
–1–

CSC/ECE 506: Architecture of Parallel Computers
Sample Test 2 with Answers

This was a 120-minute open-book test. You were allowed to use the textbook and any course
notes that you might have. You could also use your laptop, but you were not allowed to
communicate with any other student, by electronic or other means, during the test.

You were to answer five of the six questions. Each question was worth 20 points. If you
answered all six questions, your five highest scores counted.

Question 1. [Average score 18.7] (1 point per blank) Here is a system with 3 processors using
the MESI protocol. Each line holds a single integer value (e.g., block size of 4 bytes).

“– “ indicates that the contents of a line are unknown. Initially, all caches
are empty.

Fill in the blank spaces.
Operation Processor 1 Processor 2 Processor 3 Memory

contents Value State Value State Value State

P2 reads from address 2000 – – 3 E – – 3

P2 writes 5 to address 2000 – – 5 M – – 3

P3 reads address 2000 – – 5 S 5 S 5

P1 writes 7 to address 1000 7 M – – – – 1

P3 reads address 1000 7 S – – 7 S 7

P1 writes 6 to address 1000 6 M – – 7 I 7

P2 reads from address 1000 6 S 6 S 7 I 6

P3 writes 4 to address 2000 – – 5 I 4 M 5

P1 writes 9 to address 2000 9 M 5 I 4 I 4

P1 writes 2 to address 2000 2 M 5 I 4 I 4

P2 writes 1 to address 2000 2 I 1 M 4 I 2

Memory contents

Address Data
1000 1
3000 3

–2–

Question 2. [Average score 17.1] Consider a bus-based shared-memory system with four
processors, P1, P2, P3, and P4, with individual caches. The sequence of accesses to location r in

the shared memory is given below. Assume that all caches are initially empty.

1. P1 writes value10 to location r.

2. P4 reads from location r.

3. P2 writes value 7 to location r.

4. P3 reads from location r.

5. P3 writes value 3 to location r.

(a) Using the Dragon update protocol, fill in the table below, showing the state transitions and bus
transitions.

Answer: Answers you were to give are underlined.

 State in Data

 Instruction P1 P2 P3 P4 Bus action supplied by

1. P1 writes r = 10 M - - - BusRd Memory

2. P4 reads r Sm - - Sc BusRd P1 cache

3. P2 writes r = 7 Sc Sm - Sc BusRd, BusUpd P1 cache

4. P3 reads r Sc Sm Sc Sc BusRd P2 cache

5. P3 writes r = 3 Sc Sc Sm Sc BusUpd P3 cache

(b) Each processor has a cache size of 4K bytes with 128 cache lines. How many bytes are in
each line?

Answer: Cache size is 4K = 212 bytes

Number of cache lines = 128 = 27

So, each cache block or line size = 212 / 27

 = 25 bytes
 = 32 bytes

(c) Assume that the above sequence of instructions is repeated 10 times. Address and command
in any message occupy 8 bytes. Of course, a cache miss needs to transfer the cache line as well
as address and command. The total length of an update message is 16 bytes. Calculate the
cost for update protocol in terms of cache misses and bus traffic at the end of 10 iterations.
Note: Assume no cache misses, other than those caused by executing the above instructions.

Answer: A cache miss (BusRd) requires 40 bytes to be transferred across the bus. A BusUpd
transfers 16 bytes.

For the first iteration, the first four operations incur a cache miss
After the first iteration there are no more misses.
So, the total number of cache misses after all the iterations = 4.

Each time any processor writes a value, it generates an update.
So, for each iteration there are a total of 3 updates.

Total number of updates = number of iterations  updates on each iteration = 10  3 = 30.
Given that each update transfers 16 bytes, the # of bytes transferred across the bus for these

updates = 16  30 = 480 bytes.

Total bus traffic for all the iterations =

–3–

(Number of cache misses  bytes per cache miss) + bytes transferred across the bus for the
updates.

 = (4  40) + 480
 = 160 + 480
 = 640 bytes.

Question 3. [Average score 12.7] This question concerns inclusion policies. Suppose we have a
cache that has an equal number of L1 and L2 sets. The L1 cache is 2-way, and the L2 is 4-way
associative. Let’s focus first on Set 0 in both the L1 and the L2.

(a) (8 points) Assuming that this is an exclusive cache, fill in the mising block numbers (A–G) in
the table below. If a line is empty, write a dash (“—”).

Ref.

Block
refer-
enced

L1 cache
(Set 0)

 Exclusive L2 cache
(Set 0)

MRU
line

LRU
line

MRU
line

…
LRU
line

1 A A — — — — —

2 B B A — — — —

3 C C B A — — —

4 A A C B — — —

5 D D A C B — —

6 E E D A C B —

7 F F E D A C B

8 B B F E D A C

9 G G B F E D A

(b) (2 point each) What is the number of the first reference where—

• the exclusive cache would eject a block from the L2? Answer: Exclusive would eject
when the 7th block from set 0 Is referenced. That is G, at reference 9.

• an inclusive cache would eject a block from the L2? Answer: Inclusive would eject when
the 5th block from set 0 Is referenced. That is E, at reference 6.

• a NINE cache would eject a block from the L2? Answer: NINE keeps A in the L2 even
after it is re-referenced. But before any ejection from the L2 occurs, A gets ejected from
the L1 a second time, it gets ejected from the L1 a second time. So NINE first ejects a
block from the L2 at the same time that exclusive would, i.e., at reference 9.

• the contents of the L2 differ between an exclusive cache and a NINE cache? Answer: At
reference 4, when A is re-referenced, it stays in the L2 with NINE, but not with exclusive.

• one of the caches (inclusive, exclusive, or NINE) would have an L2 miss while another
has an L2 hit? Answer: Reference 8, where B is referenced. This will be an L2 hit
unless the policy is inclusive.

–4–

(c) (2 points) Suppose that the line size is 128 bytes and the L1 has 28 sets. What is the
minimum possible distance between the first address in A and the first address in B? Answer:
Since A and B both map to Set 0, their 8-bit index field must be the 0. The first address in each
block has a 7-bit offset field of 0. So the least significant 15 bits of both addresses are all 0.
Thus, A and B must be at least 215 bytes apart.

Question 4. (3 points each, except 5 points for part (f)) [Avg. score 10.6] (a) In the TTSL
implementation, what would happen if the “ld R1, &lockvar” were replaced with a ”t&s R1,

&lockvar” (and no other changes were made to the original code)?

Answer: No process would be able to enter the critical section. Suppose there is only one
process in the system. It begins with a test&set, which causes lockvar to change to 1. Then

when it gets to the second loop, lockvar will already be 1, causing it to loop back to the first

instruction. The first process cannot enter, and, since lockvar is now 1, neither can any other

process.

(b) In the TTSL implementation, what would happen if the “t&s R1, &lockvar” were replaced

with a “ld R1, &lockvar” (and no other changes were made to the original code)?

Answer: The code would be incorrect. Two (or more) processors could simultaneously load the
value of &lockvar, find it to be 0, and proceed past the first bnz. Then they could both find

&lockvar to be 0 a second time, and enter the critical section.

(c) Suppose that both the change of part (a) and part (b) were made, effectively causing the ld

and t&s of &lockvar to change place. What would happen then?

Answer: This is similar to part (a). The first process to execute this code tests&sets the
lockvar. After that, it tests the value of lockvar, fetching it with an ordinary load instruction.

But the value is already 1, so the first process loops back to the top. No other process can enter,

so lockvar cannot be reset to 0, so no process can ever enter.

(d) In the code for the LL/SC implementation, what value is in LINKREG when the lock

procedure returns?

Answer: Assuming that no context switch occurs between execution of the SC instruction and the

ret instruction, LINKREG holds the address of lockvar.

(e) One performance advantage of LL/SC vs. TTSL is that a failed SC does not generate a bus
transaction, whereas all test&sets generate bus transactions. Explain why this is true.

Answer: Bus transactions are caused by writes to shared variables. All test&sets do a set, i.e., a
write. Store-conditional only does a store if the condition is true, not if it fails.

(f) In each of the first three implementations of locking (test&set, TTSL, LL/SC), how many cache
lines are invalidated in the example code?

Answer: For test&set, 8 invalidations occur. For TTSL and LL/SC, only five invalidations occur.

–5–

Question 5. [Avg. score 13.4] A two-processor
system is shown at the right. Notice that the path
from P1 to M2 is congested at the moment. Assume

X and Y are initialized to 0. “” means assignment.

(a) (5 points) Will there be a consistency problem if
the following sequence of events occurs? Explain.

Time P1 executes … P2 executes … Value of X in M2 Value of Y in M1

1 X  1 while (Y = 0) … 0 0

2 Y  1 while (Y = 0) … 0 0

3 while (Y = 0) … 0 1

4 Y  X +1 0 1

5 1 1

Answer: There will be a consistency problem. This is because of the slow path from P1 to
M2. Processor P2 reads the updated Y value of 1 before X has been updated. Even though X
was written before Y, P2 uses the old value of X in the calculation that it performs. X’does not get
updated until after the calculation done on Y. This is a consistency problem because the writes to
multiple locations are not seen in an order that makes sense for this program.

(b) (15 points) Suppose the Dragon protocol is in use. Give the state of the lines containing X
and Y in the caches of both processors at the end of each statement. Also tell whether or not
each variable is up to date in memory.

Time P1 executes … P2 executes … State
of X in
P1’s

cache

State
of Y in
P1’s

cache

State
of X in
P2’s

cache

State
of Y in
P2’s

cache

X up
to date

in
mem-
ory?

Y up
to date

in
mem-
ory?

1 X  1 while (Y = 0) … M – – E No Yes

2 Y  1 while (Y = 0) … M Sm – Sc No No

3 while (Y = 0) … M Sm – Sc No No

4 Y  X +1 Sm Sc Sc Sm Yes No

–6–

Question 6. [Avg. score 19.2] Suppose that two processors execute the following code. All
variables start off equal to 0.

 P1 P2

 1a A = 1

 1b c = 1

 1c b = 1

 1d print a

 2a b = 2

 2b a = A

 2c print b, c

Under sequential consistency, which of the twelve possible combinations of values a, b, and c
may be printed?

(a) (10 points) For each combination, tell whether or not it is possible.

(b) (10 points) For at least four of the combinations that are possible, give a sequence of
statement executions that would print it. For example, the sequence

1a, 1b, 1c, 1d, 2a, 2b, 2c

will cause the values a = 0, b = 2, c = 1 to be printed.

Answer: It is fairly easy to see that b ≠ 0, because both P1 and P2 set b to a non-zero value, and

at least one must be executed before b is printed. Also, b = 1 and c = 0 is impossible, because c
is set to 1 before b is, so if b is 1, c must be 1 too. The other combinations are possible. Values
you were to fill in are underlined in the table below.

a b c
(a) Poss-
ible?

(b) If the combination is
possible, give a sequence
that prints these values

0 0 0 No

0 0 1 No

0 1 0 No

0 1 1 Yes 2a, 2b, 1a, 1b, 1c, {2c, 1d}

0 2 0 Yes 2a, 2b, 2c, 1a, 1b, 1c, 1d

0 2 1 Yes 1a, 1b, 1c, 1d, 2a, 2b, 2c

1 0 0 No

1 0 1 No

1 1 0 No

1 1 1 Yes 1a, 2a, 1b, 2b, 1c, {2c, 1d}

1 2 0 Yes 1a, 2a, 2b, 2c, 1b, 1c, 1d

1 2 1 Yes 1a, 1b, 1c, 2a, 2b, {2c, 1d}

In general, if a = 0, then we must have 1d → 2b or 2b → 1a.

 a = 1, then we must have 1a → 2b → 1d.

 b = 0 is impossible

 b = 1, then we must have 2a → 1c → 2c.

 b = 2, then we must have 1c → 2a or 2c → 1c.

 c = 0, then we must have 2c → 1b.

 c = 1, then we must have 1b → 2c

