
2/8/2020

1

CSC/ECE 506: Architecture of Parallel Computers

Course OverviewCourse Overview

Lecture 1

(Chapter 1)

Lecture 1

(Chapter 1)

1

http://go.ncsu.edu/ece506

CSC/ECE 506: Architecture of Parallel Computers

Learning Objectives

1. Understand the problem of race conditions in
concurrent systems,

2. Learn how to decompose a program for parallel
execution,

3. Be able to write simple parallel programs in the
important programming models,

4. Understand the operation of common cache-
coherence algorithms, both bus-based and
network-based, and

5. Learn about common memory-consistency models,
and appreciate the advantages and disadvantages
of each.

2

CSC/ECE 506: Architecture of Parallel Computers

Textbook

3

CSC/ECE 506: Architecture of Parallel Computers

“Attendance” requirement

4

• You are required to “attend” 20 of the 27 classes.
• “Attend” Respond intelligently to ½ of Google forms

• Each one not passed –0.5% on semester average.

• You are required to pass 25 of 26 daily quizzes,
plus the Syllabus Quiz. First one due Wednesday!

• “Passed” score of 80%

• Each one not passed –0.5% on semester average.

• You are required to team with 3 students.
• Each teammate you are lacking

 –0.5% on semester average

CSC/ECE 506: Architecture of Parallel Computers

Grading

5

CSC/ECE 506: Architecture of Parallel Computers

Homework

• 4 programs

• 3 problem sets

• 1 peer-reviewed madeup problem

6

1

2

3

4

5

6

2/8/2020

2

CSC/ECE 506: Architecture of Parallel Computers

Tests

• Two 120-minute midterm tests, likely in the
evening (10%, 15% of grade)

• 180-minute final (25% of grade)

• Open book, open notes

• No computers or communication devices

7

CSC/ECE 506: Architecture of Parallel Computers

Extra Credit

• All activities for which extra credit is given
must help other students to learn the course
material.

• Examples
– Contributing useful practice problems via Peerwise

– Doing extra peer reviews of madeup problems submitted to
Expertiza

– Suggesting Web or print resources that will help other students
write useful madeup problems

– Making outstanding contributions to answering other
students' questions on Piazza

8

CSC/ECE 506: Architecture of Parallel Computers

The Staff

• Instructor

9

CSC/ECE 506: Architecture of Parallel Computers

10

CSC/ECE 506: Architecture of Parallel Computers

TA

Zhengyi Qiu
11

CSC/ECE 506: Architecture of Parallel Computers12

Outline for Lecture 1

 Introduction

 Types of parallelism

 Architectural trends

 Why parallel computers?

 Scope of CSC/ECE 506

7

8

9

10

11

12

2/8/2020

3

CSC/ECE 506: Architecture of Parallel Computers13

Key Points

• More and more components can be integrated on a single
chip

• Speed of integration tracks Moore’s law, doubling every 18–
24 months.

• Exercise: Look up how the number of transistors per chip has
changed, esp. since 2006. Submit here.

• Until recently, performance tracked speed of integration

• At the architectural level, two techniques facilitated this:
– Cache memory
– Instruction-level parallelism

• Performance gain from uniprocessor system was high
enough that multiprocessor systems were not viable for most
uses.

CSC/ECE 506: Architecture of Parallel Computers14

Illustration

• 100-processor system with perfect speedup

• Compared to a single processor system
– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few
years!

• Even worse
– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable

CSC/ECE 506: Architecture of Parallel Computers15

How did uniprocessor performance grow so fast?

• ≈ half from circuit improvement (smaller
transistors, faster clock, etc.)

• ≈ half from architecture/organization:

• Instruction-level parallelism (ILP)
– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out-of-order execution

• Memory hierarchy (caches)
– Exploit spatial and temporal locality

– Multiple cache levels

CSC/ECE 506: Architecture of Parallel Computers16

But uniprocessor perf. growth has stalled

 Source of performance growth had been ILP
 Parallel execution of independent instructions from a

single thread

 But ILP improvement has slowed abruptly
 Memory wall: Processor speed grows at 55%/year,

memory speed grows at 7% per year
 ILP wall: achieving higher ILP requires quadratically

increasing complexity (and power)

 Power efficiency
 Thermal packaging limit vs. cost

CSC/ECE 506: Architecture of Parallel Computers17

• Instruction level (cf. ECE 563)

– Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

CSC/ECE 506: Architecture of Parallel Computers18

Types of parallelism, cont.

• Superscalar/VLIW

• Original:

• Schedule as:

+ Moderate degree of parallelism

– Requires fast communication (register level)

LD F0, 34(R2)

ADDD F4, F0, F2

LD F7, 45(R3)

ADDD F8, F7, F6

LD F0, 34(R2) | LD F7, 45(R3)

ADDD F4, F0, F2 | ADDD F8, F0, F6

13

14

15

16

17

18

2/8/2020

4

CSC/ECE 506: Architecture of Parallel Computers19

Why ILP is slowing

• Branch-prediction accuracy is already > 90%
– Hard to improve it even more

• Number of pipeline stages is already deep (≈ 20–30
stages)
– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Processor width is already high
– Increase the width quadratically increase the complexity

• Cache size
– Effective, but also shows diminishing returns

– In general, size must be doubled to reduce miss rate by half.

CSC/ECE 506: Architecture of Parallel Computers20

Current trends: multicore and manycore

Aspect Intel
Clovertown

AMD
Barcelona

IBM Cell

cores 4 4 8+1

Clock
frequency

2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO
Superscalar

OOO
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2
(private),
2MB L3 (sh’d)

256KB local
store

Chip power 120 watts 95 watts 100 watts

Exercise: Browse the Web (or the textbook) for information on more
recent processors, and for each processor, fill out this form. (You can view
the submissions.)

CSC/ECE 506: Architecture of Parallel Computers21

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers22

Loop-level parallelism

• Sometimes each iteration can be performed
independently.

• Sometimes iterations cannot be performed independently
 no loop-level parallelism.

+ Very high parallelism > 1K
+ Often easy to achieve load balance
– Some loops are not parallel
– Some apps do not have many loops

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

for (i=0; i<8; i++)
a[i] = b[i] + a[i-1];

CSC/ECE 506: Architecture of Parallel Computers23

Task-level parallelism

• Arbitrary code segments in a single program

• Across loops:

• Subroutines:

• Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity low overheads, communication

– Low degree of parallelism

– Hard to balance

…
for (i=0; i<n; i++)

sum = sum + a[i];
for (i=0; i<n; i++)

prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;

CSC/ECE 506: Architecture of Parallel Computers24

Program-level parallelism

• Various independent programs execute together

• gmake:
– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ No communication

– Hard to balance

– Few opportunities

19

20

21

22

23

24

2/8/2020

5

CSC/ECE 506: Architecture of Parallel Computers25

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared-memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers

Taxonomy of parallel computers

The Flynn taxonomy

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine
– Only one instruction fetch stream

– Some not-too-ancient laptops or desktops

Control
unit

Instruction

stream

Data

stream
ALU

CSC/ECE 506: Architecture of Parallel Computers27

SIMD

• Examples: Vector processors, SIMD extensions (MMX),
GPUs

• A single instruction operates on multiple data items.

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

SISD:
for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD:
a = b + c; // vector addition

CSC/ECE 506: Architecture of Parallel Computers28

MISD

• Example: CMU Warp

• Systolic arrays

Control
unit 2

ALU 2

ALU 1

ALU

n

Instruction
stream 1

stream 2

stream

n

Data
stream

Instruction

Instruction

Control
unit 1

Control
unit n

CSC/ECE 506: Architecture of Parallel Computers29

Systolic arrays (contd.)

– Practical realizations (e.g. iWARP) use quite general processors
• Enable variety of algorithms on same hardware

– But dedicated interconnect channels
• Data transfer directly from register to register across channel

– Specialized, and same problems as SIMD
• General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 ´ x(i) + w2 ´ x(i + 1) + w3 ´ x(i + 2) + w4 ´ x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w ´ xin
x = xin

Example: Systolic array for 1-D convolution

CSC/ECE 506: Architecture of Parallel Computers30

MIMD

• Independent processors connected together to
form a multiprocessor system.

• Physical organization
– Determines which memory hierarchy level is shared

• Programming abstraction
– Shared Memory:

• on a chip: Chip Multiprocessor (CMP)

• Interconnected by a bus: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared Memory
(DSM)

– Distributed Memory:
• Clusters, Grid

25

26

27

28

29

30

2/8/2020

6

CSC/ECE 506: Architecture of Parallel Computers31

MIMD Physical Organization

P

caches

M

P
Shared-cache architecture:
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun

Niagara, Pentium D, etc.
- Implies shared-memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access)
Shared Memory :
- Pentium Pro Quad, Sun Enterprise,

etc.
- What interconnection network?

- Bus
- Multistage
- Crossbar
- etc.

- Implies shared-memory hardware

CSC/ECE 506: Architecture of Parallel Computers32

MIMD Physical Organization (2)

P

caches

M
…

Network

P

caches

M

NUMA (Non-Uniform Memory Access)
Shared Memory :
- SGI Origin, Altix, IBM p690,

AMD Hammer-based system
- What interconnection network?

- Crossbar
- Mesh
- Hypercube
- etc.

CSC/ECE 506: Architecture of Parallel Computers33

MIMD Physical Organization (3)

P

caches

M

Network

P

caches

M

I/O I/O

Distributed System/Memory:
- Also called clusters, grid

CSC/ECE 506: Architecture of Parallel Computers34

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– MIMD

• Shared memory machines (SMP and DSM)

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers35

Programming models: shared memory

• Shared Memory / Shared Address Space:
– Each processor can see the entire memory

– Programming model = thread programming in
uniprocessor systems

P P P …

Shared M

CSC/ECE 506: Architecture of Parallel Computers

36

Programming models: message-passing

• Distributed Memory / Message Passing / Multiple
Address Space:
– A processor can directly access only its local memory.

– All communication happens by explicit messages.

P

M

P

M

P

M

P

M

31

32

33

34

35

36

2/8/2020

7

CSC/ECE 506: Architecture of Parallel Computers37

Programming models: data parallel

• Programming model
– Operations performed in parallel on each element of

data structure
– Logically single thread of control, performs sequential

or parallel steps
– Conceptually, a processor associated with each data

element

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

CSC/ECE 506: Architecture of Parallel Computers

Data parallel (cont.)

• Architectural model
– Array of many simple, cheap processing elements

(PEs) each with little memory
• Processing elements don’t sequence through instructions

– PEs are attached to a control processor that issues
instructions

– Specialized and general communication, cheap global
synchronization

• Original motivation
– Matches simple differential equation solvers
– Centralize high cost of instruction fetch/sequencing

38

CSC/ECE 506: Architecture of Parallel Computers39

Top 500 supercomputers

• http://www.top500.org

• Let’s look at the Earth Simulator, #1 in 2004

• Hardware:
– 5,120 (640 8-way nodes) 500 MHz NEC CPUs

– 8 GFLOPS per CPU (41 TFLOPS total)
• 30s TFLOPS sustained performance!

– 10 TB total memory

• Now (Nov. 2019)
– Summit, at ORNL, is #1

– 2.4 million cores

– 2.8 PB total memory

– 148.6 TFLOP/s max performance (Rmax)

– 200.8 TFLOP/s peak performance (Rpeak)

CSC/ECE 506: Architecture of Parallel Computers

Exploring the Top 500 list …

• Lists > Top500 > November 2019
– See a list of the top systems

• Statistics > List Statistics > Vendors
– Lenovo is top vendor by far

• Statistics > List Statistics > Architecture
– Clusters are overwhelmingly dominant

• Statistics > Developm’t over Time > Countries

– China comes from nowhere to lead in # of
systems

– But US still leads in performance share

40

CSC/ECE 506: Architecture of Parallel Computers41

Exercise

• Go to http://www.top500.org and look at the Lists and
Statistics menus in the top menu bar.

• From the Statistics dropdown,
– choose either List Statistics or Development over time,

– then select one of the statistics, e.g., Vendors, Processor
Architecture, and

– examine what kind of systems are prevalent. Then do the same
for earlier lists, and report on the trend.

• You can go all the way back to the first list from 1993.

• Submit your results here.

37

38

39

40

41

Lecture 2 Architecture of Parallel Computers 1

Three parallel-programming models

• Shared-memory programming is like using a “bulletin board” where
you can communicate with colleagues.

• Message-passing is like communicating via e-mail or telephone calls.
There is a well defined event when a message is sent or received.

• Data-parallel programming is a “regimented” form of cooperation.
Many processors perform an action separately on different sets of
data, then exchange information globally before continuing en masse.

User-level communication primitives are provided to realize the
programming model

• There is a mapping between language primitives of the programming
model and these primitives

These primitives are supported directly by hardware, or via OS, or via user
software.

In the early days, the kind of programming model that could be used was
closely tied to the architecture.

Today—

• Compilers and software play important roles as bridges
• Technology trends exert a strong influence

The result is convergence in organizational structure, and relatively simple,
general-purpose communication primitives.

A shared address space

In the shared-memory model, processes can access the same memory
locations.

Communication occurs implicitly as result of loads and stores

This is convenient.

• Wide range of granularities supported.

Lecture 2 Architecture of Parallel Computers 2

• Similar programming model to time-sharing on uniprocessors, except
that processes run on different processors

• Wide range of scale: few to hundreds of processors

Good throughput on multiprogrammed workloads.

This is popularly known as the shared memory model, even though
memory may be physically distributed among processors.

The shared-memory model

A process is a virtual address space plus one or more threads of control.

Portions of the address spaces of tasks are shared.

What does the private region of the virtual address space usually contain?
Stack and private data, incl. register save areas and control flags.

Conventional memory operations can be used for communication.

Special atomic operations are used for synchronization.

The interconnection structure

P 1
P 2

P n

P
0

Load

P
2

Virtual address spaces for a collection of
processes com-municating via shared
addresses

Machine physical
address space

Shared portion

of address

space
Private portion

of address space

Common physical

addresses

Store

private

P
1 private

P
0 private

P
n private

Lecture 2 Architecture of Parallel Computers 3

The interconnect in a shared-memory
multiprocessor can take several forms.

It may be a crossbar switch.

Each processor has a direct connection
to each memory and I/O controller.

Bandwidth scales with the number of
processors.

P

P

C

C

I/O

I/O

M MM M

Unfortunately, cost scales with the square of the number of processors.

This is sometimes called the “mainframe approach.”

At the other end of the spectrum is a shared-bus architecture.

PP

C

I/O

M MC

I/O

$ $

All processors, memories, and I/O controllers are connected to the bus.

Such a multiprocessor is called a symmetric multiprocessor (SMP).

What are some advantages and disadvantages of organizing a
multiprocessor this way? List them here.

•
•
•

A compromise between these two organizations is a multistage
interconnection network.

Lecture 2 Architecture of Parallel Computers 4

The processors are on one
side, and the memories and
controllers are on the other.

Each memory reference has
to traverse the stages of the
network.

Why is this called a
compromise between the
other two strategies?

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2

Like a bus, it doesn’t require a connection from each processor to each
memory. Like a crossbar, it can handle multiple accesses simultaneously.
But, it has more connections than a bus, and can handle fewer
simultaneous accesses than a crossbar.

For small configurations, however, a shared bus is quite viable.

Message passing

In a message-passing architecture, a complete computer, including the I/O,
is used as a building block.

Communication is via explicit I/O operations, instead of loads and stores.

• A program can directly access only its private address space (in local
memory).

• It communicates via explicit messages (send and receive).

It is like a network of workstations (clusters), but more tightly integrated.

Easier to build than a scalable shared-memory machine.

Lecture 2 Architecture of Parallel Computers 5

Send-receive primitives

The programming model is further removed from basic hardware
operations.

Library or OS intervention is required to do communication.

• send specifies a buffer to be transmitted, and the receiving process.

• receive specifies sending process, and a storage area to receive into.

• A memory-to-memory copy is performed, from the address space of
one process to the address space of the other.

• There are several possible variants, including whether send
completes—

when the receive has been executed, synchronous

when the send buffer is available for reuse, or

when the message has been sent. asynchronous

• Similarly, a receive can wait for a matching send to execute, or simply
fail if one has not occurred.

There are many overheads: copying, buffer management, protection. Let’s
describe each of these. Submit your descriptions here.

• Why is there an overhead to copying, compared to a share-memory
machine?

Local
process
address
space

Local
process
address
space

Address X

Address Y

Process P Process Q

send(X, Q)

receive(Y, P)

match!

Lecture 2 Architecture of Parallel Computers 6

• Describe the overhead of buffer management.

• What is the overhead for protection?

Here’s an example from the textbook of the difference between shared address-space and message-
passing programming.

A shared-memory system uses the thread model:

int a, b, signal;

…

void dosum(<args>) {

 while (signal == 0) {}; // wait until instructed to work

 printf(“child thread> sum is %d”, a + b);

 signal = 0; // my work is done

}

void main() {

 a = 5, b = 3;

 signal = 0;

 clone(&dosum,…) // spawn child thread

 signal = 1; // tell child to work

 while (signal == 1) {} // wait until child done

 printf(“all done, exiting\n”);

}

Lecture 2 Architecture of Parallel Computers 7

Message-passing uses the process model:

int a, b;

…

void dosum() {

 recvMsg(mainID, &a, &b);

 printf(“child process> sum is %d”, a + b);

}

void main() {

 if (fork() == 0) // I am the child process

 dosum();

 else { // I am the parent process

 a = 5, b = 3;

 sendMsg(childID, a, b);

 wait(childID);

 printf(“all done, exiting\n”);

 }

}

Here’s the relevant section of documentation on the fork() function:

“Upon successful completion, fork() and fork1() return 0 to the child process and return the
process ID of the child process to the parent process.”

Lecture 2 Architecture of Parallel Computers 8

Interconnection topologies

Early message-passing designs provided hardware primitives that were
very close to the message-passing model.

Each node was connected to a
fixed set of neighbors in a
regular pattern by point-to-point
links that behaved as FIFOs.

A common design was a
hypercube, which had 2 n
links per node, where n was the
number of dimensions.

The diagram shows a 3D cube.

One problem with hypercubes
was that they were difficult to
lay out on silicon.

000001

010011

100

110

101

111

Because of that, 2D meshes eventually supplanted hypercubes.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

Here is an example
of a 16-node mesh.
Note that the last
element in one row is
connected to the first
element in the next.

If the last element in
each row were
connected to the first
element in the same
row, we would have a
torus instead.

Early message-passing machines used a FIFO on each link.

Lecture 2 Architecture of Parallel Computers 9

• Thus, software sends were implemented as synchronous hardware
operations at each node.

 What was the problem with this, for multi-hop messages? Interrupts
are required at intermediate nodes.

• Synchronous ops were replaced by DMA, enabling non-blocking
operations

– A DMA device is a special-purpose controller that transfers data between memory and an I/O
device without processor intervention.

– Messages were buffered by the message layer of the system at the destination until a receive
took place.

– When a receive took place, the data was copied into the address space of the receiving process.

The diminishing role of topology.

• With store-and-forward routing, topology was important.

 Parallel algorithms were often changed to conform to the topology of
the machine on which they would be run.

• Introduction of pipelined (“wormhole”) routing made topology less
important.

In current machines, it makes less difference how far the data travels.

This simplifies programming; cost of interprocessor communication is
essentially independent of which processor is receiving the data.

Toward architectural convergence

In 1990, there was a clear distinction between message-passing and
shared-memory machines. Today, there isn’t a distinct boundary.

• Message-passing operations are supported on most shared-memory
machines.

• A shared virtual address space can be constructed on a message-
passing machine, by sharing pages between processors.

° When a missing page is accessed, a page fault occurs.

Lecture 2 Architecture of Parallel Computers 10

° The OS fetches the page from the remote node via message-
passing.

At the machine-organization level, the designs have converged too.

The block diagrams for shared-memory and message-passing machines
look essentially like this:

In shared memory, the network interface
is integrated with the memory controller.

It initiates a transaction to access memory
at a remote node.

In message-passing, the network interface
is essentially an I/O device.

What does Solihin say about the ease of
writing shared-memory and message-passing programs on these
architectures?

 Which model is easier to program for initially?

 Why doesn’t it make much difference in the long run?

The limits of parallelism: Amdahl’s law

Speedup is defined as

 time for serial execution
time for parallel execution

or, more precisely, as

time for serial execution of best serial algorithm
 time for parallel execution of our algorithm

Give two reasons why it is better to define it the second way than the first.

 Bad algorithms often have good speedup.

M M M

Network

P

$

P

$

P

$

Lecture 2 Architecture of Parallel Computers 11

 Synchronization overhead … one thread needs to wait until another
thread arrives at a certain point.

 Communication overhead … message-passing is not instantaneous.

 Load imbalance … some threads may have work to do than others,
and the fast ones need to wait for the slow ones.

 Serial programs don’t have to use thread-safe libraries, and that
helps them run faster.

[§4.3.1] If some portions of the problem don’t have much concurrency, the
speedup on those portions will be low, lowering the average speedup of the
whole program.

Exercise: Submit your answers to the questions below.

Suppose that a program is composed of a serial phase and a parallel
phase.

 The whole program runs for 1 time unit.

 The serial phase runs for time s, and the parallel phase for time
1s.

Then regardless of how many processors N are used, the execution time of
the program will be at least s

and the speedup will be no more than 1/s. This is known as Amdahl’s law.

For example, if 25% of the program’s execution time is serial, then
regardless of how many processors are used, we can achieve a speedup
of no more than 4.

Efficiency is defined as

 speedup

number of processors

 Let us normalize computation time so that

Lecture 2 Architecture of Parallel Computers 12

• the serial phase takes time 1, and
• the parallel phase takes time p if run on a single processor.

Then if run on a machine with N processors, the parallel phase takes p/N.

Let be the ratio of serial time to total execution time. Thus

1

1 p/N

N
N p

 .

For large N, approaches 1, so efficiency approaches 0.

Does it help to add processors? No …

Gustafson’s law: But this is a pessimistic way of looking at the situation.

In 1988, Gustafson et al. noted that as computers become more powerful,
people run larger and larger programs.

Therefore, as N increases, p tends to increase too. Thus, the fraction of
time 1– does not necessarily shrink with increasing N, and efficiency
remains reasonable.

There may be a maximum to the amount of speedup for a given problem
size, but since the problem is “scaled” to match the processing power of the
computer, there is no clear maximum to “scaled speedup.”

Gustafson’s law states that any sufficiently large problem can be efficiently parallelized.

Lecture 2 Architecture of Parallel Computers 13

Shared-Memory Parallel Programming

[§3.1] Solihin identifies several
steps in parallel programming.

The first step is identifying parallel
tasks. Can you give an example?

The next step is identifying
variable scopes. What does this
mean?

The next step is grouping tasks
into threads. What factors need
to be taken into account to do
this?

Then threads must be
synchronized. How have we
seen this done in the last lecture?

What considerations are important in mapping threads to processors?

Solihin says that there are three levels of parallelism:

 program level
 algorithm level
 code level

Identifying loop-level parallelism

[§3.2] Goal: given a code, without knowledge of the algorithm, find parallel
tasks.

Focus on loop-dependence analysis.

Notations:

 S is a statement in the source code

Lecture 2 Architecture of Parallel Computers 14

 S[i, j, …] denotes a statement in the loop iteration [i, j, …]

 “S1 then S2” means that S1 happens before S2

 If S1 then S2:

S1 T S2 denotes true dependence, i.e., S1 writes to a location
that is read by S2 (RAW hazard)

S1 A S2 denotes anti-dependence, i.e., S1 reads a location
written by S2 (WAR hazard)

S1 O S2 denotes output dependence, i.e., S1 writes to the same
location written by S2 (WAW hazard)

Example:

S1: x = 2;
S2: y = x;
S3: y = x + 4;
S4: x = y;

Exercise: Identify the dependences in the above code.

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across iterations; i.e.,
if the loop is removed, the dependence no longer exists.

Loop-independent dependence: dependence exists within an iteration; i.e.,
if the loop is removed, the dependence still exists.

Example:

Lecture 2 Architecture of Parallel Computers 15

S1[i] T S1[i+1]: loop-carried

S1[i] T S2[i]: loop-independent

S3[i,j] T S3[i,j+1]:

 loop-carried on for j loop

 no loop-carried dependence in for
i loop

S4[i,j] T S4[i+1,j]:

 no loop-carried dependence in for
j loop

 loop-carried on for i loop

Iteration-space Traversal Graph
(ITG)

[§3.2.1] The ITG shows
graphically the order of traversal
in the iteration space. This is

sometimes called the happens-before relationship. In an ITG,

 A node represents a point in the iteration space

 A directed edge indicates the next point that will be encountered after
the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;

 S2: b[i] = a[i];

}

for (i=1; i<n; i++)

 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)

 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)

 for (j=1; j<4; j++)

 S3: a[i][j] = a[i][j-1] + 1;

Lecture 2 Architecture of Parallel Computers 16

Loop-carried Dependence Graph (LDG)

 LDG shows the true/anti/output dependence relationship graphically.

 A node is a point in the iteration space.

 A directed edge represents the dependence.

Example:

i

j

1

2

3

3 2 1

for (i=1; i<4; i++)

 for (j=1; j<4; j++)

 S3: a[i][j] = a[i][j-1] + 1;

Lecture 2 Architecture of Parallel Computers 17

Another example:

 Draw the ITG

 List all the dependence relationships

Note that there are two “loop nests” in the code.

 The first involves S1.
 The other involves S2 and S3.

1

2

3

3 2 1

i

j

T

T

T T

T

T

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

Lecture 2 Architecture of Parallel Computers 18

What do we know about the ITG for these nested loops?

Dependence relationships for Loop Nest 1

 True dependences:

o S1[i,j] T S1[i,j+1]
o S1[i,j] T S1[i+1,j]

 Output dependences:

o None

 Anti-dependences:

o S1[i,j] A S1[i+1,j]
o S1[i,j] A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

Lecture 2 Architecture of Parallel Computers 19

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

 True dependences:

o S2[i,j] T S3[i,j+1]

 Output dependences:

o None

 Anti-dependences:

o S2[i,j] A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each

edge represents

both true and

anti-dependences

Lecture 2 Architecture of Parallel Computers 20

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Exercise: Consider this code sequence.

for (i = 3; i < n; i++) {
for (j = 0; j < n - 3; j++) {

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];
S2: B[i][j] = A[i][j] / 2;

}
}

List the dependences, and say whether they are loop independent or loop
carried. Then draw the ITG and LDG (you don’t need to submit these).

Finding parallel tasks across iterations

[§3.2.2] Analyze loop-carried dependences:

i

j

1

2

n

n 2 1 . . .

. . .

Note: each

edge represents

only true dependences

Lecture 2 Architecture of Parallel Computers 21

 Dependences must be enforced (especially true dependences; other
dependences can be removed by privatization)

 There are opportunities for parallelism when some dependences are
not present.

Example 1

LDG:

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

for (i=2; i<=n; i++)

 S: a[i] = a[i-2];

for (i=2; i<=n; i+=2)

 S: a[i] = a[i-2];

for (i=3; i<=n; i+=2)

Lecture 2 Architecture of Parallel Computers 22

Example 2

LDG

How many parallel tasks are there here? n, one per iteration of the i loop.

Example 3

LDG

Identify which nodes are not dependent on each other

i

j

1

2

n

n 2 1 . . .

. . .

for (i=0; i<n; i++)

 for (j=0; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];
j

1

2

n

n 2 1 . .
.

Note: each

edge represents

both true, and

Lecture 2 Architecture of Parallel Computers 23

In each anti-diagonal, the nodes are independent of each other

We
need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do
 Calculate the number of points in the current anti-diagonal
 for_all points in the current anti-diagonal do
 Compute the value of the current point in the matrix

Parallelize the loops highlighted above.

i

1

2

n

n 2 1 ...
.

...

Note: each

edge represents

both true, and

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals

 if (i <= n) {

 points = i; // number of points in anti-diag

 row = i; // first pt (row,col) in anti-diag

 col = 1; // note that row+col = i+1 always

 }

 else {

 points = 2*n – i;

 row = n;

 col = i-n+1; // note that row+col = i+1 always

 }

Lecture 2 Architecture of Parallel Computers 24

DOACROSS Parallelism

[§3.2.3] Suppose we have this code:

Can we execute anything in
parallel?

Well, we can’t run the
iterations of the for loop in parallel, because …

S[i] T S[i+1] (There is a loop-carried dependence.)

But, notice that the b[i]*c[i] part has no loop-carried dependence.

This suggests breaking up the loop into two:

The first loop is ||izable.
The second is not.

Execution time: N(TS1+TS2)

What is a disadvantage of this
approach? Storage o’head.

Here’s how to solve this
problem:

What is the execution time now?
TS1 + NTS2

for (i=1; i<=N; i++) {

 S1: temp[i] = b[i] * c[i];

}

for (i=1; i<=N; i++) {

 S2: a[i] = a[i-1] + temp[i];

}

post(0);

for (i=1; i<=N; i++) {

 S1: temp = b[i] * c[i];

 wait(i-1);

 S2: a[i] = a[i-1] + temp;

 post(i);

}

for (i=1; i<=N; i++) {

 S: a[i] = a[i-1] + b[i] * c[i];

}

Lecture 2 Architecture of Parallel Computers 25

Function parallelism

 [§3.2.4] Identify dependences in a loop body.

 If there are independent statements, can split/distribute the loops.

Example:

Loop-carried dependences:

Loop-indep. dependences:

Note that S4 has no
dependences with other
statements

After loop distribution:

Each loop is a parallel task.

This is called function
parallelism.

It can be distinguished from
data parallelism, which we saw
in DOALL and DOACROSS.

Further transformations can be
performed (see p. 44 of text).

 “S1[i] A S2[i+1]” implies
that S2 at iteration i+1 must be
executed after S1 at iteration i.

Hence, the dependence is not violated if all S2s execute after all S1s.

Characteristics of function parallelism:

 Only gives modest ||ism, does not grow with input size.

 Difficult to balance the load

Can use function parallelism along with data parallelism when data
parallelism is limited.

for (i=0; i<n; i++) {

 S1: a[i] = b[i+1] * a[i-1];

 S2: b[i] = b[i] * coef;

 S3: c[i] = 0.5 * (c[i] + a[i]);

 S4: d[i] = d[i-1] * d[i];

}

for (i=0; i<n; i++) {

 S1: a[i] = b[i+1] * a[i-1];

 S2: b[i] = b[i] * coef;

 S3: c[i] = 0.5 * (c[i] + a[i]);

}

for (i=0; i<n; i++) {

 S4: d[i] = d[i-1] * d[i];

}

Lecture 2 Architecture of Parallel Computers 26

DOPIPE Parallelism

[§3.2.5] Another strategy for loop-carried dependences is pipelining the
statements in the loop.

Consider this situation:

Loop-carried dependences:

Loop-indep. dependences:

To parallelize, we just need to
make sure the two statements are
executed in sync:

Question: What’s the difference between
DOACROSS and DOPIPE?

Determining variable scope

[§3.4] This step is specific to the shared-memory programming model. For each variable, we need to
decide how it is used. There are three possibilities:

 Read-only: variable is only read by multiple tasks

 R/W non-conflicting: variable is read, written, or both by only one task

 R/W conflicting: variable is written by one task and may be read by another

for (i=2; i<=N; i++) {

 S1: a[i] = a[i-1] + b[i];

 S2: c[i] = c[i] + a[i];

}

for (i=2; i<=N; i++) {

 a[i] = a[i-1] + b[i];

 post(i);

}

for (i=2; i<=N; i++) {

 wait(i);

 c[i] = c[i] + a[i];

}

Lecture 2 Architecture of Parallel Computers 27

Intuitively, why are these cases different? Read only needs to be in shared
memory, one copy.

R/W non-conflicting: Only one copy, but can be in local memory.

R/W conflicting: One copy, in shared memory.

Example 1

Let’s assume
each iteration
of the for i
loop is a
parallel task.

Fill in the
tableaus here.

Read-only R/W non-conflicting R/W conflicting

n, c, d a, b i,j

Now, let’s assume that each for j iteration is a separate task.

Read-only R/W non-conflicting R/W conflicting

n, c, d, i b a, j

= Corrected after class

Do these two decompositions create the same number of tasks?
No, the first creates n tasks, and the second creates n2

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

Lecture 2 Architecture of Parallel Computers 28

Example 2

Let’s assume that
each for j iteration is a
separate task.

Read-only R/W non-conflicting R/W conflicting

n, c, d, i a, b, e j

Exercise: Suppose each for i iteration were a separate task …

Read-only R/W non-conflicting R/W conflicting

n, c, d b, e a, i, j

Privatization

Privatization means making private copies of a shared variable.

What is the advantage of privatization?
It removes read-write conflicts, so tasks can run in parallel, without paying attention to which other task
is reading or writing a variable.

Of the three kinds of variables in the table above, which kind(s) does it make sense to privatize? R/W
conflicting

Under what conditions is a variable privatizable?

 If it is always defined (=written) in program order by a task before use
(=read) by the same task (Case 1).

 If its values in different parallel tasks are known ahead of time,
allowing private copies to be initialized to the known values (Case 2).

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S1: a[i][j] = b[i][j] + c[i][j];

 S2: b[i][j] = a[i-1][j] * d[i][j];

 S3: e[i][j] = a[i][j];

 }

Lecture 2 Architecture of Parallel Computers 29

When a variable is privatized, one private copy is made for each thread
(not each task).

Result of privatization: R/W conflicting R/W non-conflicting

Let’s revisit the examples.

Example 1

With each for i
iteration a separate
task, which of the
R/W conflicting
variables are
privatizable?

i (Case 2), j (Case 1)

Which case does each such variable fall into?

We can think of privatized variables as arrays, indexed by process ID:
i[id]

Example 2

Parallel tasks: each for j loop iteration.

Is the R/W conflicting variable j privatizable? If so, which case does it
represent? Yes, Case 2

Reduction

Reduction is another way to remove conflicts. It is based on partial sums.

Suppose we have a large matrix, and need to
perform some operation on all of the elements—
let’s say, a sum of products—to produce a single
result.

We could have a single processor undertake this, but
this is slow and does not make good use of the
parallel machine.

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

Lecture 2 Architecture of Parallel Computers 30

So, we divide the matrix into portions, and have one processor work on each portion.

Then after the partial sums are complete, they are combined into a global sum. Thus, the array has
been “reduced” to a single element.

Examples:

 addition (+), multiplication (*)

 Logical (and, or, …)

The reduction variable is the scalar variable that is the result of a reduction
operation.

Criteria for reducibility:

 Reduction variable is updated by each task, and the order of update
does not matter.

 Hence, the reduction operation must be associative and
commutative.

Goal: Compute

y = y_init op x1 op x2 op x3 … op xn

op is a reduction operator if it is commutative

 u op v = v op u

and associative

(u op v) op w = u op (v op w)

Lecture 2 Architecture of Parallel Computers 31

Summary of scope criteria

Should be
declared private

Should be
declared shared

Should be de-
clared reduction

Non-privatizable
R/W conflicting

Privatizable
R/W conflicting

Read-only
R/W non-conflicting Reduction

Declare as
shared and
protect by

synchronization

Example 1

with for i parallel
tasks

Fill in the answers
here.

Read-only R/W non-conflicting R/W conflicting

c, d, n a, b i, j

Declare as shared Declare as private

a, b, c, d, n i, j

Example 2

with for j parallel tasks

Fill in the answers
here.

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S1: a[i][j] = b[i][j] + c[i][j];

 S2: b[i][j] = a[i-1][j] * d[i][j];

 S3: e[i][j] = a[i][j];

 }

Lecture 2 Architecture of Parallel Computers 32

Read-only R/W non-conflicting R/W conflicting

C,d, I, n a, b, e j

Declare as shared Declare as private

a, b, c, d, i, n j

Example 3

Consider matrix
multiplication.

Exercise: Suppose the
parallel tasks are for k
iterations. Determine
which variables are conflicting, which should be declared as private, and which need to be protected
against concurrent access by using a critical section.

Read-only R/W non-conflicting R/W conflicting

A, B, i, j, n C, k

Declare as shared Declare as private

A, B, [C], i, j, n k

Which variables, if any, need to be protected by a critical section? C

Now, suppose the parallel tasks are for i iterations. Determine which variables are conflicting, which
should be declared as private, and which need to be protected against concurrent access by using a
critical section.

Read-only R/W non-conflicting R/W conflicting

A,B,n C i, j, k

Declare as shared Declare as private

A,B, C, n i, j, k

for (i=0; i<n; i++)

 for (j=0; j<n; j++) {

 C[i][j] = 0.0;

 for (k=0; k<n; k++) {

 C[i][j] = C[i][j] + A[i][k]*B[k][j];

Lecture 2 Architecture of Parallel Computers 33

Which variables, if any, need to be protected by a critical section? None

Synchronization

Synchronization is how programmers control the sequence of operations
that are performed by parallel threads.

Three types of synchronization are in widespread use.

 Point-to-point:

o a pair of post() and wait()

o a pair of send() and recv() in message passing

 Lock

o a pair of lock() and unlock()

o only one thread is allowed to be in a locked region at a given
time

o ensures mutual exclusion

o used, for example, to serialize accesses to R/W concurrent
variables.

 Barrier

o a point past which a thread is allowed to proceed only when all
threads have reached that point.

Lock

What problem may arise here?

Two tasks
may each
fetch a variable and increment it concurrently. Then the task that stores it
back later overwrites the contribution of the task that wrote it earlier.

A lock prevents more than one thread from being inside the locked region.

// inside a parallel region

for (i=start_iter; i<end_iter; i++)

 sum = sum + a[i];

Lecture 2 Architecture of Parallel Computers 34

Issues:

 What

granularity to lock?

 How to build a lock that is correct and fast.

Barrier: Global event synchronization

A barrier is used when the code that follows requires that all threads have
gotten to this point. Example: Simulation that works in terms of timesteps.

Load balance is important.

Execution time is dependent on the slowest thread.

This is one reason for gang scheduling and avoiding time sharing and
context switching.

Simulating ocean currents

We will study a parallel application that simulates ocean currents.

// inside a parallel region

for (i=start_iter; i<end_iter; i++) {

 lock(x);

 sum = sum + a[i];

 unlock(x);

}

Lecture 2 Architecture of Parallel Computers 35

Goal: Simulate the motion of water currents in the ocean. Important to
climate modeling.

Motion depends on atmospheric forces, friction with ocean floor, and
“friction” with ocean walls.

To predict the state of the ocean at any instant, we need to solve complex
systems of equations.

The problem is continuous in both space and time.
But to solve it, we discretize it over both dimensions.

Every important variable, e.g.,

• pressure • velocity • currents

has a value at each grid point.

This model uses a set of 2D horizontal cross-sections through the ocean
basin.

Equations of motion are solved at all the grid points in one time-step.

 The state of the variables is updated, based on this solution.

 The equations of motion are solved for the next time-step.

Tasks

The first step is to divide the work into tasks.

(a) Cross sections

Lecture 2 Architecture of Parallel Computers 36

 A task is an arbitrarily defined portion of work.

 It is the smallest unit of concurrency that the program can exploit.

Example: In the ocean simulation, a task can be computations on—

 a single grid point,
 a row of grid points, or
 any arbitrary subset of the grid.

Tasks are chosen to match some natural granularity in the work.

 If the grain is small, the decomposition is called .

 If it is large, the decomposition is called .

Threads

A thread is an abstract entity that performs tasks.

 A program is composed of cooperating threads.
 Each thread is assigned to a processor.
 Threads need not correspond 1-to-1 with processors!

Example: In the ocean simulation, an equal number of rows may be
assigned to each thread.

Four steps in parallelizing a program:

 Decomposition of the computation into tasks.
 Assignment of tasks to threads.
 Orchestration of the necessary data access, communication, and

synchronization among threads.
 Mapping of threads to processors.

Lecture 2 Architecture of Parallel Computers 37

Together, decomposition and assignment are called partitioning.

They break up the computation into tasks to be divided among threads.

The number of tasks available at a time is an upper bound on the
achievable parallelism.

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Lecture 2 Architecture of Parallel Computers 38

Parallelization of an Example Program

[§2.3] In this lecture, we will consider a parallelization of the kernel of the
Ocean application.

The serial program

The equation solver solves a PDE on a grid.

It operates on a regular 2D grid of (n+2) by (n+2) elements.

• The boundary elements in the border rows and columns do not
change.

• The interior n-by-n points are updated, starting from their initial values.

A [i,j] = 0.2 (A [i,j] + A [i,j – 1] + A [i – 1 , j] +

A [i,j + 1] + A [i + 1, j])

Expr ession for updating each interior point:

• The old value at each point is replaced by the weighted average of
itself and its 4 nearest-neighbor points.

• Updates are done from left to right, top to bottom.

° The update computation for a point sees the new values of points
above and to the left, and

° the old values of points below and to the right.

 This form of update is called the Gauss-Seidel method.

During each sweep, the solver computes how much each element has
changed since the last sweep.

Lecture 2 Architecture of Parallel Computers 39

• If this difference is less than a “tolerance” parameter, the solution has
converged.

• If so, we exit solver; if not, we do another sweep.

Here is the code for the solver.

Decomposition

A simple way to identify concurrency is to look at loop iterations.

Is there much concurrency in this example? Does the algorithm let us
perform more than one sweep concurrently?

Note that—

• Computation proceeds from left to right and top to bottom.

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. double **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. double **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i 1 to n do /*sweep over nonborder points of grid*/
18. for j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

Lecture 2 Architecture of Parallel Computers 40

• Thus, to compute a point, we use

° the updated values from the point above and the point to the left,
but

° the “old” values of the point itself and its neighbors below and to
the right.

Here is a diagram that illustrates the dependences.

The horizontal and vertical
lines with arrows indicate
dependences.

The dashed lines along the
antidiagonal connect points
with no dependences that can
be computed in parallel.

Of the O() work in each
sweep, concurrency propor-
tional to along
antidiagonals.

How could we exploit this parallelism?

• We can leave loop structure alone and let loops run in parallel,
inserting synchronization ops to make sure a value is computed
before it is used.

Why isn’t this a good idea?

• We can change the loop structure, making

° the outer for loop (line 17) iterate over anti-diagonals, and

° the inner for loop (line 18) iterate over elements within an
antidiagonal.

Why isn’t this a good idea?

Lecture 2 Architecture of Parallel Computers 41

The Gauss-Seidel algorithm doesn’t require us to update the points from
left to right and top to bottom.

It is just a convenient way to program on a uniprocessor.

We can compute the points in another order, as long as we use updated
values frequently enough (if we don’t, the solution will converge, but more
slowly).

Red-black ordering

Let’s divide the points into alternating “red” and “black” points:

Red point

Black point

To compute a red point, we don’t need the updated value of any other red
point. But we need the updated values of 2 black points.

And similarly for computing black points.

Thus, we can divide each sweep into two phases.

• First we compute all red points.
• Then we compute all black points.

True, we don’t use any updated black values in computing red points.

But we use all updated red values in computing black points.

Whether this converges more slowly or faster than the original ordering
depends on the problem.

Lecture 2 Architecture of Parallel Computers 42

But it does have important advantages for parallelism.

• How many red points can be computed in parallel? n2/2

• How many black points can be computed in parallel? n2/2

Red-black ordering is effective, but it doesn’t produce code that can fit on a
single display screen.

A simpler decomposition

Another ordering that is simpler but still works reasonably well is just to
ignore dependences between grid points within a sweep.

A sweep just updates points based on their nearest neighbors, regardless
of whether the neighbors have been updated yet.

Global synchronization is still used between sweeps, however.

Now execution is no longer deterministic.

The number of sweeps needed, and the results, may depend on the
number of processors used.

But for most reasonable assignments of processors, the number of sweeps
will not vary much.

Let’s look at the code for this.

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i 1 to n do /*a parallel loop nest*/
18. for_all j 1 to n do
19. temp = A[i,j];
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Lecture 2 Architecture of Parallel Computers 43

The only difference is that for has been replaced by for_all.

A for_all just tells the system that all iterations can be executed in parallel.

With for_all in both loops, all n2 iterations of the nested loop can be
executed in parallel.

We could write the program so that the computation of one row of grid
points must be assigned to a single processor. How would we do this?

With each row assigned to a different processor, each task has to access
about 2n grid points that were computed by other processors; meanwhile, it
computes n grid points itself.

So the communication-to-computation ratio is O(1).

Assignment

How can we statically assign elements to processes?

• One option is “block
assignment”—Row i is
assigned to process i / p.

p
0

p
1

p
2

p
3

• Another option is “cyclic assignment—Process i is assigned rows i,
i+p, i+2p, etc.

• Another option is 2D contiguous block partitioning.

We could instead use dynamic assignment, where a process gets an index,
works on the row, then gets a new index, etc. Is there any advantage to
this?

What are advantages and disadvantages of these partitionings?

Lecture 2 Architecture of Parallel Computers 44

Static assignment of rows to processes reduces concurrency

But block assignment reduces communication, by assigning adjacent rows
to the same processor.

How many rows now need to be accessed from other processors?

So the communication-to-computation ratio is now only O().

Orchestration

Once we move on to the orchestration phase, the computation model
affects our decisions.

Data-parallel model

In the code below, we assume that global declarations are used for shared
data, and that any data declared within a procedure is private.

Global data is allocated with g_malloc.

Differences from sequential program:

• for_all loops
• decomp statement
• mydiff variable, private to each process
• reduce statement

Lecture 2 Architecture of Parallel Computers 45

The decomp statement has a twofold purpose.

• It specifies the assignment of iterations to processes.

 The first dimension (rows) is partitioned into nprocs contiguous
blocks. The second dimension is not partitioned at all.

 Specifying [CYCLIC, *, nprocs] would have caused a cyclic
partitioning of rows among nprocs processes.

 Specifying [*,CYCLIC, nprocs] would have caused a
cyclic partitioning of columns among nprocs processes.

1. int n, nprocs ; /*grid size (n+2n+2) and # of processes*/
2. double **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and # of processes*/
6. A G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. double **A; /* A is an (n+2n+2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0 */
17. for_all i 1 to n do /*sweep over non-border points of grid*/
18. for_all j 1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j] 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /* compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

Lecture 2 Architecture of Parallel Computers 46

 Specifying [BLOCK, BLOCK, nprocs] would have implied a 2D
contiguous block partitioning.

• It specifies the assignment of grid data to memories on a distributed-
memory machine. (Follows the owner-computes rule.)

The mydiff variable allows local sums to be computed.

The reduce statement tells the system to add together all the mydiff
variables into the shared diff variable.

Shared-memory model

In this model, we
need mechanisms to
create processes and
manage them.

After we create the
processes, they
interact as shown on
the right. Sweep

Test Convergence

Processes

Solve Solve Solve Solve

Lecture 2 Architecture of Parallel Computers 47

What are the main differences between the serial program and this
program?

• The first process creates nprocs–1 worker processes. All n
processes execute Solve.

 All processes execute the same code.

 But all do not execute the same instructions at the same time.

1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. double**A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current
sweep*
/ 2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/

2c. BARDEC (bar1); /*barrier declaration for global synchronization between
sweeps*
/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes */
6. A G_MALLOC (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker

too*/ 8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve(A)
11. double**A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. int i,j, pid , done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/

15. while (!done) do /* outer loop over all diagonal elements*/
16. mydiff = diff = 0 ; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i mymin to mymax do /*for each of my rows */
18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. e ndfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff ;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Lecture 2 Architecture of Parallel Computers 48

• Private variables like mymin and mymax are used to control loop
bounds.

• All processors need to—

° complete an iteration before any process tests for convergence.
Why?

° test for convergence before any process starts the next iteration.
Why?

 Notice the use of barrier synchronization to achieve this.

• Locks must be placed around updates to diff, so that no two
processors update it at once. Otherwise, inconsistent results could
ensue.

 p1 p2

 r1 diff { p1 gets 0 in its r1}

 r1 diff { p2 also gets 0}

 r1 r1+r2 { p1 sets its r1 to 1}

 r1 r1+r2 { p2 sets its r1 to 1}

 diff r1 { p1 sets diff to 1}

 diff r1 { p2 also sets diff to 1}

If we allow only one processor at a time to access diff, we can avoid this
race condition.

What is one performance problem with using locks?

Note that at least some processors need to access diff as a non-local
variable.

What is one technique that our shared-memory program uses to diminish
this problem of serialization?

Lecture 2 Architecture of Parallel Computers 49

Message-passing model

The program for the message-passing model is also similar, but again
there are several differences.

 There’s no shared address space, so we can’t declare array A to be
shared.

 Instead, each processor holds the rows of A that it is working on.

 The subarrays are of size (n/nprocs + 2) (n + 2).
 This allows each subarray to have a copy of the boundary rows from

neighboring processors. Why is this done?

 These ghost rows must be copied explicitly, via send and receive
operations.

 Note that send is not synchronous; that is, it doesn’t make the
process wait until a corresponding receive has been executed.

 What problem would occur if it did?

• Since the rows are copied and then not updated by the processors
they have been copied from, the boundary values are more out-of-
date than they are in the sequential version of the program.

 This may or may not cause more sweeps to be needed for
convergence.

• The indexes used to reference variables are local indexes, not the
“real” indexes that would be used if array A were a single shared
array.

Lecture 2 Architecture of Parallel Computers 50

1. int pid, n, b; /*process id, matrix dimension and number of
 processors to be used*/
2. float **myA;
3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);
8b. Solve(); /*main process becomes a worker too*/
8c. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA malloc(a 2-d array of size [n/nprocs + 2] by n+2);
 /*my assigned rows of A*/
7. initialize(myA); /*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. mydiff = 0; /*set local diff to 0*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid != nprocs-1) then
 SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then
 RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);
 /*border rows of neighbors have now been copied
 into myA[0,*] and myA[n’+1,*]*/
17. for i 1 to n’ do /*for each of my (nonghost) rows*/
18. for j 1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];
20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor
 /*communicate local diff values and determine if
 done; can be replaced by reduction and broadcast*/
25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(done,sizeof(int),0,DONE);
25d. else /*pid 0 does this*/
25e. for i 1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);
25g. mydiff += tempdiff; /*accumulate into total*/
25h. endfor
25i if (mydiff/(n*n) < TOL) then done = 1;
25j. for i 1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);
25l. endfor
25m. endif
26. endwhile
27. end procedure

Lecture 2 Architecture of Parallel Computers 51

Parallel access to linked data structures

[Solihin Ch. 4] Answer the questions below.

Name some linked data structures.

What operations can be performed on all of these structures?

Why is it hard to parallelize these operations?

Explain how the following code illustrates such a dependence.

void addValue(pIntList pList, int key, int x) {

 pIntListNode p = pList->head;

 while (p != NULL) {

 if (p->key == key)

 S1: p->data = p->data + x;

 S2: p = p->next;

 }

}

In the notation introduced in Lecture 5, how would the dependence be
written?

S1[i] T S1[i+1], S2[i] T S2[i+1], except that there is no i
in the program.

If we just look at the loops in an “LDS” program, we won’t find any
parallelism to be exploited.

So, where can we find the opportunity to execute anything in parallel?
The “algorithm level”—parallelism between the operations that are
performed on the LDS.

Lecture 2 Architecture of Parallel Computers 52

Conceptually, we can allow several operations to be performed (partially) in
parallel. What kind of operations? search, insertion, deletion

But how do we decide which operations can be performed in parallel?

Correctness of parallel LDS operations

Serializability: A parallel execution of a group of operations (or primitives)
is said to be serializable if there is some sequence of operations (or
primitives) that produce an identical result.

Suppose a node insertion i1 and a node deletion d1 are performed in
parallel. The outcome must be equivalent to either

 i1 followed by d1, or
 d1 followed by i1, or

Conflict between two insertions

Lecture 2 Architecture of Parallel Computers 53

Let’s look at the simple
case of a singly-linked
list.

Suppose two
items are inserted
in parallel: insert
both 4 and 5.

Serializable
outcomes:

insert 4, then
insert 5

or insert 5, then
insert 4

In any case,
both 4 and 5
must be in the list
at the end of
execution

What could
happen if the
operations are not
parallelized
correctly? Node 4

could be lost, or node 5 could be lost.

Conflict between an insertion and a deletion

Lecture 2 Architecture of Parallel Computers 54

Serializable
outcome:

delete 5, insert 4

or insert 4, delete
5

in both cases, at
the end of
execution, node 4
is in the list, but
node 5 is not in the
list

In the case shown,
node 4 is lost.

What would be a sequence that produces another incorrect result? What
would happen with this sequence? (You may use this worksheet.)

Lecture 2 Architecture of Parallel Computers 55

Conflict between an insertion and a search

Suppose
we attempt

insert 5, then search 6

or search 6, then insert 5

in both cases, at the end of execution,

 5 must be in the list, and

 6 must be found

Lecture 2 Architecture of Parallel Computers 56

Depending on when the insertion code is executed,

 node 6 will be found, or

 node 6 may not be found, and an uninitialized link may be followed.

Conflict between a deletion and a search

 Deletion and search

o delete 5, then search for 5
o search for 5, then delete 5

 Possible outcomes

o Node 5 may be found or not found
o Node 5 is deleted from the list

What, if anything, is the problem with these outcomes? Neither; both are serializableg;

Lecture 2 Architecture of Parallel Computers 57

Main Observations

 Parallel execution of two operations that affect a common node, in which at least one operation
involves writing to the node, can produce conflicts that lead to non-serializable outcome.

 Under some circumstances, a serializable outcome may still be achieved, despite the conflicts
mentioned above.

 Conflicts can also occur between LDS operations and memory-management functions such as
allocation and deallocation.

Parallelization strategies

 Parallelization among readers

o Very simple
o Works well if structure is modified infrequently

 Global lock approach

o Relatively simple
o Parallel traversal, followed by sequential list modifications

Lecture 2 Architecture of Parallel Computers 58

 Fine-grain lock approach

o A lock is associated with each node.
o Each operation locks only nodes that need to be accessed exclusively.
o Complex: Deadlock can occur; memory allocation and deallocation become more

complex

Parallelization among readers

 Basic idea

o (Read-only) operations that do not modify the list can execute in parallel.
o (Write) operations that modify the list execute sequentially

 How to enforce

o A read-only operation acquires a read lock
o A write operation acquires a write lock

 Construct a lock-compatibility table

Already-granted lock Read lock
requested

Write lock
requested

Read lock Yes No

Write lock No No

Example

IntListNode_Search(int x)

{

 acq_read_lock();

 …

 …
 …

 rel_read_lock();

}

IntListNode_Insert(node *p)

{

 acq_write_lock();

 …

 …
 …

 rel_write_lock();

}

Global-lock approach

 Each operation logically has two steps

o Traversal

 Node insertion: Find the correct location for the node

Lecture 2 Architecture of Parallel Computers 59

 Node deletion: Find the node to delete
 Node search: Find the sought-for node

o List modification

 Basic idea: perform the traversal in parallel, but modify the list in a critical section, i.e., lock the
structure, then modify the list, then release the lock.

 Pitfall
o The list may have changed by the time the write-lock is acquired,
o so the assumptions must be re-validated.

Example

IntListNode_Insert(node *p)

{

 …

 /* perform traversal */

 …

 acq_write_lock();

 /* then check validity:
 nodes still there?
 link still valid? */

 /* if not valid, repeat traversal */

 /* if valid, modify list */

 …

 rel_write_lock();

}

Fine-grain locking approach
 Associate each node with a lock (read, write).
 Each operation locks only needed nodes.
 (Read and write) operations execute in parallel except when they conflict on some nodes. Fill in

the blanks below.
o Nodes that will be modified are write-locked.
o Nodes that are read and must remain unchanged are read-locked.

 Pitfall: Deadlock becomes possible.
o Suppose one operation locks node 1 and then needs to lock node 2, while another

operation locks node 2 and then needs to lock node 1.

o Then neither operation can complete before the other operation frees the lock it is
holding.

Lecture 2 Architecture of Parallel Computers 60

 Deadlocks can be prevented by imposing a global ordering on the order in which nodes are
acquired.

Example

void insert(pIntList pList, int x){

 int succeed;

 … /* traversal code to find where to insert */

 /* insert the node at head or between prev & p */

 succeed = 0;

 do {

 acq_write_lock(prev);

 acq_read_lock(p);

 if (prev->next != p || prev->deleted || p->deleted)

 {

 rel_write_lock(prev);

 rel_read_lock(p);

 … /* repeat traversal */

 }

 else

 succeed = 1;

 } while (!succeed);

 /* prev and p are now valid, so insert node */

 newNode->next = p;

 if (prev != NULL)

 prev->next = newNode;

 else

 pList->head = newNode;

 rel_write_lock(prev);

 rel_read_lock(p);

}

Questions

Lecture 2 Architecture of Parallel Computers 61

What do the tests prev->deleted and p->deleted mean?

Why is garbage collection used, rather than explicit deletion?

The delete operation is similar; code that is the same is shown in green.

void delete(pIntList pList, int x){

 int succeed;

 … /* traversal code to find node to delete */

 /* node has been found; perform the deletion */

 succeed = 0;

 do {

 acq_write_lock(prev);

 acq_write_lock(p);

 if (prev->next != p || prev->deleted || p->deleted)

 {

 rel_write_lock(prev);

 rel_write_lock(p);

 … /* repeat traversal; return if not found */

 }

 else

 succeed = 1;

 } while (!succeed);

 /* prev and p are now valid, so delete node */

 if (prev == NULL) { /* delete head node */

 acq_write_lock(pList);

 pList->head = p->next;

 rel_write_lock(pList);

 }

Lecture 2 Architecture of Parallel Computers 62

 else /* delete non-head node */

 prev->next = p->next;

 p->deleted = 1; /*don’t deallocate; mark deleted*/

 rel_write_lock(prev);

 rel_write_lock(p);

}

-

Lecture 9 Architecture of Parallel Computers 1

Data parallel algorithms1

 (Guy Steele): The data-parallel programming style is an approach to organizing
programs suitable for execution on massively parallel computers.

In this lecture, we will—

• characterize the programming style,

• examine the building blocks used to construct data-parallel programs,
and

• see how to fit these building blocks together to make useful
algorithms.

All programs consist of code and data put together. If you have more than one
processor, there are various ways to organize parallelism.

• Control parallelism: Emphasis is on extracting parallelism by orienting
the program’s organization around the parallelism in the code.

• parallelism: Emphasis is on organizing programs to extract
parallelism from the organization of the data.

With data parallelism, typically all the processors are at roughly the same point in
the program.

Control and data parallelism vs. SIMD and MIMD.

• You may write a data-parallel program for a MIMD computer, or

• a control-parallel program which is executed on a SIMD computer.

 Emphasis in this talk will be on styles of organizing programs. It becomes an
engineering issue whether it is appropriate to organize the hardware to match the
program.

The sequential programming style, typified by C and Pascal, has building blocks
like—

• scalar arithmetic operators,
• control structures like if … then … else, and
• subscripted array references.

1Video © 1991, Thinking Machines Corporation. This video is available from University Video
Communications, http://www.uvc.com.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 2

The programmer knows essentially how much these operations cost. E.g.,
addition and subtraction have similar costs; multiplication may be more
expensive.

To write data-parallel programs effectively, we need to understand the cost of
data-parallel operations.

• Elementwise operations (carried on independently by processors;
typically operations and tests).

• Conditional operations (also elementwise, but some processors may
not participate, or act in various ways).

• Replication

•

• Permutation

• Parallel prefix (scan)

An example of an elementwise operation:

Elementwise addition

C = A + B

3

6

9

1

2

3

4

1

5

5

3

8

2

0

2

1

1

2

3

1

4

2

5

7 +

Elementwise test

if (A > B)

3

6

0

1

2

0

4

1

0

5

3

0

2

0

0

1

1

0

3

1

0

2

5

0

>

The results can be used to “conditionalize” future operations:

if (A > B) C = A + B

Lecture 9 Architecture of Parallel Computers 3

3

6

0

1

2

0

4

1

5

5

3

8

2

0

2

1

1

0

3

1

4

2

5

0 +

The set of bits that is used to conditionalize the operations is frequently called a
condition mask or a context. Each processor can perform different computations
based on the data it contains.

Building blocks

Communications operations:

• : Get a single value out to all processors. This
operation happens so frequently that is worthwhile to support in
hardware. It is not unusual to see a hardware bus of some kind.

• Spreading (nearest-neighbor grid). One way is to have each row
copied to its nearest neighbor.

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

A better way is to use a copy-scan:

• On the first step, the data is copied to the row that is directly
below.

• On the second step, data is copied from each row that has the
data to the row that is two rows below.

• On the third step, data is copied from each row to the row that is
four rows below.

 In this way, the row can be copied in logarithmic time, if we have the

necessary interconnections.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 4

• —essentially the inverse of broadcasting. Each
processor has an element, and you are trying to combine them in
some way to produce a single result.

6 1 4 7 3 1 3 2

+

27

 Summing a vector in logarithmic time:

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

x 0 x 2 x 4 x 6Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7

x 0 x 2 x 4 x 6Σ 0
1 Σ 0

3 Σ 4
5 Σ 4

7

x 0 x 2 x 4 x 6Σ 0
1 Σ 0

3 Σ 4
5 Σ 0

7

 Most of the time during the course of this algorithm, most processors
have not been busy.

 So while it is fast, we haven’t made use of all the processors.

 Suppose you don’t turn off processors; what do you get? Vector
sum-prefix (sum-scan).

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7

Σ 0
1 Σ 0

3 Σ 2
5 Σ 4

7

Σ 0
1 Σ 0

3 Σ 0
5 Σ 0

7

Σ 0
2 Σ 3

4 Σ 5
6 Σ 0

0

Σ 0
0

Σ 0
0

Σ 0
2 Σ 1

4 Σ 3
6

Σ 0
2 Σ 0

4 Σ 0
6

 Each processor has received the sum of what it contained, plus all
the processors preceding it.

 We have computed the sums of all prefixes—initial segments—of the
array.

Lecture 9 Architecture of Parallel Computers 5

 This can be called the checkbook operation; if the numbers are a set
of credits and debits, then the prefixes are the set of running
balances that should appear in your checkbook.

• . We wish to assign a different number to each
processor.

1 1 1 1 1 1 1 1

+

1

1 2 3 4 5 6 7 8

Broadcast

Sum-prefix

• Regular permutation.

Shift

A B C D E F G H

A B C D E F GH

 Of course, one can do shifting on two-dimensional arrays too; you
might shift it one position to the north.

 Another kind of permutation is an odd-even swap:

A B C D E F G H

B D F HA C E G

 Distance 2k swap:

A B C D E F G H

C A G ED B H F

 Some algorithms call for performing irregular permutations on the
data.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 6

 A B C D E F G H

C E H FB A D G

 The permutation depends on the data. Here we have performed a
sort. (Real sorting algorithms have a number of intermediate steps.)

Example: image processing

Suppose we have a rocket ship and need to figure out where it is.

Some of the operations are strictly local. We might focus in on a particular
region, and have each processor look at its values and those of its neighbor.

This is a local operation; we shift the data back and forth and have each
processor determine whether it is on a boundary.

When we assemble this data and put it into a global object, the communication
patterns are dependent on the data; it depends on where the object happened to
be in the image.

Irregularly organized data

Most of our operations so far were on arrays, regularly organized data.

We may also have operations where the data are connected by pointers.

In this diagram, imagine the processors as being in completely different parts of
the machine, known to each other only by an address.

 doubling:

I originally thought that nothing could be more essentially sequential than
processing a linked list. You just can’t find the third one without going through
the second one. But I forgot that there is processing power at each node.

The most important technique is pointer doubling. This is the pointer analogue of
the spreading operation we looked at earlier to make a copy of a vector into a
matrix in a logarithmic number of steps.

In the first step, each processor makes a copy of the pointer it has to its
neighbor.

Lecture 9 Architecture of Parallel Computers 7

In the rest of the steps, each processor looks at the processor it is pointing to
with its extra pointer, and gets a copy of its pointer.

In the first step, each processor has a pointer to the next processor. But in the
next step, each processor has a pointer to the processor two steps away in the
linked list.

In the next step, each processor has a pointer to the pointer four processors
away (except that if you fall off the end of the chain, you don’t update the
pointer).

Eventually, in a logarithmic number of steps, each processor has a pointer to the
end of the chain.

How can this be used? In partial sums of a linked list.

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

At the first step, each processor takes the pointer to its neighbor.

At the next step, each processor takes the value that it holds, and adds it into the
value in the place pointed to:

Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7Σ 0
2 Σ 3

4 Σ 5
6 Σ 0

0

Now we do this again:

Σ 0
1 Σ 0

3 Σ 2
5 Σ 4

7Σ 0
0 Σ 0

2 Σ 1
4 Σ 3

6

And after the third step, you will find that each processor has gotten the sum of
its own number plus all the preceding ones in the list.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 8

Σ 0
1 Σ 0

3 Σ 0
5 Σ 0

7Σ 0
0 Σ 0

2 Σ 0
4 Σ 0

6

Speed vs. efficiency: In sequential programming, these terms are considered to
be synonymous. But this coincidence of terms comes about only because you
have a single processor.

In the parallel case, you may be able to get it to go fast by doing extra work.

Let’s take a look at the serial vs. parallel algorithm for summing an array.

 -Reduction

 Serial Parallel

Processors 1 N

Time steps N–1 log N

Additions N–1 N–1

Cost N–1 N log N

Efficiency 1
1

log N

 Sum – Prefix

 Serial Parallel

Processors 1 n

Time steps n–1 log n

Additions n–1 n (log n–1)

Cost n–1 n log n

Efficiency 1
log n–1

log n

The serial version of sum–prefix is similar to the serial version of sum–reduction,
but you save the partial sums. You don’t need to do any more additions, though.

In the parallel version, the number of additions is much greater. You use n
processors, and commit log n time steps, and nearly all of them were busy.

As n gets large, the efficiency is very close to 1. So this is a very efficient
algorithm. But in some sense, the efficiency is bogus; we’ve kept the processors

Lecture 9 Architecture of Parallel Computers 9

busy doing more work than they had to do. Only n–1 additions are really
required to compute sum–prefix. But n(log n–1) additions are required to do it
fast.

Thus, the business of measuring the speed and efficiency of a parallel algorithm
is tricky. The measures I used are a bit naïve. We need to develop better
measures.

Exercise: Submit your answers here.

Calculate the speedup of summing a vector using copy-scan (turning off the
processors that are not in use).

 How long does it take to sum the vector serially?

 How long does it take to sum it using copy-scan?

 What is the speedup?

What is the efficiency (speedup ÷ # of processors) of summing a vector with
copy-scan?

In the parallel version of summing an array via sum-prefix, a “bogus” efficiency is
mentioned. What would be the “non-bogus” efficiency of the same algorithm?

Putting the building blocks together

Let’s consider matrix multiply.

One way of doing this with a brute-force approach is to use n 3 processors.

source2

source1
result

n

n

n

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 10

1. Replicate. The first step is to make
copies of the first source array, using a
spread operation.

2. Replicate. Then we will do the same
thing with the second source, spreading
those down the cube.

So far, we have used O(log n) time.

3. Elementwise multiply. n3 operations
are performed, one by each processor.

4. Perform a parallel sum operation, using
the doubling-reduction method.

sum
We have multiplied two matrices in
O(log n) time, but at the cost of using n3 processors.

Brute force: n3 processors O(log n) time

Also, if we wanted to add the sum to one of the matrices, it’s in the wrong place,
and we would incur an additional cost to move it.

Cannon’s method

There’s another method that only requires n2 processors. We take the two
source arrays and put them in the same n2 processors. The result will also show
up in the same n2 processors.

We will pre- the two source arrays.

• The first array has its rows skewed by different amounts.

Lecture 9 Architecture of Parallel Computers 11

skew

• The columns of the second array are skewed.

skew

The two arrays are overlaid, and they then look
like this:

This is a systolic algorithm; it rotates both of
the source matrices at the same time.

• The first source matrix is rotated horizontally.
• The second source matrix is rotated vertically.

At the first time step, the 2nd element of the first row and the 2nd element of the
first column meet in the upper left corner. They are then multiplied and
accumulated.

At the second time step, the 3rd element of the first row and the 3rd element of
the first column meet in the upper left corner. They are then multiplied and
accumulated.

At the third time step, the 4th element of the first row and the 4th element of the
first column meet in the upper left corner. They are then multiplied and
accumulated.

At the fourth time step, the 1st element of the first row and the 1st element of the
first column meet in the upper left corner. They are then multiplied and
accumulated.

The same thing is going on at all the other points of the matrix.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 12

The serves to cause the correct elements of each row and
column to meet at the right time.

Cannon’s method: n2 processors O(n) time

An additional benefit is that the matrix ends up in the right place.

Labeling regions in an image

Let’s consider a really big example.

Instead of the rocket ship earlier in the lecture, we’ll consider a smaller region.
(This is one of the problems in talking about data-parallel algorithms. They’re
useful for really large amounts of data, but it’s difficult to show that on the
screen.)

We have a number of regions in this
image. There’s a large central “green”
region, and a “red-orange” region in the
upper right-hand corner. Some disjoint
regions have the same color.

We would like to compute a result in
which each region gets assigned a
distinct number.

We don’t care which number gets
assigned, as long as the numbers are distinct (even for regions of the same
color.

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

For example, here the central
green region has had all its
pixels assigned the value 19.

The squiggly region in the
upper left corner has received
0 in all its pixels.

The region in the upper right,
even though the same color
as the central green region,
has received a different value.

Let’s see how all the building blocks we have discussed can fit together to make
an interesting algorithm.

Lecture 9 Architecture of Parallel Computers 13

First, let’s assign each processor a
different number.

Here I’ve assigned the numbers
sequentially across the rows, but
any distinct numbering would do.

We’ve seen how the enumeration
technique can do this in a
logarithmic number of time steps.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Next, we have each of the
pixels examine the values of its
eight neighbors.

This is easily accomplished
using regular —
namely, shifts of the matrix.

We shift it up, down, left, right,
to the northeast, northwest,
southeast, and southwest.

This is enough for each processor to do elementwise computation and decide
whether it is on the border.

 (There are messy details, but we won’t discuss them here, since they have little
to do with parallelism.)

The next computation will be carried out only by processors that are on the
borders (an example of conditional operation).

We have each of the processors again
consider the pixel values that came
from its neighbors, and

inquire again, using shifting, if each of
its neighbors are border elements.

This is enough information to figure
out which of your neighbors are border
elements in the same region, so you
can construct pointers to them.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 14

0 1 2 4 5 6

8 9 10 11 13 14 15

17 18 19 20 21 22 23

25 26 28 29 30

32 33 37 38

40 41 42 44 45

48 49 50 51 52 53 54 55

56 59 60 61 62 63

Now we have stitched together
the borders in a linked list.

We now use the pointer-
doubling algorithm. Each pixel
on the borders considers the
number that it was assigned in
the enumeration step.

We use the pointer-doubling
algorithm to do a reduction step
using the min operation.

0 0 2 2 5 5

8 0 0 2 2 2 2 5

8 0 19 2 2 2 23

8 19 19 19 23

8 19 19 23

8 19 19 19 23

8 49 49 19 19 23 23 23

49 49 60 60 60 60

Each linked list performs poin-
ter-doubling around that list,
and determines which number
is the smallest in the list.

Then another pointer-doubling
algorithm makes copies of that
minimum all around the list.

Finally, we can use operation, not on linked lists, but by operating on the
columns (or the rows) to copy the processor labels from the borders to the rows.

Other items, particularly those on
the edge, may need the numbers
propagated up instead of down.
So you do a scan in both
directions.

The operation used is a non-
commutative operation that copies
the old number from the neighbor,
unless it comes across a new
number.

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

sca
n

This is known as Lim’s algorithm.

 Region labeling: O(n2) processors. O(log n) time

 (Each of the steps was either constant time or O(log n) time.)

Lecture 9 Architecture of Parallel Computers 15

Data-parallel programming makes it easy to organize operations on large
quantities of data in massively parallel computers.

It differs from sequential programming in that its emphasis is on operations on
entire sets of data instead of one element at a time.

You typically find fewer loops, and fewer array subscripts.

On the other hand, data-parallel programs are like sequential programs, in that
they have a single thread of control.

In order to write good data-parallel programs, we must become familiar with the
necessary building blocks for the construction of data-parallel algorithms.

With one processor per element, there are a lot of interesting operations which
can be performed in constant time, and other operations which take logarithmic
time, or perhaps a linear amount of time.

This also depends on the connections between the processors. If the hardware
doesn’t support sufficient connectivity among the processors, a communication
operation may take more time than would otherwise be required.

Once you become familiar with the building blocks, writing a data-parallel
program is just as easy (and just as hard) as writing a sequential program. And,
with suitable hardware, your programs may run much faster.

Exercise: Run through Lim’s algorithm on the grid given here.

Questions and answers: [not shown during class] Question: (Bert Halstead):
Do you ever get into problems when you have highly data-dependent
computations, and it’s hard to keep more than a small fraction of the processors
doing the same operation at the same time?

Answer: Yes. That’s one reason for making the distinction between the data-
parallel style and hardware. The best way to design a system to give
you the most flexibility without making it overly difficult to control is, I think, still an
open research question.

Question (Franklin Turback): Your algorithms seem to be based on the
assumption that you actually have enough processors to match the size of your
problem. If you have more data than processors, it seems that the logarithmic
time growth is no longer justified.

Answer: There’s no such thing as a free lunch. Making the problem bigger
makes it run slower. If you have a much larger problem that won’t fit, you’re
going to have to buy a larger computer.

© 2014 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2014 16

Question: How about portability of programs to different machines?

Answer: Right now it’s very difficult, because so far, we haven’t agreed on
standards for the right building blocks to support. Some architectures support
some building blocks but not others. This is why you end up with non-
portabilities of efficiencies of running times.

Question: For dealing with large sparse matrices, there are methods that we use
to reduce complexity. If this is true, how do you justify the overhead cost of
parallel processing?

Answer: Yes, that is true. It would not be appropriate to use that kind of
algorithm on a sparse matrix, just as you don’t use the usual sequential triply-
nested loop.

 processing on a data-parallel computer calls for very
different approaches. They typically call for the irregular communication and
permutation techniques that I illustrated.

Question: What about non-linear programming and algorithms like branch-and-
bound?

Answer: It is sometimes possible to use data-parallel algorithms to do seemingly
unstructured searches, as on a game tree, by maintaining a work queue, like you
might do in a more control-parallel, and at every step, taking a large number of
task items off the queue by using an enumeration step and using the results of
that enumeration to assign them to the processors.

This may depend on whether the rest of the work to be done is sufficiently
similar. If it’s not, then control parallelism may be more appropriate.

Question: With the current software expertise in 4GLs for sequential machines,
do you think that developing data-parallel programming languages will end up at
least at 4GL level?

Answer: I think we are now at the point where we know how to design data-
parallel languages at about the level of expressiveness as C, Fortran, and
possibly Lisp. I think it will take awhile before we can raise our level of
understanding to the level we need to design 4GLs.

