
 
 

Combining-tree barrier 

[§8.2.2]  A tree-based strategy can be used to reduce contention, similarly 
to the way we used partial sums in Lecture 5. 

 Threads represent the leaf nodes of a tree. 

 The non-leaf nodes are the variables that the threads spin on. 

 Each thread spins on the variable of its immediate parent, which 
constitutes an intermediate barrier. 
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 Once all threads have arrived at the intermediate barrier, one of these 
threads goes on and spins on the variable immediately above. 

 This is repeated until the root is reached.  At this point, the root 
releases all threads by setting a flag.   
 

How does this improve performance?   
 
 

But there is an offsetting cost to a combining tree.  What is it?   
 

[§8.2.3]  In very large supercomputers, however, this technique does not 
suffice.   

The BlueGene/L system has a special barrier network for implementing 
barriers and broadcasting notifications to processors. 

The network contains four independent channels. 

Each level does a global and 
of the signals from the 
levels below it. 

The signals are combined in 
hardware and propagate to 
the top of a combining tree. 

The tree can also be used to do a global interrupt when the entire machine 
or partition must be stopped as soon as possible “for diagnostic purposes.”  

In this case, each level does a global or of the signals from beneath. 

Once the signal propagates to the top of the tree, the resultant notification 
is broadcast down the tree. 

The round-trip latency is only 1.5 μs for a system of 64K nodes. 
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Cache Coherence vs. Memory Consistency 

 Cache coherence 

o deals with ordering of writes to a single memory location 
o only needed for systems with caches 

 Memory consistency 

o deals with ordering of reads/writes to all memory locations 
o needed in systems with or without caches 

Why is a memory consistency model needed?  

[§9.1]  Programmer’s intuition: 

P0: 
S1: datum = 5; 
S2: datumIsReady = 1; 

P1:  
S3: while (!datumIsReady); 
S4: … = datum 

Programmers expect S4 to read the new value of datum (i.e., 5). 

This expectation is violated if— 

 S2 appears to be executed before S1 
 S4 appears to be executed before S3 

Thus, Hypothesis 1: Program-order expectation  

Programmers expect memory accesses in a thread to be executed in the 
same order in which they occur in the source code. 

Not only the executing thread, but all threads, are expected to see them in 
this order. 

P0: 

S1: x = 5; 
S2: xReady = 1; 

P1:  

S3: while  
 (!xReady) {}; 
S4: y = x + 4; 
S5: xyReady = 1; 

P2:  

S6: while  
 (!xyReady) {}; 
S7: z = x * y; 

Let’s say, initially, x = y = z = xReady = xyReady = 0 
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As a programmer, what would you expect to be the value of z at S7?   

This implies that if the new value of x has been propagated to P2, it has 
also been propagated to   

Thus, Hypothesis 2: Atomicity expectation 

A read or write happens instantaneously with respect to all processors. 

How can the atomicity expectation be violated?  

Step 1: New values of x and xReady have been propagated to P1, but 
have not reached P2. 

Step 2: New values of y and xyReady have been propagated to P2 
before x is propagated to P2. 

Step 3: When x is propagated to P2, P2 has already read the old value 
of x, and z has been set to 0. 

 

Is there any other way that a violation of store atomicity can lead to a 
wrong value for z?   
 

What is another “incorrect” value that could be written for z?  Explain how 
this could happen.   

Summary of programmer’s expectations: 

Memory accesses emanating from a processor should be performed in 
program order, and each of them should be performed atomically. 
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These expectations were incorporated in Lamport’s 1979 definition of 
sequential consistency: 

A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each 
individual processor occur in this sequence in the order specified by 
its program.  

Sequentially consistent vs. non-SC outcomes 

Consider these code sequences, with a and b initialized to 0. 

P0: 

S1: a = 1; 
S2: b = 1; 

P1:  

S3: print b; 
S4: print a; 

Note that this program is non-deterministic due to a lack of synchronization. 

Under SC, S1  S2 and S3  S4 are guaranteed 

Assuming SC, what values might possibly be printed for a and b? 

S1, S2, S3, S4  1, 1 

S1, S3, S4, S2  1, 0 

S3, S4, S1, S2  0, 0 

What values for a, b are impossible?  0, 1 

Prove it. 

For a to print as 0, it must be that S4  S1: e.g.,  

For b to print as 1, it must be that S2  S3: e.g.,  

Both of these conditions cannot hold.  Prove it. S1S2, S3S4  So if 
S2S3, then S1S4 

On a non-SC machine, the outcome of a, b = 0, 1 is possible.  What 
statement ordering can produce it?  S2, S3, S4, S1 
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In this case, which of the two SC precedence guarantees (above) is 
violated?  Program order the order between two writes 

What’s a way to get the same result that violates the other precedence 
guarantee?  S4, S1, S2, S3  the order between 2 reads 
 
 

Let’s take another example. 

P0: 

S1: a = 1; 
S2: print b; 

P1:  

S3: b = 1; 
S4: print a; 

Exercise: Assuming that a and b are initialized to 0, 

 what values can be printed under SC? 
 what values are impossible to print under SC? 
 prove that the impossible results can only occur if SC is violated. 

Answer:  Note that the program is non-deterministic due to a lack of 
synchronization. 

With SC, S1  S2 and S3  S4 are guaranteed 

S1, S2, S3, S4  1, 0 

S1, S3, S2, S4  1, 1 
S3, S4, S1, S2  0, 1 
 
 
 
 
 
 
 
 
 
 
On a nondeterministic machine, the outcome a, b = 0, 0 is possible. 
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 S4, S1, S2, S3 

o In this case, S3  S4 is violated 

 S2, S3, S4, S1 

o In this case, S1  S2 is violated 

Both of the previous examples are non-deterministic. 

Non-deterministic codes are notoriously hard to debug. 

But non-determinism may have legitimate uses.  See Code 3.16 (ocean-
current simulation) and 3.18 (smoothing filter for grayscale image). 

So, does preserving ordering of memory accesses matter? 

 Probably not if non-determinism is intentional 

 Otherwise, yes, because: 

o Helps keep programmers sane during debugging. 

o Even properly synchronized programs need ordering for the 
synchronization to work properly. 

Building a SC system 

[§9.2]  Which of the two hypotheses (expectations) can be guaranteed by 
software?  Program order 

 Ensure that compiler does not reorder memory accesses; 
 Declare critical variables as volatile (to avoid register allocation, code 

elimination, etc.) 

What hypothesis needs to be maintained by hardware?  Atomicity 

 Execute one memory access one at a time, in program order.  One 
access needs to be complete before the next can start. 

 In the processor pipeline, memory accesses can be overlapped or 
reordered. 
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o But they must go to the cache in program order. 

o A load is complete when the block has been read from the 
cache. 

o A store is complete when an invalidation has been posted (on a 
bus) or acknowledged (see details in §9.2.1). 

Example of SC Ordering 

 S1: ld R1, A  S1 must complete before S2, 
 S2: ld R2, B  S2 before S3, etc. 
 S3: st R3, C  
 S4: st R4, D  
 S5: ld R5, D  

Implications 

 If S1 is a cache miss but S2 is a cache hit, S2 still must wait until S1 
is completed. Same with S3 and S4. 

 S4 must wait for S3 to complete, even though stores are often retired 
early. 

 S5 must wait for S4 to complete, even though they are to the same 
location! 

Improving SC performance 

Via prefetching 

We still have to obey ordering, but we can make each load/store complete 
faster, e.g. by converting cache misses into cache hits: 

 Employ load prefetching  

o As soon as address is known/predictable,  

 fetch before previous loads have completed,  

o issue a prefetch request to fetch the block in Exclusive/Shared 
state 

 Employ store prefetching 
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o As soon as address is known/predictable, issue a prefetch 
request to fetch the block in Modified state 

But this is not a perfect strategy.  Why not? 

 Prefetch too late   

 Prefetch too early   

Via speculation 

We can violate ordering, but undo the effect if atomicity is violated. 

 The ability to undo execution and re-execute is already present in out-of-
order processors (as covered in ECE 563). 

o So, we only need to determine when atomicity has been violated. 

 Consider load A, followed by load B 

o In strict SC, load B must wait until load A completes 

o With speculation, load B accesses the cache anyway; the 
processor just marks load B as speculative 

o If B is invalidated before it “retires,” atomicity has been violated. 

o In this case, the architecture cancels B and re-executes it. 

Store speculation is harder, because stores cannot be canceled.  Hence, 
only load speculation is employed. 

 


