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CSC/ECE 506: Architecture of Parallel Computers 
Sample Final Examination with Answers 

 
This was a 180-minute open-web test.  You were allowed use your laptop, the textbook and any 
course notes that you may have.  We were not allowed to communicate with any other student, 
by electronic or other means, during the test. 

You were to answer five of the six questions.  Each question was worth 20 points.  If you 
answered all six questions, your five highest scores counted. 

Question 1.  Cache misses can be classified into four types: cold, capacity, conflict, and 
coherence (see Lecture 14).  Conflict misses can further be classified as either true sharing or 
false sharing. 

This problem should be solved using the MESI protocol. 
Assume the following: 
Direct-mapped cache organization 
P1 and P2 each have exactly 2 cache lines 
cache block size = 4 words 
B1 and B2 are two memory blocks that map to the same cache line. They contain the data items 
W, X, Y, Z; and P, Q, R, S, respectively as shown below. Each data item is one word. 

B1: B2: 

W X Y Z  P Q R S 

 
You are given the following trace of memory accesses from two processors P1 and P2. Assume 
that the accesses occur strictly sequentially in the textual order shown below. 
 
Action  Hit/Miss Type                

P1: Read  Z cold 
P2: Read  W cold 
P1: Read  W hit 
P1: Write Z hit; invalidates B1 in P2’s cache. 
P2: Read  X coherence,  false sharing 
P1: Read  P cold 
P2: Write P cold; invalidates B2 in P1’s cache 
P2: Write S hit 
P2: Read Y conflict 
P1: Read  R coherence, false sharing 
P1: Write Q hit 
P2: Read  X hit 
P1: Read  W conflict 
P1: Write X hit; invalidates B1 in P2’s cache 
P1: Write P conflict  (also true sharing) 
P2: Write Z coherence,  true sharing; invalidates B1 in P1’s cache 
P1: Read X conflict 
P2: Write R conflict  (also true sharing) 
P2: Write X conflict; invalidates B2 in P1’s cache 
P1: Write Z coherence, true sharing 

Many people thought that there were capacity misses in the trace.  This can’t be, since there are 
only two blocks in use, and there are two lines in the cache.  All of those misses are therefore 
conflict misses, caused by the fact that the two blocks map to the same line. 
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Question 2.  (4 points each)  For each code fragment below, put a check mark (“)below all the 
consistency models under which they are legal.  For each one that is not legal, write “x”. For 
partial credit, you may give a reason. 

 (a) 

P1: W (x )1  R(x )1 R(x )2 

P2:  W (x )2  

P3:   R (x )2  

 

 Sequential Causal Processor PRAM 

     

 

Answer:  Sequentially consistent, causally consistent, PRAM consistent, and processor 
consistent.  Not strictly consistent because the writes of 2 is not seen immediately by P1.   

Sequentially consistent, because all writes are seen in order. 

(b) 

P1: W (x )1  R (x )1  

P2:  R (x )1 R(x )2  

P3:  W (x )2 R(x )2 R(x)1  

 

 Sequential Causal Processor PRAM 

 x  x  

 
Answer:  Causally consistent, PRAM consistent.  Not strictly consistent because the writes of 2 is 
not seen immediately by P1.   Not sequentially consistent, because the writes of 1 and 2 are seen 

in different orders by P2 and P3.  However, these writes are not causally related, so it is still 

causally consistent.  Not processor consistent because it is not memory coherent. 

 
(c) 

P1: W (x )1  W  (x )2  R(x )3 

P2:  R (x )1  R(x )2  

P3:   W (x )3  R (x )2 R (x )1  

 

 Sequential Causal Processor PRAM 

 x  x x 

 
Answer: None of the writes are causally related, so it is causally consistent “by default.”  Does not 
satisfy any of the other consistency models, since the two writes by P1 are seen in different 

orders by P2 and P3. 
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 (d) 

P1: W (x )1   R(x )2 

P2:  R (x )1   

P3:   W (x )2 R (x )2  

 

 Sequential Causal Processor PRAM 

     

 
Answer:  Strictly consistent, sequentially consistent, causally consistent, PRAM consistent, 
processor consistent. 

 
(e) 

P1:    R (x )3 R (x )1 R(x )2  

P2 : W (x )1   W (x )2  

P3:  R (x )1 W (x )3 R (x )3 R(x )2  

 

 Sequential Causal Processor PRAM 

 x x x  

 
 
Answer: PRAM consistent (only).  Both writes by P2 are seen in the same order by the other 

processors.  However, memory coherence does not hold, because the three writes to x are seen 
in a different order by P1 are P3. Causal consistency does not hold, because the writes of 1 and 3 

are causally related, and are seen by P1 are P3 in a different order.  This also means that 

sequential consistency and strict consistency do not hold. 

Question 3.  Consider how a memory-based cache directory might be organized.  Note:  In doing 

the calculations below, be careful not to confuse bits with bytes!  (1 byte = 23 bits) 

Suppose a multiprocessor has 256 nodes, each of which has 128 MB (= 227 bytes) of memory.  
Suppose that a cache line contains 32 bytes. 

(a)  (2 points)  How many cache blocks are there per node? 

Answer:  227/25 = 222, or 4 "megablocks." 

(b)  (3 points)  If we used the full bit-vector  approach for organizing the cache directory, what 
fraction of main memory would have to be devoted to cache directories? 

Answer:  For each block, we would need to use 256 bits to record which of the 256 processors 

contained it.  This means 222 blocks  28 bits  = 230 bits = 227 bytes.  Woops—100% of main 
memory would be consumed by cache directories! 

(c)  (3 points)  Assume that the average block is cached in 2 nodes.  If we used pointers instead 
of the full bit-vector approach, what fraction of memory would be devoted to the pointers?  
(Answer the fraction of memory that would be devoted to pointers alone, not including other data 
structures that would be needed to keep track of the sharers.) 
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Answer:    Each pointer is 8 bits (1 byte) long.  Each of the 222 blocks requires two pointers, on 

average.  Therefore, there will be 223 bytes devoted to pointers, out of 227 bytes altogether.  Thus, 
1/16 of main memory will be devoted to pointers. 

(d)  (3 points)  Is the assumption of part (c) realistic?  Explain. 

Answer:  No, it is not realistic.  If the “average” block were cached at 2 nodes, then  there would 
have to be twice as much cache memory as main memory in the system!  Therefore, the answer 
of part (c) is a gross overestimate of the amount of memory that would be devoted to pointers. 

(e)  (2 points)  In addition to the pointers themselves, what other information would need to be 
kept in a pointer-based cache directory in order to allow the system to locate all nodes caching a 
particular block? 

Answer:  We would need some sort of indication of how many nodes were sharing each particular 
block.  This could be in the form of a count of the number of sharers, or a link field that pointed to 
the next sharer. 

(f)  Another way that a memory-based directory could be optimized is by organizing it as a cache. 

(i)  (3 points)  What kind of information would serve as the “tags” of such a cache?  How 
large would a tag be? 

Answer:  The block number, a 22-bit number, would  serve as the tag. 

(ii)  (2 points)  What kind of information would be in the “lines” of such a cache? 

Answer:  A list of nodes that cached the block.  This could be in the form of a pointer to 
the head of a linked list. 

(iii) (2 points)  In one sentence or less, suggest how this cache might be organized so 
that it could be searched easily in software. 

 Answer:  As a hash table.  There are other possibilities … 

Question 4.  Deadlock-free routing algorithms are the subject of this question. 

(a)  For each turn-model routing algorithm named below, draw a diagram of the turns allowed by 
it (2 points each), tell whether it is deadlock free (2 points each), and explain why or why not  
(1 point each). 

(i) East-first  Answer:  Deadlock free, because it is a rotation of west-first. 

(ii) Positive-last  Answer:  This is the same as negative-first.  Note that the last two turns 
made by positive-last are positive in both directions: from going right, it turns up; or 
from going up, it turns right.  Therefore, it is deadlock free. 

(b)  I don’t have a name for this algorithm, but tell if it is 
deadlock free (2 points ) and why or why not (1 point). 

Answer:  Not deadlock free; paths 
with cycles can easily be created, 
e.g. 
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(c)  (1 point each)  In which of the following routine 
algorithms would the path at the right be legal ?  
Answer “yes” or “no.” 

 (i) x, y   Answer:  No 

 (ii) North-last Answer:  No 

 (iii) Negative-first Answer:  No 

 (iv) Positive-last Answer:  No  

(d)  What is the shortest path(s) between node 0 and 
node 3 in this Illiac IV mesh (i.e., what nodes are 
traversed on the way from node 0 to node 3)?  If a 
deadlock-free routing algorithm with two virtual 
channels is used, which channel will the message 
traverse at each hop on the way from node 0 to 
node 3? 

Answer:  The shortest path is either 0 → 4 → 3 or 0 

→ 15 → 3.  In either case, the message goes over 
the high channel on the first hop and over the low 
channel on the second. 

 

Question 5.  (1 point per line in (a)–(c); 2 pts. for part (d))  In a directory-based coherence 
protocol, one possible race condition is an early-invalidation race (Solihin §10.4.2, Lecture 23).  
This question involves tracing through the actions that occur when messages arrive in order, or 
out of order; and when an outstanding transaction buffer is in use, or not in use. All these 
scenarios involve Node A making a read request to a block, followed by Node B making a ReadX 
request to the same block.  Neither node A nor node B is the home node. 

(a)  First, assume that all messages arrive at their destination in the order that they are sent.  List 
the messages sent.  (The first few are done for you.)  Don’t forget the ack’s! 

Sending node Message* Receiving node *Possible messages (Solihin p. 
339) include 

 

Read 

ReadX 

ReplyD 

Ack 

Nack 

Inv 

InvAck  

A Read H 

H ReplyD A 

A Ack H 

B ReadX H 

H Inv A 

A InvAck H 

H ReplyD B 

B Ack H 

 (b)  Same assumptions as (a), but an OTB is in use (the requester-assisted approach). 

Sending node Message Receiving node Anything buffered/removed from 
buffer?  At which node(s)? 
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A Read H Read buffered at A 

H ReplyD A Read removed from A’s buffer 

A Ack H  

B ReadX H ReadX buffered at B 

H Inv A  

A InvAck H  

H ReplyD B ReadX removed from B’s buffer 

B Ack H  

(c)  Same as (b), except that the invalidation message from H arrives at node A before the 
ReplyD message.  (An OTB is in use.)  List the messages in the order they arrive, not the order in 
which they were sent. 

Sending node Message Receiving node Anything buffered/removed from 
buffer?  Where? 

A Read H Read buffered at A 

B ReadX H ReadX buffered at B 

H Inv A  

A Nack H (because it has a Read buffered) 

H ReplyD A Read removed from A’s buffer 

A Ack H  

H Inv A (retries …) 

A InvAck H  

H ReplyD B ReadX removed from B’s buffer 

(d)  If the home-centric scheme is use, why can’t messages arrive out of order at node A or B? 

Answer:  With the home-centric scheme, the home will hold a request for a node until it knows 
that the node has acked all previous requests.  Thus, messages can’t arrive out of order. 

Question 6.  This question concerns calculation on an Illiac-IV type array processor with 16 
processing elements (PE’s).  Each PE[i ] has two scratchpad registers, A [i ] and B [i ] , and a 
routing register R [i ].  When a routing function is performed, the contents of R [i ] are transferred 
from the source PE to the destination PE.  For example, when the +1 routing function (“route +1”) 
is performed, the contents of R [1] are transferred to R [2], and the contents of R [15] are 
transferred to R [0], etc. 
 
Sketch a program (in pseudo-C or a similar facsimile of a higher-level language) to calculate  

B [i ] = A [0] + A [1] + … + A [15] for i = 0, 1, 2, … , 15.  (In other words, set each B [i ]  to the sum of 
all of the A [i ].)  Do not use more than eight invocations of routing functions. 
 
Answer 6.  Here are two possible programs. 
 

B [i ]  =  A [i ], (0 ≤ i ≤ 15); 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
route  +1, (0 ≤ i ≤ 15); 
B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
route  +1, (0 ≤ i ≤ 15); 
route  +1, (0 ≤ i ≤ 15); 
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B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
route  +4, (0 ≤ i ≤ 15); 
B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
route  +4, (0 ≤ i ≤ 15); 
route  +4, (0 ≤ i ≤ 15); 
B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 

 
 or— 
 

B [i ]  =  A [i ], (0 ≤ i ≤ 15); 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
for j  = 1 to 3 do 
 route  +1, (0 ≤ i ≤ 15); 
 B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 
end; 
 
R [i ]  =  B [i ], (0 ≤ i ≤ 15); 
for j  = 1 to 3 do 
 route  +4, (0 ≤ i ≤ 15); 
 B [i ]  =  B [i ] + R [i ] , (0 ≤ i ≤ 15); 
end; 

 
 


