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Learning Objectives

1. Understand the problem of race conditions in 
concurrent systems,

2. Learn how to decompose a program for parallel 
execution,

3. Be able to write simple parallel programs in the 
important programming models,

4. Understand the operation of common cache-
coherence algorithms, both bus-based and 
network-based, and

5. Learn about common memory-consistency models, 
and appreciate the advantages and disadvantages 
of each.
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Textbook
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“Attendance” requirement
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• You are required to “attend” 20 of the 27 classes.
• “Attend”  Respond intelligently to  ½ of Google forms

• Each one not passed  –0.5% on semester average.

• You are required to pass 25 of 26 daily quizzes, 
plus the Syllabus Quiz. First one due Wednesday!

• “Passed”  score of  80%

• Each one not passed  –0.5% on semester average.

• You are required to team with 3 students.
• Each teammate you are lacking

 –0.5% on semester average
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Grading
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Homework

• 4 programs

• 3 problem sets

• 1 peer-reviewed madeup problem
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Tests

• Two 120-minute midterm tests, likely in the 
evening (10%, 15% of grade)

• 180-minute final (25% of grade)

• Open book, open notes

• No computers or communication devices
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Extra Credit

• All activities for which extra credit is given 
must help other students to learn the course 
material.

• Examples
– Contributing useful practice problems via Peerwise

– Doing extra peer reviews of madeup problems submitted to 
Expertiza

– Suggesting Web or print resources that will help other students 
write useful madeup problems

– Making outstanding contributions to answering other
students' questions on Piazza
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The Staff

• Instructor
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TA

Zhengyi Qiu
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Outline for Lecture 1

 Introduction

 Types of parallelism

 Architectural trends

 Why parallel computers?

 Scope of CSC/ECE 506
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Key Points

• More and more components can be integrated on a single 
chip

• Speed of integration tracks Moore’s law, doubling every 18–
24 months. 

• Exercise: Look up how the number of transistors per chip has 
changed, esp. since 2006.  Submit here.

• Until recently, performance tracked speed of integration

• At the architectural level, two techniques facilitated this:
– Cache memory
– Instruction-level parallelism

• Performance gain from uniprocessor system was high 
enough that multiprocessor systems were not viable for most 
uses.
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Illustration

• 100-processor system with perfect speedup

• Compared to a single processor system
– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few 
years!

• Even worse
– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable
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How did uniprocessor performance grow so fast?

• ≈ half from circuit improvement (smaller 
transistors, faster clock, etc.)

• ≈ half from architecture/organization:

• Instruction-level parallelism (ILP)
– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out-of-order execution

• Memory hierarchy (caches)
– Exploit spatial and temporal locality

– Multiple cache levels
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But uniprocessor perf. growth has stalled

 Source of performance growth had been ILP
 Parallel execution of independent instructions from a 

single thread

 But ILP improvement has slowed abruptly
 Memory wall: Processor speed grows at 55%/year, 

memory speed grows at 7% per year
 ILP wall: achieving higher ILP requires quadratically 

increasing complexity (and power)

 Power efficiency
 Thermal packaging limit vs. cost
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• Instruction level (cf. ECE 563)

– Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB
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Types of parallelism, cont.

• Superscalar/VLIW

• Original:

• Schedule as:

+ Moderate degree of parallelism

– Requires fast communication (register level)

LD    F0, 34(R2)

ADDD  F4, F0, F2

LD    F7, 45(R3)

ADDD  F8, F7, F6

LD    F0, 34(R2) | LD    F7, 45(R3)

ADDD  F4, F0, F2 | ADDD  F8, F0, F6
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Why ILP is slowing

• Branch-prediction accuracy is already > 90%
– Hard to improve it even more

• Number of pipeline stages is already deep (≈ 20–30 
stages)
– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Processor width is already high
– Increase the width  quadratically increase the complexity

• Cache size
– Effective, but also shows diminishing returns

– In general, size must be doubled to reduce miss rate by half.
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Current trends: multicore and manycore

Aspect Intel 
Clovertown

AMD 
Barcelona

IBM Cell

# cores 4 4 8+1

Clock 
frequency

2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO 
Superscalar

OOO 
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2 
(private), 
2MB L3 (sh’d)

256KB local 
store

Chip power 120 watts 95 watts 100 watts

Exercise: Browse the Web (or the textbook ) for information on more 
recent processors, and for each processor, fill out this form. (You can view
the submissions.)
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel
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Loop-level parallelism

• Sometimes each iteration can be performed 
independently.

• Sometimes iterations cannot be performed independently 
 no loop-level parallelism.

+ Very high parallelism > 1K
+ Often easy to achieve load balance
– Some loops are not parallel
– Some apps do not have many loops

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

for (i=0; i<8; i++)
a[i] = b[i] + a[i-1];
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Task-level parallelism

• Arbitrary code segments in a single program

• Across loops: 

• Subroutines: 

• Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity  low overheads, communication

– Low degree of parallelism

– Hard to balance

…
for (i=0; i<n; i++)   

sum = sum + a[i];
for (i=0; i<n; i++)

prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;
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Program-level parallelism

• Various independent programs execute together

• gmake: 
– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ No communication

– Hard to balance

– Few opportunities
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared-memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel
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Taxonomy of parallel computers

The Flynn taxonomy

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine
– Only one instruction fetch stream

– Some not-too-ancient laptops or desktops

Control 
unit

Instruction

stream

Data

stream
ALU
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SIMD

• Examples: Vector processors, SIMD extensions (MMX), 
GPUs

• A single instruction operates on multiple data items. 

 

Control 
unit 

Instruction 
stream 

ALU 2 

ALU 1 

ALU 
  

n 

Data 
stream 

1 

Data 
stream 

2 

Data 
stream 

  
n 

SISD: 
for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD: 
a = b + c;  // vector addition
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MISD

• Example: CMU Warp

• Systolic arrays  

Control 
unit 2 

ALU 2 

ALU 1 

ALU 
  

n 

Instruction 
stream 1 

stream 2 

stream 
  

n 

Data 
stream 

Instruction 

Instruction 

Control 
unit 1 

Control 
unit    n 
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Systolic arrays (contd.)

– Practical realizations (e.g. iWARP) use quite general processors
• Enable variety of algorithms on same hardware

– But dedicated interconnect channels
• Data transfer directly from register to register across channel

– Specialized, and same problems as SIMD
• General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 ´ x(i) + w2 ´ x(i + 1) + w3 ´ x(i + 2) + w4 ´ x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w ´ xin
x = xin

Example: Systolic array for 1-D convolution
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MIMD

• Independent processors connected together to 
form a multiprocessor system.

• Physical organization
– Determines which memory hierarchy level is shared

• Programming abstraction
– Shared Memory:

• on a chip: Chip Multiprocessor (CMP)

• Interconnected by a bus: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared Memory 
(DSM)

– Distributed Memory: 
• Clusters, Grid
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MIMD Physical Organization

P

caches

M

P
Shared-cache architecture: 
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun 

Niagara, Pentium D, etc.
- Implies shared-memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access) 
Shared Memory : 
- Pentium Pro Quad, Sun Enterprise, 

etc.
- What interconnection network? 

- Bus
- Multistage
- Crossbar 
- etc.

- Implies shared-memory hardware
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MIMD Physical Organization (2)

P

caches

M
…

Network

P

caches

M

NUMA (Non-Uniform Memory Access) 
Shared Memory : 
- SGI Origin, Altix, IBM p690, 

AMD Hammer-based system
- What interconnection network? 

- Crossbar 
- Mesh
- Hypercube
- etc.
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MIMD Physical Organization (3)

P

caches

M

Network

P

caches

M

I/O I/O

Distributed System/Memory:
- Also called clusters, grid 
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– MIMD

• Shared memory machines (SMP and DSM)

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel
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Programming models: shared memory

• Shared Memory / Shared Address Space:
– Each processor can see the entire memory

– Programming model = thread programming in 
uniprocessor systems 

 
P P P … 

Shared M 
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Programming models: message-passing

• Distributed Memory / Message Passing / Multiple 
Address Space:
– A processor can directly access only its local memory.

– All communication happens by explicit messages.

P

M

P

M

P

M

P

M
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Programming models: data parallel

• Programming model 
– Operations performed in parallel on each element of 

data structure
– Logically single thread of control, performs sequential 

or parallel steps
– Conceptually, a processor associated with each data 

element 
 

Control 
unit 

Instruction 
stream 

ALU 2 

ALU 1 

ALU 
  

n 

Data 
stream 

1 

Data 
stream 

2 

Data 
stream 

  
n 
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Data parallel (cont.)

• Architectural model
– Array of many simple, cheap processing elements

(PEs) each with little memory
• Processing elements don’t sequence through instructions

– PEs are attached to a control processor that issues 
instructions

– Specialized and general communication, cheap global 
synchronization

• Original motivation
– Matches simple differential equation solvers
– Centralize high cost of instruction fetch/sequencing

38
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Top 500 supercomputers

• http://www.top500.org

• Let’s look at the Earth Simulator, #1 in 2004 

• Hardware: 
– 5,120 (640 8-way nodes) 500 MHz NEC CPUs 

– 8 GFLOPS per CPU (41 TFLOPS total) 
• 30s TFLOPS sustained performance!

– 10 TB total memory

• Now (Nov. 2019)
– Summit, at ORNL, is #1

– 2.4 million cores

– 2.8 PB total memory

– 148.6 TFLOP/s max performance (Rmax)

– 200.8 TFLOP/s peak performance (Rpeak)
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Exploring the Top 500 list …

• Lists > Top500 > November 2019
– See a list of the top systems

• Statistics > List Statistics > Vendors
– Lenovo is top vendor by far

• Statistics > List Statistics > Architecture
– Clusters are overwhelmingly dominant

• Statistics > Developm’t over Time > Countries

– China comes from nowhere to lead in # of 
systems

– But US still leads in performance share

40
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Exercise

• Go to http://www.top500.org and look at the Lists and 
Statistics menus in the top menu bar.  

• From the Statistics dropdown, 
– choose either List Statistics or Development over time,

– then select one of the statistics, e.g., Vendors, Processor 
Architecture, and

– examine what kind of systems are prevalent.  Then do the same 
for earlier lists, and report on the trend.

• You can go all the way back to the first list from 1993.

• Submit your results here. 

37
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Three parallel-programming models 

• Shared-memory programming is like using a “bulletin board” where 
you can communicate with colleagues. 

• Message-passing is like communicating via e-mail or telephone calls.  
There is a well defined event when a message is sent or received.   

• Data-parallel programming is a “regimented” form of cooperation.  
Many processors perform an action separately on different sets of 
data, then exchange information globally before continuing en masse. 

User-level communication primitives are provided to realize the 
programming model 

• There is a mapping between language primitives of the programming 
model and these primitives 

These primitives are supported directly by hardware, or via OS, or via user 
software. 

In the early days, the kind of programming model that could be used was 
closely tied to the architecture. 

Today— 

• Compilers and software play important roles as bridges 
• Technology trends exert a strong influence 

The result is convergence in organizational structure, and relatively simple, 
general-purpose communication primitives. 

A shared address space 

In the shared-memory model, processes can access the same memory 
locations. 

Communication occurs implicitly as result of loads and stores 

This is convenient. 

• Wide range of granularities supported. 
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• Similar programming model to time-sharing on uniprocessors, except 
that processes run on different processors 

• Wide range of scale: few to hundreds of processors 

Good throughput on multiprogrammed workloads. 

This is popularly known as the shared memory model, even though 
memory may be physically distributed among processors. 

The shared-memory model 

A process is a virtual address space plus one or more threads of control. 

Portions of the address spaces of tasks are shared. 

 

 

 

 

 

 

 

 

 

What does the private region of the virtual address space usually contain?  
Stack and private data, incl. register save areas and control flags. 

Conventional memory operations can be used for communication. 

Special atomic operations are used for synchronization. 

The interconnection structure 

P 1
P 2 

P n 

P 
0 

Load 

P 
2 

Virtual address spaces for a collection of 
processes com-municating via shared 
addresses 

Machine physical 
address space 

Shared portion 

of address 

space 
Private portion 

of address space 

Common physical 

addresses 

Store 

private 

P 
1 private 

P 
0 private 

P 
n private 
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The interconnect in a shared-memory 
multiprocessor can take several forms. 

It may be a crossbar switch. 

Each processor has a direct connection 
to each memory and I/O controller. 

Bandwidth scales with the number of 
processors. 

P

P

C

C

I/O

I/O

M MM M
 

Unfortunately, cost scales with the square of the number of processors. 

This is sometimes called the “mainframe approach.” 

At the other end of the spectrum is a shared-bus architecture. 

PP

C

I/O

M MC

I/O

$ $

 

All processors, memories, and I/O controllers are connected to the bus. 

Such a multiprocessor is called a symmetric multiprocessor (SMP).   

What are some advantages and disadvantages of organizing a 
multiprocessor this way?  List them here. 

•  
•  
•  

A compromise between these two organizations is a multistage 
interconnection network. 
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The processors are on one 
side, and the memories and 
controllers are on the other. 

Each memory reference has 
to traverse the stages of the 
network. 

Why is this called a 
compromise between the 
other two strategies? 

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2  

 
Like a bus, it doesn’t require a connection from each processor to each 
memory.  Like a crossbar, it can handle multiple accesses simultaneously.  
But, it has more connections than a bus, and can handle fewer 
simultaneous accesses than a crossbar. 

For small configurations, however, a shared bus is quite viable. 

Message passing 

In a message-passing architecture, a complete computer, including the I/O, 
is used as a building block. 

Communication is via explicit I/O operations, instead of loads and stores. 

• A program can directly access only its private address space (in local 
memory). 

• It communicates via explicit messages (send and receive). 

It is like a network of workstations (clusters), but more tightly integrated. 

Easier to build than a scalable shared-memory machine. 
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Send-receive primitives 

The programming model is further removed from basic hardware 
operations. 

Library or OS intervention is required to do communication. 

• send specifies a buffer to be transmitted, and the receiving process. 

• receive specifies sending process, and a storage area to receive into. 

• A memory-to-memory copy is performed, from the address space of 
one process to the address space of the other. 

• There are several possible variants, including whether send 
completes— 

when the receive has been executed, synchronous 

when the send buffer is available for reuse, or 

when the message has been sent. asynchronous 

• Similarly, a receive can wait for a matching send to execute, or simply 
fail if one has not occurred. 

There are many overheads: copying, buffer management, protection.  Let’s 
describe each of these.  Submit your descriptions here. 

• Why is there an overhead to copying, compared to a share-memory 
machine?   
 

  
Local 
process 
address 
space 

Local 
process 
address 
space 

Address X 

Address Y 

Process P Process Q 

send(X, Q) 

receive(Y, P) 

match! 
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• Describe the overhead of buffer management.   
 
 

• What is the overhead for protection?   
 
 
 

Here’s an example from the textbook of the difference between shared address-space and message-
passing programming. 

A shared-memory system uses the thread model: 

 

int a, b, signal; 

… 

void dosum(<args>) {  

  while (signal == 0) {}; // wait until instructed to work 

  printf(“child thread> sum is %d”, a + b); 

  signal = 0;  // my work is done 

} 

 

void main() { 

  a = 5, b = 3; 

  signal = 0; 

  clone(&dosum,…)         // spawn child thread 

  signal = 1;             // tell child to work 

  while (signal == 1) {}  // wait until child done 

  printf(“all done, exiting\n”); 

} 
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Message-passing uses the process model: 

 

int a, b; 

… 

void dosum() {  

  recvMsg(mainID, &a, &b); 

  printf(“child process> sum is %d”, a + b); 

} 

 

void main() { 

  if (fork() == 0)  // I am the child process 

    dosum(); 

  else {            // I am the parent process 

    a = 5, b = 3; 

    sendMsg(childID, a, b); 

    wait(childID); 

    printf(“all done, exiting\n”); 

  } 

} 

 

Here’s the relevant section of documentation on the fork() function: 

“Upon successful completion, fork() and fork1() return  0  to the  child  process  and  return the 
process ID of the child process to  the  parent  process.” 
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Interconnection topologies 

Early message-passing designs provided hardware primitives that were 
very close to the message-passing model. 

Each node was connected to a 
fixed set of neighbors in a 
regular pattern by point-to-point 
links that behaved as FIFOs. 

A common design was a 
hypercube, which had 2  n 
links per node, where n was the 
number of dimensions. 

The diagram shows a 3D cube. 

One problem with hypercubes 
was that they were difficult to 
lay out on silicon. 

000001

010011

100

110

101

111

 

Because of that, 2D meshes eventually supplanted hypercubes. 

 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d
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g

h

f

g

h

e

e

 

Here is an example 
of a 16-node mesh.  
Note that the last 
element in one row is 
connected to the first 
element in the next. 

If the last element in 
each row were 
connected to the first 
element in the same 
row, we would have a 
torus instead.  

Early message-passing machines used a FIFO on each link. 
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• Thus, software sends were implemented as synchronous hardware 
operations at each node. 

 What was the problem with this, for multi-hop messages?  Interrupts 
are required at intermediate nodes. 
 

• Synchronous ops were replaced by DMA, enabling non-blocking 
operations 

– A DMA device is a special-purpose controller that transfers data between memory and an I/O 
device without processor intervention. 

– Messages were buffered by the message layer of the system at the destination until a receive 
took place. 

– When a receive took place, the data was copied into the address space of the receiving process. 

The diminishing role of topology. 

• With store-and-forward routing, topology was important. 

 Parallel algorithms were often changed to conform to the topology of 
the machine on which they would be run. 

• Introduction of pipelined (“wormhole”) routing made topology less 
important. 

In current machines, it makes less difference how far the data travels. 

This simplifies programming; cost of interprocessor communication is 
essentially independent of which processor is receiving the data. 

Toward architectural convergence 

In 1990, there was a clear distinction between message-passing and 
shared-memory machines.  Today, there isn’t a distinct boundary. 

• Message-passing operations are supported on most shared-memory 
machines. 

• A shared virtual address space can be constructed on a message-
passing machine, by sharing pages between processors. 

° When a missing page is accessed, a page fault occurs. 
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° The OS fetches the page from the remote node via message-
passing. 

At the machine-organization level, the designs have converged too. 

The block diagrams for shared-memory and message-passing machines 
look essentially like this: 

In shared memory, the network interface 
is integrated with the memory controller.   

It initiates a transaction to access memory 
at a remote node. 

In message-passing, the network interface 
is essentially an I/O device. 

What does Solihin say about the ease of 
writing shared-memory and message-passing programs on these 
architectures? 

 Which model is easier to program for initially? 

 Why doesn’t it make much difference in the long run? 

 

The limits of parallelism: Amdahl’s law 

Speedup is defined as 

  time for serial execution     
time for parallel execution 

or, more precisely, as 

time for serial execution of best serial algorithm 
  time for parallel execution of our algorithm 

Give two reasons why it is better to define it the second way than the first.   

 Bad algorithms often have good speedup. 

M  M M 

Network 

P 

$ 

P 

$ 

P 

$ 
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 Synchronization overhead … one thread needs to wait until another 
thread arrives at a certain point. 

 Communication overhead … message-passing is not instantaneous. 

 Load imbalance … some threads may have work to do than others, 
and the fast ones need to wait for the slow ones. 

 Serial programs don’t have to use thread-safe libraries, and that 
helps them run faster. 

[§4.3.1]  If some portions of the problem don’t have much concurrency, the 
speedup on those portions will be low, lowering the average speedup of the 
whole program. 

Exercise: Submit your answers to the questions below. 

Suppose that a program is composed of a serial phase and a parallel 
phase. 

 The whole program runs for 1 time unit. 

 The serial phase runs for time s, and the parallel phase for time 
1s. 

Then regardless of how many processors N are used, the execution time of 
the program will be at least s 

and the speedup will be no more than 1/s.  This is known as Amdahl’s law. 

For example, if 25% of the program’s execution time is serial, then 
regardless of how many processors are used, we can achieve a speedup 
of no more than 4. 

Efficiency is defined as 

            speedup   

number of processors 

 

 Let us normalize computation time so that 
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• the serial phase takes time 1, and 
• the parallel phase takes time p if run on a single processor. 
 

Then if run on a machine with N processors, the parallel phase takes p/N. 

Let  be the ratio of serial time to total execution time. Thus 

  
1

1  p/N
  

N
N  p

 .
 

For large N,  approaches 1, so efficiency approaches 0. 

Does it help to add processors?  No … 

Gustafson’s law: But this is a pessimistic way of looking at the situation. 

 

In 1988, Gustafson et al. noted that as computers become more powerful, 
people run larger and larger programs. 

Therefore, as N increases, p tends to increase too.  Thus, the fraction of 
time 1– does not necessarily shrink with increasing N, and efficiency 
remains reasonable. 

There may be a maximum to the amount of speedup for a given problem 
size, but since the problem is “scaled” to match the processing power of the 
computer, there is no clear maximum to “scaled speedup.” 

Gustafson’s law states that any sufficiently large problem can be efficiently parallelized. 
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Shared-Memory Parallel Programming 

[§3.1]  Solihin identifies several 
steps in parallel programming. 

The first step is identifying parallel 
tasks.  Can you give an example? 

The next step is identifying 
variable scopes.  What does this 
mean? 

The next step is grouping tasks 
into threads.  What factors need 
to be taken into account to do 
this?   
 
 
 

Then threads must be 
synchronized.  How have we 
seen this done in the last lecture? 

What considerations are important in mapping threads to processors? 

Solihin says that there are three levels of parallelism: 

 program level 
 algorithm level 
 code level 

Identifying loop-level parallelism 

[§3.2] Goal: given a code, without knowledge of the algorithm, find parallel 
tasks. 

Focus on loop-dependence analysis. 

Notations:  

 S is a statement in the source code 
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 S[i, j, …] denotes a statement in the loop iteration [i, j, …] 

 “S1 then S2” means that S1 happens before S2 

 If S1 then S2: 

S1 T S2 denotes true dependence, i.e., S1 writes to a location 
that is read by S2 (RAW hazard) 

S1 A S2 denotes anti-dependence, i.e., S1 reads a location 
written by S2  (WAR hazard) 

S1 O S2 denotes output dependence, i.e., S1 writes to the same 
location written by S2 (WAW hazard) 

Example: 

S1: x = 2; 
S2: y = x; 
S3: y = x + 4; 
S4: x = y; 
 
Exercise: Identify the dependences in the above code. 
 

 
 
 
 
 
 

Loop-independent vs. loop-carried dependences 

[§3.2]  Loop-carried dependence: dependence exists across iterations; i.e., 
if the loop is removed, the dependence no longer exists. 

Loop-independent dependence: dependence exists within an iteration; i.e., 
if the loop is removed, the dependence still exists. 

Example: 
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S1[i] T S1[i+1]: loop-carried 

S1[i] T S2[i]: loop-independent 

S3[i,j] T S3[i,j+1]:  

 loop-carried on for j loop 

 no loop-carried dependence in for 
i loop 

S4[i,j] T S4[i+1,j]:  
 

 no loop-carried dependence in for 
j loop 

 loop-carried on for i loop 

Iteration-space Traversal Graph 
(ITG) 

[§3.2.1]  The ITG shows 
graphically the order of traversal 
in the iteration space.  This is 

sometimes called the happens-before relationship.  In an ITG, 

 A node represents a point in the iteration space 

 A directed edge indicates the next point that will be encountered after 
the current point is traversed 

Example: 

 

 

for (i=1; i<n; i++) { 

  S1: a[i] = a[i-1] + 1; 

  S2: b[i] = a[i]; 

} 

 

for (i=1; i<n; i++) 

  for (j=1; j< n; j++) 

    S3: a[i][j] = a[i][j-1] + 1; 

 

for (i=1; i<n; i++) 

  for (j=1; j< n; j++) 

    S4: a[i][j] = a[i-1][j] + 1; 

 

for (i=1; i<4; i++) 

  for (j=1; j<4; j++) 

    S3: a[i][j] = a[i][j-1] + 1; 
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Loop-carried Dependence Graph (LDG) 

 LDG shows the true/anti/output dependence relationship graphically. 

 A node is a point in the iteration space. 

 A directed edge represents the dependence. 

Example:  

 

 

 

i 

j 

1 

2 

3 

3 2 1 

for (i=1; i<4; i++) 

  for (j=1; j<4; j++) 

    S3: a[i][j] = a[i][j-1] + 1; 
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Another example: 

 
 Draw the ITG 

 List all the dependence relationships 

Note that there are two “loop nests” in the code. 

 The first involves S1. 
 The other involves S2 and S3. 

1 

2 

3 

3 2 1 

i 

j 

  

T  

T  

T T 

T 

T 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) 

    S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j]; 

 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S2: a[i][j] = b[i][j] + c[i][j]; 

    S3: b[i][j] = a[i][j-1] * d[i][j]; 

  }  
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What do we know about the ITG for these nested loops?   
 

 

Dependence relationships for Loop Nest 1 

 True dependences:    
 

o S1[i,j] T S1[i,j+1] 
o S1[i,j] T S1[i+1,j] 

 Output dependences:  

o None 

 Anti-dependences:    
 

o S1[i,j] A S1[i+1,j] 
o S1[i,j] A S1[i,j+1] 

Exercise:  Suppose we dropped off the first half of S1, so we had 

S1: a[i][j] = a[i-1][j] + a[i+1][j]; 

or the last half, so we had  

S1: a[i][j] = a[i][j-1] + a[i][j+1]; 

Which of the dependences would still exist?   
 

i 

1 

2 

n 

n 2 1 . . . 

. . . 
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Draw the LDG for Loop Nest 1. 

 

Dependence relationships for Loop Nest 2 

 True dependences:  

o S2[i,j] T S3[i,j+1] 

 Output dependences:  

o None 

 Anti-dependences:  

o S2[i,j] A S3[i,j]  (loop-independent dependence) 

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

Note: each 

edge represents 

both true and 

anti-dependences 
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Draw the LDG for Loop Nest 2. 

 

Why are there no vertical edges in this graph?  Answer here.   
 

Why is the anti-dependence not shown on the graph?   
 

Exercise:  Consider this code sequence. 

for (i = 3; i < n; i++) {  
for (j = 0; j < n - 3; j++) {  

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];  
S2: B[i][j] = A[i][j] / 2;  

}  
} 

List the dependences, and say whether they are loop independent or loop 
carried.  Then draw the ITG and LDG (you don’t need to submit these). 

 

 

Finding parallel tasks across iterations 

[§3.2.2]  Analyze loop-carried dependences:  

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

Note: each 

edge represents 

only true dependences 
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 Dependences must be enforced (especially true dependences; other 
dependences can be removed by privatization) 

 There are opportunities for parallelism when some dependences are 
not present. 

Example 1  
 

 

LDG:  

 

We can divide the loop into two parallel 
tasks (one with odd iterations and 
another with even iterations): 

for (i=2; i<=n; i++) 

  S: a[i] = a[i-2]; 

for (i=2; i<=n; i+=2) 

  S: a[i] = a[i-2]; 

for (i=3; i<=n; i+=2) 
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Example 2 

 

 

LDG 

 

How many parallel tasks are there here?  n, one per iteration of the i loop. 
 

Example 3 

 
LDG 
 

 

 

 

Identify which nodes are not dependent on each other 

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

for (i=0; i<n; i++) 

  for (j=0; j< n; j++) 

    S3: a[i][j] = a[i][j-1] + 1; 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) 

    S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j]; 
j 

1 

2 

n 

n 2 1 . . 
. 

Note: each 

edge represents 

both true, and 
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In each anti-diagonal, the nodes are independent of each other 

We 
need to rewrite the code to iterate over anti-diagonals: 

Calculate number of anti-diagonals 
for each anti-diagonal do 
 Calculate the number of points in the current anti-diagonal 
   for_all points in the current anti-diagonal do  
      Compute the value of the current point in the matrix 

Parallelize the loops highlighted above. 

i 

1 

2 

n 

n 2 1 ... 
. 

... 

Note: each 

edge represents 

both true, and 

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals 

  if (i <= n) {                  

    points = i;          // number of points in anti-diag 

    row = i;             // first pt (row,col) in anti-diag  

    col = 1;             // note that row+col = i+1 always 

  } 

  else { 

    points = 2*n – i; 

    row = n; 

    col = i-n+1;         // note that row+col = i+1 always  

  } 
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DOACROSS Parallelism 

[§3.2.3]  Suppose we have this code:   

Can we execute anything in 
parallel? 

 

Well, we can’t run the 
iterations of the for loop in parallel, because … 

S[i] T S[i+1]  (There is a loop-carried dependence.) 

But, notice that the b[i]*c[i] part has no loop-carried dependence. 

This suggests breaking up the loop into two: 

The first loop is ||izable. 
The second is not. 

Execution time: N(TS1+TS2) 

What is a disadvantage of this 
approach?  Storage o’head. 

Here’s how to solve this 
problem: 

What is the execution time now?  
TS1 + NTS2 

for (i=1; i<=N; i++) { 

  S1: temp[i] = b[i] * c[i]; 

} 

for (i=1; i<=N; i++) { 

  S2: a[i] = a[i-1] + temp[i]; 

} 

post(0); 

for (i=1; i<=N; i++) { 

  S1: temp = b[i] * c[i]; 

  wait(i-1); 

  S2: a[i] = a[i-1] + temp; 

  post(i); 

} 

for (i=1; i<=N; i++) { 

  S: a[i] = a[i-1] + b[i] * c[i]; 

} 
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Function parallelism 

 [§3.2.4]  Identify dependences in a loop body. 

 If there are independent statements, can split/distribute the loops. 

Example: 

Loop-carried dependences:  

 

Loop-indep. dependences:   
            

Note that S4 has no 
dependences with other 
statements 

After loop distribution: 

Each loop is a parallel task. 

This is called function 
parallelism. 

It can be distinguished from 
data parallelism, which we saw 
in DOALL and DOACROSS. 

Further transformations can be 
performed (see p. 44 of text). 

 “S1[i] A S2[i+1]” implies 
that S2 at iteration i+1 must be 
executed after S1 at iteration i.  

Hence, the dependence is not violated if all S2s execute after all S1s. 

Characteristics of function parallelism: 

 Only gives modest ||ism, does not grow with input size. 

 Difficult to balance the load 

Can use function parallelism along with data parallelism when data 
parallelism is limited. 

for (i=0; i<n; i++) { 

  S1: a[i] = b[i+1] * a[i-1]; 

  S2: b[i] = b[i] * coef; 

  S3: c[i] = 0.5 * (c[i] + a[i]); 

  S4: d[i] = d[i-1] * d[i]; 

} 

for (i=0; i<n; i++) { 

  S1: a[i] = b[i+1] * a[i-1]; 

  S2: b[i] = b[i] * coef; 

  S3: c[i] = 0.5 * (c[i] + a[i]); 

} 

 

for (i=0; i<n; i++) { 

  S4: d[i] = d[i-1] * d[i]; 

} 
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DOPIPE Parallelism 

[§3.2.5]  Another strategy for loop-carried dependences is pipelining the 
statements in the loop. 

Consider this situation: 

Loop-carried dependences:  

Loop-indep. dependences:  

To parallelize, we just need to 
make sure the two statements are 
executed in sync: 

 

Question:  What’s the difference between 
DOACROSS and DOPIPE?   

 
 
 

Determining variable scope 

[§3.4]   This step is specific to the shared-memory programming model.  For each variable, we need to 
decide how it is used.  There are three possibilities: 

 Read-only: variable is only read by multiple tasks 

 R/W non-conflicting: variable is read, written, or both by only one task 

 R/W conflicting: variable is written by one task and may be read by another 

for (i=2; i<=N; i++) { 

  S1: a[i] = a[i-1] + b[i]; 

  S2: c[i] = c[i] + a[i]; 

} 

for (i=2; i<=N; i++) { 

  a[i] = a[i-1] + b[i]; 

  post(i); 

} 

 

for (i=2; i<=N; i++) { 

  wait(i); 

  c[i] = c[i] + a[i]; 

} 
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Intuitively, why are these cases different?  Read only needs to be in shared 
memory, one copy. 

R/W non-conflicting: Only one copy, but can be in local memory. 

R/W conflicting: One copy, in shared memory. 
 

Example 1 

Let’s assume 
each iteration 
of the for i 
loop is a 
parallel task. 

Fill in the 
tableaus here. 

Read-only R/W non-conflicting R/W conflicting 

n, c, d a, b i,j 

Now, let’s assume that each for j iteration is a separate task. 

Read-only R/W non-conflicting R/W conflicting 

n, c, d, i b a, j 

= Corrected after class 

Do these two decompositions create the same number of tasks?   
No, the first creates n tasks, and the second creates n2 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S2: a[i][j] = b[i][j] + c[i][j]; 

    S3: b[i][j] = a[i][j-1] * d[i][j]; 

  } 
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Example 2 

Let’s assume that 
each for j iteration is a 
separate task.    

 

 

Read-only R/W non-conflicting R/W conflicting 

n, c, d, i  a, b, e j 

Exercise: Suppose each for i iteration were a separate task … 

Read-only R/W non-conflicting R/W conflicting 

n, c, d b, e a, i, j 
 

 

Privatization 

Privatization means making private copies of a shared variable. 

What is the advantage of privatization?   
It removes read-write conflicts, so tasks can run in parallel, without paying attention to which other task 
is reading or writing a variable. 

Of the three kinds of variables in the table above, which kind(s) does it make sense to privatize?   R/W 
conflicting 

Under what conditions is a variable privatizable? 

 If it is always defined (=written) in program order by a task before use 
(=read) by the same task (Case 1). 

 If its values in different parallel tasks are known ahead of time, 
allowing private copies to be initialized to the known values (Case 2). 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S1: a[i][j] = b[i][j] + c[i][j]; 

    S2: b[i][j] = a[i-1][j] * d[i][j]; 

    S3: e[i][j] = a[i][j]; 

  } 
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When a variable is privatized, one private copy is made for each thread 
(not each task). 

Result of privatization:  R/W conflicting  R/W non-conflicting 

Let’s revisit the examples. 

Example 1 

With each for i 
iteration a separate 
task, which of the 
R/W conflicting 
variables are 
privatizable?  

i (Case 2), j (Case 1) 

Which case does each such variable fall into?   
 

We can think of privatized variables as arrays, indexed by process ID:  
i[id] 

Example 2 

Parallel tasks: each for j loop iteration. 

Is the R/W conflicting variable j privatizable?  If so, which case does it 
represent?  Yes, Case 2 

Reduction 

Reduction is another way to remove conflicts.  It is based on partial sums. 

Suppose we have a large matrix, and need to 
perform some operation on all of the elements—
let’s say, a sum of products—to produce a single 
result. 

We could have a single processor undertake this, but 
this is slow and does not make good use of the 
parallel machine. 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S2: a[i][j] = b[i][j] + c[i][j]; 

    S3: b[i][j] = a[i][j-1] * d[i][j]; 

  } 
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So, we divide the matrix into portions, and have one processor work on each portion. 

Then after the partial sums are complete, they are combined into a global sum.  Thus, the array has 
been “reduced” to a single element. 

Examples:  

 addition (+), multiplication (*) 

 Logical (and, or, …) 

The reduction variable is the scalar variable that is the result of a reduction 
operation. 

Criteria for reducibility: 

 Reduction variable is updated by each task, and the order of update 
does not matter. 

 Hence, the reduction operation must be associative and 
commutative. 

Goal: Compute 

y = y_init op x1 op x2 op x3 … op xn 

op is a reduction operator if it is commutative 

 u op v = v op u 

and associative  

(u op v) op w = u op (v op w) 
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Summary of scope criteria 

Should be 
declared private 

Should be 
declared shared 

Should be de-
clared reduction 

Non-privatizable 
R/W conflicting 

Privatizable 
R/W conflicting 

Read-only 
R/W non-conflicting Reduction 

Declare as 
shared and 
protect by 

synchronization 
 

 

Example 1 

with for i parallel 
tasks 

Fill in the answers 
here. 

Read-only R/W non-conflicting R/W conflicting 

c, d, n a, b i, j 
 

Declare as shared Declare as private 

a, b, c, d, n i, j 

 

 

Example 2 

with for j parallel tasks 

Fill in the answers 
here. 

 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S2: a[i][j] = b[i][j] + c[i][j]; 

    S3: b[i][j] = a[i][j-1] * d[i][j]; 

for (i=1; i<=n; i++) 

  for (j=1; j<=n; j++) { 

    S1: a[i][j] = b[i][j] + c[i][j]; 

    S2: b[i][j] = a[i-1][j] * d[i][j]; 

    S3: e[i][j] = a[i][j]; 

  } 
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Read-only R/W non-conflicting R/W conflicting 

C,d, I, n a, b, e j 
 

Declare as shared Declare as private 

a, b, c, d, i, n j 

 

Example 3 

Consider matrix 
multiplication. 

 

Exercise:  Suppose the 
parallel tasks are for k 
iterations.  Determine 
which variables are conflicting, which should be declared as private, and which need to be protected 
against concurrent access by using a critical section. 

Read-only R/W non-conflicting R/W conflicting 

A, B, i, j, n  C, k 
 

Declare as shared Declare as private 

A, B, [C], i, j, n k 

Which variables, if any, need to be protected by a critical section? C 

Now, suppose the parallel tasks are for i iterations.  Determine which variables are conflicting, which 
should be declared as private, and which need to be protected against concurrent access by using a 
critical section. 

Read-only R/W non-conflicting R/W conflicting 

A,B,n C i, j, k 
 

Declare as shared Declare as private 

A,B, C, n i, j, k 

for (i=0; i<n; i++) 

  for (j=0; j<n; j++) { 

    C[i][j] = 0.0; 

    for (k=0; k<n; k++) { 

      C[i][j] = C[i][j] + A[i][k]*B[k][j]; 



 

Lecture 2 Architecture of Parallel Computers 33 

Which variables, if any, need to be protected by a critical section?  None 

Synchronization 

Synchronization is how programmers control the sequence of operations 
that are performed by parallel threads. 

Three types of synchronization are in widespread use. 

 Point-to-point: 

o a pair of post() and wait()  

o a pair of send() and recv() in message passing 

 Lock 

o a pair of lock() and unlock()  

o only one thread is allowed to be in a locked region at a given 
time 

o ensures mutual exclusion 

o used, for example, to serialize accesses to R/W concurrent 
variables. 

 Barrier 

o a point past which a thread is allowed to proceed only when all 
threads have reached that point.  

Lock 

What problem may arise here? 

 

 

Two tasks 
may each 
fetch a variable and increment it concurrently. Then the task that stores it 
back later overwrites the contribution of the task that wrote it earlier.  

A lock prevents more than one thread from being inside the locked region. 

// inside a parallel region 

for (i=start_iter; i<end_iter; i++) 

  sum = sum + a[i]; 
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Issues:  

 What 

granularity to lock?  

 How to build a lock that is correct and fast.  

Barrier: Global event synchronization 

 

A barrier is used when the code that follows requires that all threads have 
gotten to this point.  Example: Simulation that works in terms of timesteps. 

Load balance is important. 

Execution time is dependent on the slowest thread. 

This is one reason for gang scheduling and avoiding time sharing and 
context switching. 

Simulating ocean currents 

We will study a parallel application that simulates ocean currents. 

 

// inside a parallel region 

for (i=start_iter; i<end_iter; i++) { 

    lock(x); 

    sum = sum + a[i]; 

    unlock(x); 

} 
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Goal: Simulate the motion of water currents in the ocean.  Important to 
climate modeling. 

Motion depends on atmospheric forces, friction with ocean floor, and 
“friction” with ocean walls. 

To predict the state of the ocean at any instant, we need to solve complex 
systems of equations. 

The problem is continuous in both space and time.   
But to solve it, we discretize it over both dimensions. 

Every important variable, e.g., 

• pressure • velocity • currents 

has a value at each grid point. 

This model uses a set of 2D horizontal cross-sections through the ocean 
basin. 

Equations of motion are solved at all the grid points in one time-step. 

 The state of the variables is updated, based on this solution. 

 The equations of motion are solved for the next time-step. 

Tasks 

The first step is to divide the work into tasks. 

(a) Cross sections  
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 A task is an arbitrarily defined portion of work. 

 It is the smallest unit of concurrency that the program can exploit. 

Example:  In the ocean simulation, a task can be computations on— 

 a single grid point,  
 a row of grid points, or  
 any arbitrary subset of the grid. 

Tasks are chosen to match some natural granularity in the work. 

 If the grain is small, the decomposition is called   . 

 If it is large, the decomposition is called    . 

Threads 

A thread is an abstract entity that performs tasks. 

 A program is composed of cooperating threads. 
 Each thread is assigned to a processor. 
 Threads need not correspond 1-to-1 with processors! 

Example:  In the ocean simulation, an equal number of rows may be 
assigned to each thread. 

Four steps in parallelizing a program: 

 Decomposition of the computation into tasks. 
 Assignment of tasks to threads. 
 Orchestration of the necessary data access, communication, and 

synchronization among threads. 
 Mapping of threads to processors. 
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Together, decomposition and assignment are called partitioning. 

They break up the computation into tasks to be divided among threads. 

The number of tasks available at a time is an upper bound on the 
achievable parallelism. 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data 
locality

Reduce communication and synchronization cost 
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if 
necessary

Exploit locality in network topology
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Parallelization of an Example Program 

[§2.3]  In this lecture, we will consider a parallelization of the kernel of the 
Ocean application. 

The serial program 

The equation solver solves a PDE on a grid. 

It operates on a regular 2D grid of (n+2) by (n+2) elements. 

• The boundary elements in the border rows and columns do not 
change. 

• The interior n-by-n points are updated, starting from their initial values. 
 

A [ i,j ] = 0.2    ( A [ i,j ] +  A [ i,j –  1] +  A [ i –  1 ,  j ] + 

A [ i,j  + 1] +  A [ i  + 1,  j ]) 

Expr ession for updating each interior point: 

 

• The old value at each point is replaced by the weighted average of 
itself and its 4 nearest-neighbor points. 

• Updates are done from left to right, top to bottom. 

° The update computation for a point sees the new values of points 
above and to the left, and 

° the old values of points below and to the right. 

 This form of update is called the Gauss-Seidel method. 

During each sweep, the solver computes how much each element has 
changed since the last sweep. 
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• If this difference is less than a “tolerance” parameter, the solution has 
converged. 

• If so, we exit solver; if not, we do another sweep. 

Here is the code for the solver. 

 

Decomposition 

A simple way to identify concurrency is to look at loop iterations. 

Is there much concurrency in this example?  Does the algorithm let us 
perform more than one sweep concurrently?  
 

Note that— 

• Computation proceeds from left to right and top to bottom. 

1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 
2.  double **A, diff = 0; 
 
3.  main() 
4.  begin 
5.   read(n) ;           /*read input parameter: matrix size*/ 
6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 
7.   initialize(A);        /*initialize the matrix A somehow*/  
8.   Solve (A);         /*call the routine to solve equation*/ 
9.  end main 
 
10. procedure Solve (A)       /*solve the equation system*/ 
11.  double **A;          /*A is an (n + 2)-by-(n + 2) array*/ 
12. begin 
13.  int i, j, done = 0; 
14.  float diff = 0, temp; 
15.  while (!done) do       /*outermost loop over sweeps*/ 
16.   diff = 0;          /*initialize maximum difference to 0*/ 
17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 
18.    for j  1 to n do 
19.     temp = A[i,j];     /*save old value of element*/ 
20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.     diff += abs(A[i,j] - temp);      
23.    end for 
24.   end for 
25.   if (diff/(n*n) < TOL) then done = 1;         
26.  end while 
27. end procedure 
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• Thus, to compute a point, we use  

° the updated values from the point above and the point to the left, 
but 

° the “old” values of the point itself and its neighbors below and to 
the right. 

Here is a diagram that illustrates the dependences. 

 

The horizontal and vertical 
lines with arrows indicate 
dependences. 

The dashed lines along the 
antidiagonal connect points 
with no dependences that can 
be computed in parallel. 

Of the O(   ) work in each 
sweep,  concurrency propor-
tional to          along 
antidiagonals. 

How could we exploit this parallelism? 

• We can leave loop structure alone and let loops run in parallel, 
inserting synchronization ops to make sure a value is computed 
before it is used. 

Why isn’t this a good idea?   
 

• We can change the loop structure, making 

° the outer for loop (line 17) iterate over anti-diagonals, and 

° the inner for loop (line 18) iterate over elements within an 
antidiagonal. 

Why isn’t this a good idea?  
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The Gauss-Seidel algorithm doesn’t require us to update the points from 
left to right and top to bottom. 

It is just a convenient way to program on a uniprocessor. 

We can compute the points in another order, as long as we use updated 
values frequently enough (if we don’t, the solution will converge, but more 
slowly). 

Red-black ordering 

Let’s divide the points into alternating “red” and “black” points: 

 

Red point 

Black point 

 

To compute a red point, we don’t need the updated value of any other red 
point.  But we need the updated values of 2 black points. 

And similarly for computing black points. 

Thus, we can divide each sweep into two phases. 

• First we compute all red points. 
• Then we compute all black points. 

True, we don’t use any updated black values in computing red points. 

But we use all updated red values in computing black points. 

Whether this converges more slowly or faster than the original ordering 
depends on the problem. 
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But it does have important advantages for parallelism. 

• How many red points can be computed in parallel?  n2/2 
 

• How many black points can be computed in parallel?  n2/2 
 

Red-black ordering is effective, but it doesn’t produce code that can fit on a 
single display screen. 

A simpler decomposition 

Another ordering that is simpler but still works reasonably well is just to 
ignore dependences between grid points within a sweep. 

A sweep just updates points based on their nearest neighbors, regardless 
of whether the neighbors have been updated yet. 

Global synchronization is still used between sweeps, however. 

Now execution is no longer deterministic. 

The number of sweeps needed, and the results, may depend on the 
number of processors used. 

But for most reasonable assignments of processors, the number of sweeps 
will not vary much. 

Let’s look at the code for this. 

 

15. while (!done) do       /*a sequential loop*/ 
16.  diff = 0;        
17.  for_all i  1 to n do    /*a parallel loop nest*/ 
18.   for_all j  1 to n do 
19.    temp = A[i,j];     
20.    A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.     A[i,j+1] + A[i+1,j]);      
22.    diff += abs(A[i,j] - temp);      
23.   end for_all 
24.  end for_all 
25.  if (diff/(n*n) < TOL) then done = 1;         
26. end while 
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The only difference is that for has been replaced by for_all. 

A for_all just tells the system that all iterations can be executed in parallel. 

With for_all in both loops, all n2 iterations of the nested loop can be 
executed in parallel. 

We could write the program so that the computation of one row of grid 
points must be assigned to a single processor.  How would we do this?   

With each row assigned to a different processor, each task has to access 
about 2n grid points that were computed by other processors; meanwhile, it 
computes n grid points itself. 

So the communication-to-computation ratio is O(1). 

Assignment 

How can we statically assign elements to processes? 

• One option is “block 
assignment”—Row i is 
assigned to process i / p. 

p
0

p
1

p
2

p
3

 

• Another option is “cyclic assignment—Process i is assigned rows i, 
i+p, i+2p, etc. 

• Another option is 2D contiguous block partitioning. 

We could instead use dynamic assignment, where a process gets an index, 
works on the row, then gets a new index, etc.  Is there any advantage to 
this?   

What are advantages and disadvantages of these partitionings? 
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Static assignment of rows to processes reduces concurrency  
 

But block assignment reduces communication, by assigning adjacent rows 
to the same processor. 

How many rows now need to be accessed from other processors?   
 

So the communication-to-computation ratio is now only O(  ). 

Orchestration 

Once we move on to the orchestration phase, the computation model 
affects our decisions. 

Data-parallel model 

In the code below, we assume that global declarations are used for shared 
data, and that any data declared within a procedure is private. 

Global data is allocated with g_malloc. 

Differences from sequential program: 

• for_all loops 
• decomp statement 
• mydiff variable, private to each process 
• reduce statement 
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The decomp statement has a twofold purpose. 

• It specifies the assignment of iterations to processes. 

 The first dimension (rows) is partitioned into nprocs contiguous 
blocks.  The second dimension is not partitioned at all. 

 Specifying [CYCLIC, *, nprocs] would have caused a cyclic 
partitioning of rows among nprocs processes. 

 Specifying [*,CYCLIC, nprocs] would have caused a  
cyclic partitioning of columns among nprocs processes. 

1.  int n,  nprocs ; /*grid size (n+2n+2) and # of processes*/ 
2.  double **A, diff = 0; 

3.  main() 
4. begin 
5.  read(n); read( nprocs ); ;  /*read input grid size and # of processes*/ 
6.   A     G_MALLOC  (a 2-d array of size n+2 by n+2 doubles); 
7.  initialize(A); /*initialize the matrix A somehow*/ 
8.  Solve (A); /*call the routine to solve equation*/ 
9.  end main 

10. procedure Solve(A) /*solve the equation system*/ 
11.  double **A;    /* A is an (n+2n+2) array*/ 
12.  begin 
13. int i, j, done = 0; 
14. float  mydiff  = 0, temp; 
14a. DECOMP A[BLOCK,*, nprocs]; 
15. while (!done) do /*outermost loop over sweeps*/ 
16. mydiff  = 0;   /*initialize maximum difference to 0 */ 
17. for_all  i    1 to n do /*sweep over non-border points of grid*/ 
18. for_all  j    1 to n do 
19. temp = A[i,j]; /*save old value of element*/ 
20. A[i,j]    0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); /* compute average*/ 
22. mydiff += abs(A[i,j] - temp); 
23. end for_all 
24. end for_all 
24a. REDUCE (mydiff, diff, ADD); 
25. if (diff/(n*n) < TOL) then done = 1; 
26. end while 
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 Specifying [BLOCK, BLOCK, nprocs] would have implied a 2D 
contiguous block partitioning. 

• It specifies the assignment of grid data to memories on a distributed-
memory machine.  (Follows the owner-computes rule.) 

The mydiff variable allows local sums to be computed. 

The reduce statement tells the system to add together all the mydiff 
variables into the shared diff variable. 

Shared-memory model 

In this model, we 
need mechanisms to 
create processes and 
manage them. 

After we create the 
processes, they 
interact as shown on 
the right. Sweep

Test Convergence

Processes

Solve Solve Solve Solve
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What are the main differences between the serial program and this 
program? 

• The first process creates nprocs–1 worker processes.  All n 
processes execute Solve. 

 All processes execute the same code. 

 But all do not execute the same instructions at the same time. 

1.  int n,  nprocs;   /*matrix dimension and number of processors to be used*/ 
2a. double**A, diff; /*A is global (shared) array representing the grid*/ 

/*diff is global (shared) maximum difference in current 
sweep*
/ 2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/ 

2c. BARDEC (bar1); /*barrier declaration for global synchronization between 
sweeps*
/ 

3.  main() 
4.  begin 
5.  read(n); read( nprocs ); /*read input matrix size and number of processes */ 
6.  A     G_MALLOC  (a two-dimensional array of size n+2 by n+2 doubles); 
7.  initialize(A);   /*initialize A in an unspecified way*/ 
8a. CREATE (nprocs–1, Solve, A); 
8. Solve(A); /*main process becomes a worker 

too*/ 8b.  WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9.  end main 

10.  procedure Solve(A) 
11.  double**A; /*A is entire n+2-by-n+2 shared array, 

as in the sequential program*/ 
12. begin 
13. int i,j,  pid , done = 0; 
14. float temp,  mydiff  = 0;   /*private variables*/ 
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/ 
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/ 

15.  while (!done) do /* outer loop over all diagonal elements*/ 
16.  mydiff   =  diff  =   0 ; /*set global diff to 0 (okay for all to do it)*/ 
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/ 
17.  for i     mymin  to  mymax  do   /*for each of my rows */ 
18.  for j    1 to n do /*for all nonborder elements in that row*/ 
19. temp = A[i,j]; 
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); 
22. mydiff  += abs(A[i,j] - temp); 
23.  endfor 
24.  e ndfor 
25a. LOCK(diff_lock); /*update global diff if necessary*/ 
25b. diff +=  mydiff ; 
25c. UNLOCK(diff_lock); 
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/ 
25e. if (diff/(n*n) < TOL) then done = 1;   /*check convergence; all get 

same answer*/ 
25f. BARRIER(bar1, nprocs); 
26. endwhile 
27. end procedure 
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• Private variables like mymin and mymax are used to control loop 
bounds. 

• All processors need to— 

° complete an iteration before any process tests for convergence.  
Why? 

° test for convergence before any process starts the next iteration.  
Why? 

 Notice the use of barrier synchronization to achieve this. 

• Locks must be placed around updates to diff, so that no two 
processors update it at once.  Otherwise, inconsistent results could 
ensue. 

 p1 p2 

 r1  diff  { p1 gets 0 in its r1} 

  r1  diff { p2 also gets 0} 

 r1  r1+r2  { p1 sets its r1 to 1} 

  r1  r1+r2 { p2 sets its r1 to 1} 

 diff  r1  { p1 sets diff  to 1} 

  diff  r1 { p2 also sets diff to 1} 

If we allow only one processor at a time to access diff, we can avoid this 
race condition. 

What is one performance problem with using locks?   
 
 

Note that at least some processors need to access diff as a non-local 
variable. 

What is one technique that our shared-memory program uses to diminish 
this problem of serialization?   
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Message-passing model 

The program for the message-passing model is also similar, but again 
there are several differences. 

 There’s no shared address space, so we can’t declare array A to be 
shared. 

 Instead, each processor holds the rows of A that it is working on. 

 The subarrays are of size (n/nprocs + 2)  (n + 2). 
 This allows each subarray to have a copy of the boundary rows from 

neighboring processors.  Why is this done?   
 

 These ghost rows must be copied explicitly, via send and receive 
operations. 

 Note that send is not synchronous; that is, it doesn’t make the 
process wait until a corresponding receive has been executed. 

 What problem would occur if it did?   
 
 

• Since the rows are copied and then not updated by the processors 
they have been copied from, the boundary values are more out-of-
date than they are in the sequential version of the program. 

 This may or may not cause more sweeps to be needed for 
convergence. 

• The indexes used to reference variables are local indexes, not the 
“real” indexes that would be used if array A were a single shared 
array. 
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1. int pid, n, b;        /*process id, matrix dimension and number of  
              processors to be used*/ 
2. float **myA; 
3. main()  
4. begin 
5.   read(n);   read(nprocs);  /*read input matrix size and number of processes*/ 
8a.   CREATE (nprocs-1, Solve); 
8b.   Solve();        /*main process becomes a worker too*/ 
8c.   WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9. end main 
 
10. procedure Solve() 
11. begin  
13.  int i,j, pid, n’ = n/nprocs, done = 0; 
14.  float temp, tempdiff, mydiff = 0;  /*private variables*/ 
6.  myA  malloc(a 2-d array of size [n/nprocs + 2] by n+2); 
              /*my assigned rows of A*/ 
7. initialize(myA);        /*initialize my rows of A, in an unspecified way*/ 
 
15. while (!done) do 
16.   mydiff = 0;       /*set local diff to 0*/  
16a.  if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW); 
16b.  if (pid != nprocs-1) then 
    SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW); 
16c.  if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW); 
16d.  if (pid != nprocs-1) then  
    RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW); 
              /*border rows of neighbors have now been copied 
              into myA[0,*] and myA[n’+1,*]*/ 
17.   for i  1 to n’ do    /*for each of my (nonghost) rows*/  
18.    for j  1 to n do   /*for all nonborder elements in that row*/ 
19.    temp = myA[i,j];     
20.    myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] + 
21.     myA[i,j+1] + myA[i+1,j]);      
22.    mydiff += abs(myA[i,j] - temp);      
23.    endfor 
24.   endfor 
              /*communicate local diff values and determine if 
              done; can be replaced by reduction and broadcast*/ 
25a.   if (pid != 0) then      /*process 0 holds global total diff*/ 
25b.    SEND(mydiff,sizeof(float),0,DIFF);  
25c.    RECEIVE(done,sizeof(int),0,DONE);  
25d.   else            /*pid 0 does this*/ 
25e.    for i  1 to nprocs-1 do  /*for each other process*/  
25f.     RECEIVE(tempdiff,sizeof(float),*,DIFF);  
25g.     mydiff += tempdiff;     /*accumulate into total*/ 
25h.    endfor  
25i   if (mydiff/(n*n) < TOL) then   done = 1; 
25j.    for i  1 to nprocs-1 do  /*for each other process*/  
25k.     SEND(done,sizeof(int),i,DONE);  
25l.    endfor 
25m.  endif 
26. endwhile 
27. end procedure 
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Parallel access to linked data structures 

[Solihin Ch. 4]  Answer the questions below. 

Name some linked data structures.   
 

What operations can be performed on all of these structures?   
 

Why is it hard to parallelize these operations?   
 

Explain how the following code illustrates such a dependence. 

void addValue(pIntList pList, int key, int x) { 

   pIntListNode p = pList->head;  

   while (p != NULL) {  

     if (p->key == key)  

       S1: p->data = p->data + x;  

     S2: p = p->next;  

 }  

} 

In the notation introduced in Lecture 5, how would the dependence be 
written? 

S1[i] T S1[i+1],  S2[i] T S2[i+1], except that there is no i 
in the program. 

If we just look at the loops in an “LDS” program, we won’t find any 
parallelism to be exploited. 

So, where can we find the opportunity to execute anything in parallel?   
The “algorithm level”—parallelism between the operations that are 
performed on the LDS. 
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Conceptually, we can allow several operations to be performed (partially) in 
parallel.  What kind of operations?  search, insertion, deletion 

But how do we decide which operations can be performed in parallel? 

Correctness of parallel LDS operations 

Serializability:  A parallel execution of a group of operations (or primitives) 
is said to be serializable if there is some sequence of operations (or 
primitives) that produce an identical result. 

Suppose a node insertion i1 and a node deletion d1 are performed in 
parallel.  The outcome must be equivalent to either 

 i1 followed by d1, or 
 d1 followed by i1, or 

Conflict between two insertions 
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Let’s look at the simple 
case of a singly-linked 
list. 

Suppose two 
items are inserted 
in parallel: insert 
both 4 and 5. 

Serializable 
outcomes:  

insert 4, then 
insert 5 
 
or insert 5, then 
insert 4 

In any case,  
both 4 and 5 
must be in the list 
at the end of 
execution 

 

What could 
happen if the 
operations are not 
parallelized 
correctly?  Node 4 

could be lost, or node 5 could be lost. 

Conflict between an insertion and a deletion 
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Serializable 
outcome: 

delete 5, insert 4 

or insert 4, delete 
5 

in both cases, at 
the end of 
execution, node 4 
is in the list, but 
node 5 is not in the 
list 

 

 

In the case shown, 
node 4 is lost.  

What would be a sequence that produces another incorrect result?  What 
would happen with this sequence?  (You may use this worksheet.)   
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Conflict between an insertion and a search 

 

Suppose 
we attempt 

insert 5, then search 6 

or  search 6, then insert 5 

in both cases, at the end of execution,  

 5 must be in the list, and  

 6 must be found 
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Depending on when the insertion code is executed, 

 

 node 6 will be found, or 

 node 6 may not be found, and an uninitialized link may be followed. 

Conflict between a deletion and a search 

 Deletion and search 

o delete 5, then search for 5  
o search for 5, then delete 5 

 Possible outcomes 

o Node 5 may be found or not found 
o Node 5 is deleted from the list 

What, if anything, is the problem with these outcomes?  Neither; both are serializableg;  
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Main Observations 

 Parallel execution of two operations that affect a common node, in which at least one operation 
involves writing to the node, can produce conflicts that lead to non-serializable outcome.  

 Under some circumstances, a serializable outcome may still be achieved, despite the conflicts 
mentioned above.  

 Conflicts can also occur between LDS operations and memory-management functions such as 
allocation and deallocation.  

Parallelization strategies 

 Parallelization among readers 

o Very simple 
o Works well if structure is modified infrequently 

 Global lock approach 

o Relatively simple 
o Parallel traversal, followed by sequential list modifications 
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 Fine-grain lock approach 

o A lock is associated with each node. 
o Each operation locks only nodes that need to be accessed exclusively. 
o Complex: Deadlock can occur; memory allocation and deallocation become more 

complex 

Parallelization among readers 

 Basic idea 

o (Read-only) operations that do not modify the list can execute in parallel. 
o (Write) operations that modify the list execute sequentially 

 How to enforce 

o A read-only operation acquires a read lock 
o A write operation acquires a write lock 

 Construct a lock-compatibility table 

Already-granted lock Read lock 
requested 

Write lock 
requested 

Read lock Yes No 

Write lock No No 

Example 

IntListNode_Search(int x) 

{ 

  acq_read_lock(); 

  … 

    … 
    … 

  rel_read_lock(); 

} 

IntListNode_Insert(node *p) 

{ 

  acq_write_lock(); 

  … 

  … 
  … 

  rel_write_lock(); 

} 

Global-lock approach 

 Each operation logically has two steps 

o Traversal 

 Node insertion: Find the correct location for the node 
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 Node deletion: Find the node to delete 
 Node search: Find the sought-for node 

o List modification 

 Basic idea: perform the traversal in parallel, but modify the list in a critical section, i.e., lock the 
structure, then modify the list, then release the lock. 
 

 Pitfall 
o The list may have changed by the time the write-lock is acquired, 
o so the assumptions must be re-validated. 

Example 

IntListNode_Insert(node *p) 

{ 

  … 

  /* perform traversal */ 

  … 

  acq_write_lock(); 

  /* then check validity:  
    nodes still there?  
    link still valid? */ 

  /* if not valid, repeat traversal */ 

  /* if valid, modify list */ 

  … 

  rel_write_lock(); 

} 

Fine-grain locking approach 
 Associate each node with a lock (read, write). 
 Each operation locks only needed nodes. 
 (Read and write) operations execute in parallel except when they conflict on some nodes.  Fill in 

the blanks below. 
o Nodes that will be modified are write-locked. 
o Nodes that are read and must remain unchanged are read-locked. 

 Pitfall: Deadlock becomes possible. 
o Suppose one operation locks node 1 and then needs to lock node 2, while another 

operation locks node 2 and then needs to lock node 1. 

o Then neither operation can complete before the other operation frees the lock it is 
holding. 
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 Deadlocks can be prevented by imposing a global ordering on the order in which nodes are 
acquired. 

Example 

void insert(pIntList pList, int x){ 

  int succeed;  

  … /* traversal code to find where to insert */ 

  /* insert the node at head or between prev & p */ 

  succeed = 0; 

  do { 

    acq_write_lock(prev); 

    acq_read_lock(p); 

    if (prev->next != p || prev->deleted || p->deleted) 

    { 

   rel_write_lock(prev); 

    rel_read_lock(p); 

    … /* repeat traversal */ 

 } 

 else 

   succeed = 1; 

  } while (!succeed); 

  /* prev and p are now valid, so insert node */ 

  newNode->next = p; 

  if (prev != NULL) 

    prev->next = newNode; 

  else 

    pList->head = newNode; 

  rel_write_lock(prev); 

  rel_read_lock(p); 

} 

Questions 



 

Lecture 2 Architecture of Parallel Computers 61 

What do the tests prev->deleted and p->deleted mean?   
 

Why is garbage collection used, rather than explicit deletion?   
 
 

The delete operation is similar; code that is the same is shown in green. 

void delete(pIntList pList, int x){ 

  int succeed;  

  … /* traversal code to find node to delete */ 

 

  /* node has been found; perform the deletion */ 

  succeed = 0; 

  do { 

    acq_write_lock(prev); 

    acq_write_lock(p); 

    if (prev->next != p || prev->deleted || p->deleted) 

    { 

   rel_write_lock(prev); 

    rel_write_lock(p); 

    … /* repeat traversal; return if not found */ 

 } 

 else 

   succeed = 1; 

  } while (!succeed); 

  /* prev and p are now valid, so delete node */ 

  if (prev == NULL) { /* delete head node */ 

    acq_write_lock(pList); 

    pList->head = p->next; 

    rel_write_lock(pList); 

  } 
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  else /* delete non-head node */ 

    prev->next = p->next; 

  p->deleted = 1; /*don’t deallocate; mark deleted*/ 

  rel_write_lock(prev); 

  rel_write_lock(p); 

} 

- 
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Data parallel algorithms1 

 (Guy Steele):  The data-parallel programming style is an approach to organizing 
programs suitable for execution on massively parallel computers. 

In this lecture, we will— 

• characterize the    programming style, 

• examine the building blocks used to construct data-parallel programs, 
and 

• see how to fit these building blocks together to make useful 
algorithms. 

All programs consist of code and data put together.  If you have more than one 
processor, there are various ways to organize parallelism. 

• Control parallelism: Emphasis is on extracting parallelism by orienting 
the program’s organization around the parallelism in the code. 

•    parallelism: Emphasis is on organizing programs to extract 
parallelism from the organization of the data. 

With data parallelism, typically all the processors are at roughly the same point in 
the program. 

Control and data parallelism vs. SIMD and MIMD. 

• You may write a data-parallel program for a MIMD computer, or 

• a control-parallel program which is executed on a SIMD computer. 

 Emphasis in this talk will be on styles of organizing programs.  It becomes an 
engineering issue whether it is appropriate to organize the hardware to match the 
program. 

The sequential programming style, typified by C and Pascal, has building blocks 
like— 

• scalar arithmetic operators, 
• control structures like if … then … else, and 
• subscripted array references. 

 
1Video © 1991, Thinking Machines Corporation.  This video is available from University Video 
Communications, http://www.uvc.com. 
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The programmer knows essentially how much these operations cost.  E.g., 
addition and subtraction have similar costs; multiplication may be more 
expensive. 

To write data-parallel programs effectively, we need to understand the cost of 
data-parallel operations. 

• Elementwise operations (carried on independently by processors; 
typically    operations and tests). 

• Conditional operations (also elementwise, but some processors may 
not participate, or act in various ways). 

• Replication 

•     

• Permutation 

• Parallel prefix (scan)  
 

An example of an elementwise operation: 

Elementwise addition 

C = A + B 

 

3

6

9

1

2

3

4

1

5

5

3

8

2

0

2

1

1

2

3

1

4

2

5

7 +
 

Elementwise test 

if (A > B) 

 

3

6

0

1

2

0

4

1

0

5

3

0

2

0

0

1

1

0

3

1

0

2

5

0

>

 

The results can be used to “conditionalize” future operations: 

if (A > B) C = A + B 
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3

6

0

1

2

0

4

1

5

5

3

8

2

0

2

1

1

0

3

1

4

2

5

0 +
 

The set of bits that is used to conditionalize the operations is frequently called a 
condition mask or a context.  Each processor can perform different computations 
based on the data it contains. 

Building blocks 

Communications operations:  

•    : Get a single value out to all processors.  This 
operation happens so frequently that is worthwhile to support in 
hardware.  It is not unusual to see a hardware bus of some kind. 

• Spreading (nearest-neighbor grid).  One way is to have each row 
copied to its nearest neighbor. 

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2  

A better way is to use a copy-scan: 

• On the first step, the data is copied to the row that is directly 
below. 

• On the second step, data is copied from each row that has the 
data to the row that is two rows below. 

• On the third step, data is copied from each row to the row that is 
four rows below. 

 
 In this way, the row can be copied in logarithmic time, if we have the 

necessary interconnections. 
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•    —essentially the inverse of broadcasting.  Each 
processor has an element, and you are trying to combine them in 
some way to produce a single result. 

6 1 4 7 3 1 3 2

+

27

 

 Summing a vector in logarithmic time: 

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

x 0 x 2 x 4 x 6Σ 0
1 Σ 2

3 Σ 4
5 Σ 6 

7 

x 0 x 2 x 4 x 6Σ 0
1 Σ 0

3 Σ 4
5 Σ 4 

7 

x 0 x 2 x 4 x 6Σ 0
1 Σ 0

3 Σ 4
5 Σ 0 

7 
 

 Most of the time during the course of this algorithm, most processors 
have not been busy. 

 So while it is fast, we haven’t made use of all the processors. 

 Suppose you don’t turn off processors; what do you get?  Vector 
sum-prefix (sum-scan). 

  

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

Σ 0
1 Σ 2

3 Σ 4
5 Σ 6 

7 

Σ 0
1 Σ 0

3 Σ 2
5 Σ 4 

7 

Σ 0
1 Σ 0

3 Σ 0
5 Σ 0 

7 

Σ 0 
2 Σ 3 

4 Σ 5 
6 Σ 0 

0 

Σ 0 
0 

Σ 0 
0 

Σ 0 
2 Σ 1 

4 Σ 3 
6 

Σ 0 
2 Σ 0 

4 Σ 0 
6 

 

 Each processor has received the sum of what it contained, plus all 
the processors preceding it. 

 We have computed the sums of all prefixes—initial segments—of the 
array. 
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 This can be called the checkbook operation; if the numbers are a set 
of credits and debits, then the prefixes are the set of running 
balances that should appear in your checkbook. 

•    .  We wish to assign a different number to each 
processor. 

1 1 1 1 1 1 1 1

+

1

1 2 3 4 5 6 7 8

Broadcast

Sum-prefix

 

• Regular permutation. 

Shift 

A B C D E F G H

A B C D E F GH  

 Of course, one can do shifting on two-dimensional arrays too; you 
might shift it one position to the north. 

 Another kind of permutation is an odd-even swap: 

 

A B C D E F G H

B D F HA C E G  

 Distance 2k swap: 

  

A B C D E F G H

C A G ED B H F  

 Some algorithms call for performing irregular permutations on the 
data. 
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 A B C D E F G H

C E H FB A D G

 

 The permutation depends on the data.  Here we have performed a 
sort.  (Real sorting algorithms have a number of intermediate steps.) 

Example: image processing 

Suppose we have a rocket ship and need to figure out where it is. 

Some of the operations are strictly local.  We might focus in on a particular 
region, and have each processor look at its values and those of its neighbor. 

This is a local operation; we shift the data back and forth and have each 
processor determine whether it is on a boundary. 

When we assemble this data and put it into a global object, the communication 
patterns are dependent on the data; it depends on where the object happened to 
be in the image. 

Irregularly organized data 

Most of our operations so far were on arrays, regularly organized data. 

We may also have operations where the data are connected by pointers. 

In this diagram, imagine the processors as being in completely different parts of 
the machine, known to each other only by an address. 

       doubling: 

 

I originally thought that nothing could be more essentially sequential than 
processing a linked list.  You just can’t find the third one without going through 
the second one.  But I forgot that there is processing power at each node. 

The most important technique is pointer doubling.  This is the pointer analogue of 
the spreading operation we looked at earlier to make a copy of a vector into a 
matrix in a logarithmic number of steps. 

In the first step, each processor makes a copy of the pointer it has to its 
neighbor. 
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In the rest of the steps, each processor looks at the processor it is pointing to 
with its extra pointer, and gets a copy of its pointer. 

In the first step, each processor has a pointer to the next processor.  But in the 
next step, each processor has a pointer to the processor two steps away in the 
linked list. 

 

In the next step, each processor has a pointer to the pointer four processors 
away (except that if you fall off the end of the chain, you don’t update the 
pointer). 

Eventually, in a logarithmic number of steps, each processor has a pointer to the 
end of the chain. 

 

How can this be used?  In partial sums of a linked list. 

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
 

At the first step, each processor takes the pointer to its neighbor. 

At the next step, each processor takes the value that it holds, and adds it into the 
value in the place pointed to: 

Σ 0
1 Σ 2

3 Σ 4 
5 Σ 6

7Σ 0 
2 Σ 3

4 Σ 5 
6 Σ 0

0

 

Now we do this again: 

Σ 0
1 Σ 0

3 Σ 2 
5 Σ 4

7Σ 0
0 Σ 0 

2 Σ 1
4 Σ 3 

6 

 

And after the third step, you will find that each processor has gotten the sum of 
its own number plus all the preceding ones in the list. 
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Σ 0
1 Σ 0

3 Σ 0 
5 Σ 0

7Σ 0
0 Σ 0 

2 Σ 0
4 Σ 0 

6 

 

Speed vs. efficiency:  In sequential programming, these terms are considered to 
be synonymous.  But this coincidence of terms comes about only because you 
have a single processor. 

In the parallel case, you may be able to get it to go fast by doing extra work. 

Let’s take a look at the serial vs. parallel algorithm for summing an array. 

 -Reduction 

 Serial Parallel 

Processors 1 N 

Time steps N–1 log N 

Additions N–1 N–1 

Cost N–1 N log N 

Efficiency 1      
1

log N  

 
 Sum – Prefix 

 Serial Parallel 

Processors 1 n 

Time steps n–1 log n 

Additions n–1 n  ( log n–1) 

Cost n–1 n log n 

Efficiency 1  
log n–1

log n   

The serial version of sum–prefix is similar to the serial version of sum–reduction, 
but you save the partial sums.  You don’t need to do any more additions, though. 

In the parallel version, the number of additions is much greater.  You use n 
processors, and commit log n time steps, and nearly all of them were busy. 

As n gets large, the efficiency is very close to 1.  So this is a very efficient 
algorithm.  But in some sense, the efficiency is bogus; we’ve kept the processors 
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busy doing more work than they had to do.  Only n–1 additions are really 
required to compute sum–prefix.  But n(log n–1) additions are required to do it 
fast. 

Thus, the business of measuring the speed and efficiency of a parallel algorithm 
is tricky.  The measures I used are a bit naïve.  We need to develop better 
measures. 

Exercise:  Submit your answers here. 

Calculate the speedup of summing a vector using copy-scan (turning off the 
processors that are not in use). 

 How long does it take to sum the vector serially?   

 How long does it take to sum it using copy-scan?  

 What is the speedup?  

What is the efficiency (speedup ÷ # of processors) of summing a vector with 
copy-scan?  

In the parallel version of summing an array via sum-prefix, a “bogus” efficiency is 
mentioned.  What would be the “non-bogus” efficiency of the same algorithm?   
 

Putting the building blocks together 

Let’s consider matrix multiply. 

 

One way of doing this with a brute-force approach is to use n 3 processors. 

source2

source1
result

n

n

n
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1.  Replicate.  The first step is to make 
copies of the first source array, using a 
spread operation. 

 

2.  Replicate.  Then we will do the same 
thing with the second source, spreading 
those down the cube. 

So far, we have used O(log n) time. 
  

3.  Elementwise multiply.  n3 operations 
are performed, one by each processor. 

 
4.  Perform a parallel sum operation, using 
the doubling-reduction method. 

sum  
We have multiplied two matrices in  
O(log n) time, but at the cost of using n3 processors. 

Brute force: n3 processors O(log n) time 

Also, if we wanted to add the sum to one of the matrices, it’s in the wrong place, 
and we would incur an additional cost to move it. 

Cannon’s method 

There’s another method that only requires n2 processors.  We take the two 
source arrays and put them in the same n2 processors.  The result will also show 
up in the same n2 processors. 

We will pre-   the two source arrays. 

• The first array has its rows skewed by different amounts. 
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skew

 

• The columns of the second array are skewed. 

skew

 

The two arrays are overlaid, and they then look 
like this: 

This is a systolic algorithm; it rotates both of 
the source matrices at the same time. 

 

• The first source matrix is rotated horizontally. 
• The second source matrix is rotated vertically. 
 

  

At the first time step, the 2nd element of the first row and the 2nd element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the second time step, the 3rd element of the first row and the 3rd element of 
the first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the third time step, the 4th element of the first row and the 4th element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

At the fourth time step, the 1st element of the first row and the 1st element of the 
first column meet in the upper left corner.  They are then multiplied and 
accumulated. 

The same thing is going on at all the other points of the matrix. 
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The     serves to cause the correct elements of each row and 
column to meet at the right time. 

Cannon’s method: n2 processors O(n) time 

An additional benefit is that the matrix ends up in the right place. 

Labeling regions in an image 

Let’s consider a really big example. 

Instead of the rocket ship earlier in the lecture, we’ll consider a smaller region.  
(This is one of the problems in talking about data-parallel algorithms.  They’re 
useful for really large amounts of data, but it’s difficult to show that on the 
screen.) 

We have a number of regions in this 
image.  There’s a large central “green” 
region, and a “red-orange” region in the 
upper right-hand corner.  Some disjoint 
regions have the same color. 

We would like to compute a result in 
which each region gets assigned a 
distinct number. 

 
We don’t care which number gets  
assigned, as long as the numbers are distinct (even for regions of the same 
color. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60  

For example, here the central 
green region has had all its 
pixels assigned the value 19. 
 
The squiggly region in the 
upper left corner has received 
0 in all its pixels. 
 
The region in the upper right, 
even though the same color 
as the central green region, 
has received a different value. 
 

Let’s see how all the building blocks we have discussed can fit together to make 
an interesting algorithm. 
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First, let’s assign each processor a 
different number. 

Here I’ve assigned the numbers 
sequentially across the rows, but 
any distinct numbering would do. 

We’ve seen how the enumeration 
technique can do this in a 
logarithmic number of time steps. 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63  

 

Next, we have each of the 
pixels examine the values of its 
eight neighbors. 

This is easily accomplished 
using regular   —
namely, shifts of the matrix. 

We shift it up, down, left, right, 
to the northeast, northwest, 
southeast, and southwest. 

This is enough for each processor to do elementwise computation and decide 
whether it is on the border. 

 (There are messy details, but we won’t discuss them here, since they have little 
to do with parallelism.) 

The next computation will be carried out only by processors that are on the 
borders (an example of conditional operation). 

We have each of the processors again 
consider the pixel values that came 
from its neighbors, and 

inquire again, using shifting, if each of 
its neighbors are border elements. 

This is enough information to figure 
out which of your neighbors are border 
elements in the same region, so you 
can construct pointers to them.   
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0 1 2 4 5 6

8 9 10 11 13 14 15

17 18 19 20 21 22 23

25 26 28 29 30

32 33 37 38

40 41 42 44 45

48 49 50 51 52 53 54 55

56 59 60 61 62 63  

Now we have stitched together 
the borders in a linked list. 

We now use the pointer-
doubling algorithm.  Each pixel 
on the borders considers the 
number that it was assigned in 
the enumeration step. 

We use the pointer-doubling 
algorithm to do a reduction step 
using the min operation. 

0 0 2 2 5 5

8 0 0 2 2 2 2 5

8 0 19 2 2 2 23

8 19 19 19 23

8 19 19 23

8 19 19 19 23

8 49 49 19 19 23 23 23

49 49 60 60 60 60  

Each linked list performs poin-
ter-doubling around that list, 
and determines which number 
is the smallest in the list. 

Then another pointer-doubling 
algorithm makes copies of that 
minimum all around the list. 

Finally, we can use     operation, not on linked lists, but by operating on the 
columns (or the rows) to copy the processor labels from the borders to the rows. 

Other items, particularly those on 
the edge, may need the numbers 
propagated up instead of down.  
So you do a scan in both 
directions. 

The operation used is a non-
commutative operation that copies 
the old number from the neighbor, 
unless it comes across a new 
number. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

sca
n

 

This is known as Lim’s algorithm. 

 Region labeling: O(n2) processors. O(log n) time 

 (Each of the steps was either constant time or O(log n) time.) 
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Data-parallel programming makes it easy to organize operations on large 
quantities of data in massively parallel computers. 

It differs from sequential programming in that its emphasis is on operations on 
entire sets of data instead of one element at a time. 

You typically find fewer loops, and fewer array subscripts. 

On the other hand, data-parallel programs are like sequential programs, in that 
they have a single thread of control. 

In order to write good data-parallel programs, we must become familiar with the 
necessary building blocks for the construction of data-parallel algorithms. 

With one processor per element, there are a lot of interesting operations which 
can be performed in constant time, and other operations which take logarithmic 
time, or perhaps a linear amount of time. 

This also depends on the connections between the processors.  If the hardware 
doesn’t support sufficient connectivity among the processors, a communication 
operation may take more time than would otherwise be required. 

Once you become familiar with the building blocks, writing a data-parallel 
program is just as easy (and just as hard) as writing a sequential program.  And, 
with suitable hardware, your programs may run much faster. 

Exercise:  Run through Lim’s algorithm on the grid given here. 

Questions and answers:  [not shown during class] Question: (Bert Halstead):  
Do you ever get into problems when you have highly data-dependent 
computations, and it’s hard to keep more than a small fraction of the processors 
doing the same operation at the same time? 

Answer:  Yes.  That’s one reason for making the distinction between the data-
parallel style and    hardware.  The best way to design a system to give 
you the most flexibility without making it overly difficult to control is, I think, still an 
open research question. 

Question (Franklin Turback): Your algorithms seem to be based on the 
assumption that you actually have enough processors to match the size of your 
problem.  If you have more data than processors, it seems that the logarithmic 
time growth is no longer justified. 

Answer:  There’s no such thing as a free lunch.  Making the problem bigger 
makes it run slower.  If you have a much larger problem that won’t fit, you’re 
going to have to buy a larger computer. 
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Question:  How about portability of programs to different machines? 

Answer:  Right now it’s very difficult, because so far, we haven’t agreed on 
standards for the right building blocks to support.  Some architectures support 
some building blocks but not others.  This is why you end up with non-
portabilities of efficiencies of running times. 

Question:  For dealing with large sparse matrices, there are methods that we use 
to reduce complexity.  If this is true, how do you justify the overhead cost of 
parallel processing? 

Answer:  Yes, that is true.  It would not be appropriate to use that kind of 
algorithm on a sparse matrix, just as you don’t use the usual sequential triply-
nested loop. 

    processing on a data-parallel computer calls for very 
different approaches.  They typically call for the irregular communication and 
permutation techniques that I illustrated. 

Question:  What about non-linear programming and algorithms like branch-and-
bound? 

Answer:  It is sometimes possible to use data-parallel algorithms to do seemingly 
unstructured searches, as on a game tree, by maintaining a work queue, like you 
might do in a more control-parallel, and at every step, taking a large number of 
task items off the queue by using an enumeration step and using the results of 
that enumeration to assign them to the processors. 

This may depend on whether the rest of the work to be done is sufficiently 
similar.  If it’s not, then control parallelism may be more appropriate. 

Question:  With the current software expertise in 4GLs for sequential machines, 
do you think that developing data-parallel programming languages will end up at 
least at 4GL level? 

Answer:  I think we are now at the point where we know how to design data-
parallel languages at about the level of expressiveness as C, Fortran, and 
possibly Lisp.  I think it will take awhile before we can raise our level of 
understanding to the level we need to design 4GLs. 


